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IDENTIFICATION OF NONLINEAR COEFFICIENT IN A

TRANSPORT EQUATION

Abstract. Considered a problem of identification a nonlinear co-
efficient in a first order PDE via final observation. The problem is
stated as an optimal control problem and solved numerically. Implicit
finite difference scheme is used for the approximation of the state equa-
tion. A space of control variables is approximated by a sequence of
finite-dimensional spaces with increaing dimensions. Finite dimensional
problems are solved by a gradient method and numerical results are
presented.

1. Introduction

In this paper we consider the following nonlinear initial boundary-value

problem ⎧⎪⎪⎨
⎪⎪⎩

∂c

∂t
+

∂c

∂x
+

∂a(c)

∂t
= 0, x ∈ (0, 1), 0 < t ≤ T,

c(0, t) = 1,

c(x, 0) = 0

(1)

which models a convective transport of sorption chemical through a

porous medium. Here c is the dissolved concentration of a chemical

and a(c) is a so-called sorption isotherm. Function a(c) is the unknown

of the problem, so we consider a structure identification problem. For
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physical reasons we assume a(c) to be continuous and non-decreasing and

a(0) = 0. Under these assumptions there exists a unique solution c(x, t)

to the problem (1) which takes its values from segment [0, 1]. In order,

to define a(c) on [0, 1], we use a final observation φ(x): we try to choose

a(c) in such a way that a(c(x, T )) = φ(x), (x ∈ [0, 1]), and where φ(x)

is a non-negative continuous function. It is obvious that the formulated

inverse problem is ill-posed, because it is not solvable for the arbitrary

function φ(x).

We set up the above problem as an optimal control problem [5]. This

approach is well-known in parameter identification problems (e.g. [1], [2])

and it is often called the output least squares method (cf. [3], [4]). In

this paper we will concentrate on the numerical solution to the problem

rather than its theoretical study.

In order to solve the optimal control problem we approximate the

set of admissible coefficients a(c) by a finite dimensional set. We also

approximate problem (1) by a finite difference scheme. The existence

of an unique solution to the finite-dimensional optimal control problem

is shown. We use a gradient-type method for its solution, where the

gradient information is calculated via the solution of an adjoint state

problem. Due to the highly ill-posedness of the problem we chose an

approach which is characterized by increasing the dimension of the set for

admissible coefficient (cf.[4]). The results of the numerical experiments

are presented.

2. Formulation of the problem and its discretization

We consider problem (1) with non-linear ”coefficient” a(c) which be-

longs to the following subset of the Lipshitz-continuous on [0, 1] functions:

A = {a(c) ∈ C(0,1)[0, 1] : a(0) = 0,
da

dc
≥ 0 for a.a. c ∈ [0, 1]}. (2)

Let us define the cost functional for the control optimization problem by

J(c) =
1

2

1∫
0

(a(c(x, T )) − φ(x))2dx. (3)

The problem under consideration can be posed as the following optimal

control problem:

find a(c) ∈ A such that it minimizes J(c) when c(x, t) satisfies the

initial boundary-value problem (1).

Now in order to solve and stabilize the above stated optimal control

problem we approximate the set A by a finite-dimensional set Ah. Ah is
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constructed by discretization of the coefficient space. Namely, let ah(c) ≡
a(u, c) =

Nu∑
i=1

uiψi(c), where the functions ψi(c) compose a basis of a

finite-dimensional space Uh, containing Ah, while u = {u1, . . . , uNu}T

belongs to a set K of admissible parameters: u ∈ K ⇔ ah(c) ∈ Ah. After

an approximation of set A we derive the problem of minimization to the

functional

I(u) ≡ J(u, c) =
1

2

1∫
0

(a(u, c(x, T )) − φ(x))2dx (4)

with c = c(u) satisfying (1) and u ∈ K.

For the differentiable function a(u, c) ∈ Ah the functional I(u) is also

differentiable and

∇I(u) =

1∫
0

(a(u, c(x, T )) − φ(x))a′
u(u, c(x, T ))dx

+

T∫
0

1∫
0

∂

∂t
a′

u(u, c(x, t))λ(x, t)dxdt. (5)

Here c(x, t) is the solution of the state problem (1) and λ(x, t) is the

solution of the corresponding adjoint problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T∫
0

((1 + a′
c(u, c(x, t))

∂λ

∂t
+

∂λ

∂x
)µ(x, t)dxdt

=

1∫
0

(1 + a′
c(x, T )λ(x, T ) µ(x, T ))dx

+

T∫
0

λ(1, t) µ(1, t)dt

+

1∫
0

(a(u, c(x, T )) − φ(x))a′
c(u, c(x, T )µ(x, T )dx,

∀µ(x, t) : µ(0, T ) ≡ µ(x, 0) ≡ 0.

(6)



72 A. LAPIN AND S. LAPIN

We can rewrite (6) in pointwise form:⎧⎪⎪⎨
⎪⎪⎩

(1 + a′
c(u, c))

∂λ

∂t
+

∂λ

∂x
= 0, 0 < x < 1, 0 < t ≤ T,

λ = 0, x = 1, 0 < t ≤ T

(1 + a′
c(u, c))λ + (a(u, c) − φ(x))a′

c(u, c) = 0, 0 < x < 1, t = T.

In order to solve numerically the optimal control problem we discretize

the state problem (1) and construct corresponding discrete adjoint state

problem. Let us divide the segment [0, 1] by the uniform mesh with

stepsize hu = 1/Nu, Nu ∈ N , and define finite-dimensional spaces

Uh = {a(c) : a(c) is piecewise linear and continuous on [0, 1], a(0) = 0}
and

Ah = {a(c) ∈ Uh : a(ihu) ≤ a((i + 1)hu) for all i = 0, 1, ..., Nu}.
Now we consider set {ψi(c)}Nu

i=1 which is the basis of Uh. This set con-

sists of the piecewise polynomial functions which are defined the following

way:

ψi(c) =

⎧⎨
⎩

0 for 0 ≤ c ≤ (i − 1)hu

Nu(c − (i − 1)hu) for (i − 1)hu < c ≤ ihu

1 for ihu < c ≤ 1

(7)

Use of the basis (7) instead of usual Courant basis allows us to obtain

the simplest form of the set Ah via the nodal parameters of the functions

a(c) ∈ Ah:

a(c) ≡ a(u, c) =
Nu∑
i=1

uiψi(c) iff u ∈ K ≡ (RNu)+.

Now, let ω̄ = {xi = ih, i = 0, 1, .., N} be an uniform mesh on [0, 1]

with mesh step-size h and ω+ = ω̄ \ {x0}. We also introduce ω̄τ =

{tk = kτ, k = 0, 1, .., Nτ} being uniform mesh on [0, T ] with step-size τ ,

ω+
τ = ω̄τ \ {t0}, ω−

τ = ω̄τ \ {t = T}.
We define the finite differences in time as:

vt̄ =
1

τ
(v(x, t) − v(x, t − τ)), vt =

1

τ
(v(x, t + τ) − v(x, t))

and in space as:

vx̄ =
1

h
(v(x, t) − v(x − h, t)), vx =

1

h
(v(x + h, t) − v(x, t)).
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State equation (1) is approximated by the following implicit scheme:

⎧⎨
⎩

(ch + ah)t̄(x, t) + chx̄(x, t) = 0 for x ∈ ω+, t ∈ ω+
τ ,

ch(0, t) = 1, for t ∈ ω̄τ ,

ch(x, 0) = 0 for x ∈ ω+,

(8)

where ah = a(u, ch). Applying the quadrature formula to (4), we derive

the following finite-dimensional cost functional:

I(u) ≡ Jh(u, ch) =
N∑

i=1

(a(u, ci) − φ(xi))
2, (9)

where ci = ch(xi, T ).

Futher we consider the optimal control problem (OCP):

find minJh(u, ch) for u ∈ K, when equation (8) is fulfilled. (10)

Lemma 1. Discretization scheme (8) has a unique solution ch(x, t) for

any u ∈ K, and 0 ≤ ch(x, t) ≤ 1 for all x, t.

Proof. For a fixed time level t problem (8) can be written as

(1+
τ

h
)ch(x, t)+a(u, ch(x, t)) = ch(x, t−τ)+a(u, ch(x, t−τ))+

τ

h
ch(x−h, t).

Because ch(0, t) = 1, we solve recurrently the equations with monotone

increasing and continuous functions to find ch(x, t) for all x ≥ h, whence

the unique solvability follows. Further, owing to the non-negativeness

of the initial and boundary conditions we obviously have ch(x, t) ≥ 0.

Now, let ch(x, t − τ) ≤ 1 and ch(x, t) ≤ 1 for x ≤ xi. If we suppose

that ch(xi+1, t) > 1, then from (8) it follows (ch + ah)t̄(xi+1, t) < 0, thus,

ch(xi+1, t) < ch(xi, t) and we get a contradiction. �

In addition, we prove that ch is a Lipschitz-continuous function of u.

To do this we rewrite equation (8) for a fixed time level in an algebraic

form. Let c = c(t) = c(t, u) ∈ RN be the vector of nodal values to

ch(x, t) : ci = ch(xi, t) for i = 1, . . . , N , while f = f(u) ∈ RN be

the vector with coordinates fi = ch(xi, t − τ) + a(u, ch(xi, t − τ)) for

i = 2, . . . , N and f1 = ch(x1, t− τ)+a(u, ch(x1, t− τ))+ τ/h. Let further

B ∈ RN×N be the two-diagonal matrix with diagonal elements 1 + τ/h

and off-diagonal ones −τ/h. Then (8) for a fixed time level t has the

form

Bc + a(u, c) = f(u). (11)
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Lemma 2. Let c(u) ≡ c(t, u) and c(v) ≡ c(t, v) be the solutions of (11),

corresponding to u, v ∈ K. Then there exists a constant M = M(t, u)

such that

||c(t, u) − c(t, v)||∞ ≤ M ||u − v||1, (12)

where ||.||∞ and ||.||1 are maximum and L1-norm of vectors, respectively.

Proof. Let I be unit matrix and σ = σ(u) =
Nu∑
j=1

ujNu. From equation

(11) we obtain

c(u) = (B + σI)−1(σc(u) − a(u, c(u)) + f(u)),

c(v) = (B + σI)−1(σc(v) − a(v, c(v)) + f(v))

and estimate the difference

c(u) − c(v)

= (B + σI)−1(σ(c(u) − c(v)) − a(u, c(u)) + a(u, c(v))

+ (B + σI)−1(f(u) − f(v) + (a(v, c(v)) − a(u, c(v)))

= (B + σI)−1(
Nu∑
j=1

uj(Nu(c(u) − c(v)) + ψj(c(v)) − ψj(c(u)))

+ (B + σI)−1(f(u) − f(v) +
Nu∑
j=1

(vj − uj)ψj(c(v))). (13)

Let Lj be the diagonal matrix with entries, defined the following way:

if ci(u) 	= ci(v) then the i-th diagonal entry of Lj is
ψj(ci(u)) − ψj(ci(v))

ci(u) − ci(v)
;

otherwise it is equal to 0. With this definition one has

ψj(c(u)) − ψj(c(v)) = Lj(c(u) − c(v)). (14)

Owing to the definition of the functions ψj

0 
 Lj 
 NuI, (15)

where by 
 the componentwise inequality is denoted. From (14) and

(15) we obtain

|
Nu∑
j=1

uj(Nu(c(u) − c(v)) + ψj(c(v)) − ψj(c(u))| 


Nu∑
j=1

uj|(Lj − NuI)(c(u) − c(v))| 
 σ|(c(u) − c(v))|. (16)
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Direct calculations show that

||(B + σI)−1||∞ ≤ 1

1 + σ
. (17)

Now, (13), (16) and (17) yield

||c(u)−c(v)||∞ ≤ (1+σ)||(B+σI)−1(f(u)−f(v)+
Nu∑
j=1

(vj−uj)ψj(c(v)))||∞

≤ ||f(u) − f(v)||∞ +
Nu∑
j=1

|vj − uj|.

Because f(u)−f(v) = c(t−τ, u)−c(t−τ, v)+a(u, c(t−τ, u))−a(v, c(t−
τ, v)) and similarly to the previous estimates we have

|a(u, c(t− τ, u))−a(v, c(t− τ, v))| 
 σ|c(t− τ, u)− c(t− τ, v)|+ ||u−v||1,
then

||f(u) − f(v)||∞ ≤ (1 + σ)||c(t − τ, u) − c(t − τ, v)||∞ + ||u − v||1.
Thus,

||c(t, u) − c(t, v)||∞ ≤ (1 + σ)||c(t − τ, u) − c(t − τ, v)||∞ + 2||u − v||1,

whence inequality (12) follows with M(t, u) = 2
(1 + σ(u))t/τ

σ(u)
. �

Theorem 1. Problem (10) has a solution for any u ∈ K
Proof. Owing to the previous Lemma 2 and definition of a(u, c), the cost

function I(u) is continuous, and obviously it is coercive: ||u|| → ∞ ⇒
I(u) → +∞, whence the result. �

3. Iterative method

A function a(u, ch) ∈ Ah is not differentiable in ch. However, it is

Lipcshitz-continuous and has left and right derivatives a′
c. Below we use

the piecewise constant function a′
c (by taking either left or right deriv-

ative) to construct adojnt state and to receive ”gradient” information.

To construct the adjoint state problem we define the following Lagrange

function

Lh(u, ch, λh) = Jh(u, ch)+τ
∑
t∈ω+

τ

h
∑
x∈ω+

λh(x, t)((ch+ah)t̄(x, t)+chx̄(x, t)),

(18)
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where the mesh function λh(x, t) vanishes when x = 0 or t = 0. Stationary

points of Lagrange function Lh are defined from the following system

∇λLh · δλh ≡ τ
∑
t∈ω+

τ

h
∑
x∈ω+

((ch + ah)t̄(x, t) + chx̄(x, t))δλh(x, t) = 0; (19)

∇cLh · δch ≡ h
∑
x∈ω+

(a(u, ch(x, T )) − φh(x))a′
c(u, ch(x, T ))δch(x, T )

+τ
∑
t∈ω+

τ

h
∑
x∈ω+

((δch + a′
cδch)t̄(x, t) + (δch)x̄(x, t))λh(x, t) = 0; (20)

∇uLh · δu ≡ h
∑
x∈ω+

(a(u, ch(x, T )) − φh(x))a′
u(u, ch(x, T ))δu

+τ
∑
t∈ω+

τ

h
∑
x∈ω+

λh(x, t)(a′
u)t̄(x, t)δu = 0, (21)

where δu ∈ Rm and trial mesh functions δλh and δch vanish when x = 0

or t = 0.

Equation (20) gives us the adjoint state problem which has the follow-

ing pointwise form⎧⎪⎪⎨
⎪⎪⎩

−(1 + a′
c)λt − λx = 0, 0 < x < 1, t ∈ ω−

τ ,

−(1 + a′
c)λt + 1

h
λx = 0, x = 1, t ∈ ω−

τ ,

(1 + a′
c)λ − τλx + a′

c(a − φ) = 0, 0 < x < 1, t = T,

(1 + a′
c)λ + τ

h
λx + a′

c(a − φ) = 0, x = 1, t = T.

(22)

From the equation (21) we derive the formula for calculation the gradient

∇I(u) = ∇uLh :

∇I(u) = h
∑
x∈ω+

(a(u, ch(x, T )) − φh(x))a′
u(u, ch(x, T ))

+τ
∑
t∈ω+

τ

h
∑
x∈ω+

λh(x, t)(a′
u)t̄(x, t) (23)

Now to minimize the functional I(u) we use the gradient method:

uk+1 = uk − ρk+1∇I(uk), (24)

where an initial guess u0 ∈ K, and iterative parameter ρk+1 is defined

via the line search technique. To improve the convergence of the method

we use “multilevel” implementation; namely, we first solve the problem

with the dimension Nu = 2 of the space Uh and then increase Nu. This

approach gives us the possibility to achieve better results than if using

fixed dimension Nu.



IDENTIFICATION OF NONLINEAR COEFFICIENT 77

4. Numerical results

In this section, we will describe numerical experiments that we have

performed for the solution of the above defined optimal control problem.

We discretize domain Ω = (0, L) × T by uniform mesh with step size

h and time step ∆t. Then, we define discrete control space Uh with the

dimension Nu. For the numerical experiments we have used the following

objective functions φ:

φ1(x) = 0.5(1.0 − x),

φ2(x) =

{
1, 0 ≤ x ≤ L/2,

0, L/2 < x ≤ L,

φ3(x) =

{
0.5 − x, 0 ≤ x ≤ L/2,

0, L/2 < x ≤ L.

We have performed calculations for variable Nu = 2, 4, 8, 16, 32, where

on each step after increasing Nu we used the previous solution as an

initial data.

Figures 1 - 6 show evaluated coefficient a(c) and comparison between

objective function φ and computed values of a(c(x, T )) for three consid-

ered functions φ and for different mesh and time step sizes.

Remark 1. We also performed calculations ”directly” for Nu = 32 with-

out multilevel approach. The calculated results were similar to the previ-

ous ones, but the number of iterations and especially the time of calcula-

tion were much greater than for the multilevel method.
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Figure 1. Objective function φ1 and calculated a(c(x, T ))

(top) and computed nonlinear coefficient a(c) (bottom) for

h = τ = 0.01
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Figure 2. Objective function φ1 and calculated a(c(x, T ))

(top) and computed nonlinear coefficient a(c) (bottom) for

h = τ = 0.005
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Figure 3. Objective function φ2 and calculated a(c(x, T ))

(top) and computed nonlinear coefficient a(c) (bottom) for

h = τ = 0.01
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Figure 4. Objective function φ2 and calculated a(c(x, T ))

(top) and computed nonlinear coefficient a(c) (bottom) for

h = τ = 0.005
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Figure 5. Objective function φ3 and calculated a(c(x, T ))

(top) and computed nonlinear coefficient a(c) (bottom) for

h = τ = 0.01



IDENTIFICATION OF NONLINEAR COEFFICIENT 83

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

φ
a(c(Nt,x))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

Figure 6. Objective function φ3 and calculated a(c(x, T ))

(top) and computed nonlinear coefficient a(c) (bottom) for

h = τ = 0.005
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