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Abstract. Let R be a commutative ring and W a Lie algebra of
its derivations which is an R-submodule in the full derivation algebra
DerR. We consider a class of W-modules generalizing the natural repre-
sentations of the Lie algebras of vector fields in tensor fields of arbitrary
type. The main result consists in the determination of the cohomology
of those modules in degree 1. Its applications include a description of
derivations and the universal central extension for the Lie algebra W .

Introduction

This paper is concerned with the Lie algebras of derivations of a com-

mutative ring R which are closed under the natural R-module structure

on all the derivations. The basic motivating examples are the Lie alge-

bras of all vector fields of respective smoothness class on C∞ manifolds,

real analytic ones or Stein spaces. Lie algebras of this type appear also

in the classification of simple Lie algebras of finite dimension over fields

with nonzero characteristic [15, 25]. Whereas the Lie algebras in the

classes just mentioned were studied often separately, a natural generality

of results describing their properties can be obtained in the settings of

an arbitrary commutative ring R. This point of view in regard to the

Lie algebra isomorphisms and the structure of ideals was emphasized in

Grabowski’s paper [7]. The same questions received a further treatment

in [9, 13, 22].

Another group of problems centers around the representation theory.

When dealing with representations it is reasonable to make certain as-

sumptions on the ring R and an R-module Lie algebra of derivations
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W ⊂ Der R which express algebraically the idea of absence of singular-

ities (although Lie algebras associated with singular analytic spaces or

algebraic varieties were a subject of specific interest in some recent work

[e.g. 2, 10, 21]). Under these assumptions there is a class of W-modules

which are glued, in a sense, from a family of finite dimensional irre-

ducible modules of any possible type over the general linear Lie algebras

gln(R/m), where the parameter m runs through the maximal ideals of R.

They generalize the natural representations of the Lie algebras of vector

fields by Lie derivatives in the sections of vector bundles associated with

the representations of the general linear group GLn.

Earlier I gave a description of submodules and intertwining operators

for those modules [24]. The purpose of the present paper is to determine

the Chevalley-Eilenberg cohomology groups in degree 1. By theorem

5.5 these groups vanish except for modules of several exceptional types.

Theorem 5.6 gives the solution in exceptional cases.

Two traditional applications of cohomology are derivations and cen-

tral extensions. We show that, under our assumptions, the derivation

algebra Der W is isomorphic with the normalizer of W in Der R. This

generalizes the description of derivations obtained by Takens [26] for the

Lie algebra of vector fields on a smooth manifold, by Grabowski [8] in

the real analytic and Stein cases, and by Jacobson [12] and Ree [18] for

the Lie algebras of Witt type in positive characteristic.

All central extensions of W are trivial, according to theorem 7.1, when

the rank of W as a projective R-module is greater than 1. If the rank

equals 1 then the kernel of the universal central extension is canonically

isomorphic with the cohomology group H1(Ω) of the de Rham complex

relative to W . This generalizes the classical construction of the Virasoro

algebra as the universal central extension of the Lie algebra of C∞ vector

fields on a circle. In this case Ω is the ordinary de Rham complex, and

dimRH1(Ω) = 1. Another interesting example considered by Wagemann

recently [27] is the Lie algebra Vect1,0 Σ of complexified C∞ vector fields

of type (1, 0) on a Riemann surface Σ. The relative de Rham complex

is here the complex 0 → Ω0,0 → Ω1,0 → 0 of C∞ differential forms of

type (∗, 0) with respect to the ∂-differential. As it comes by taking the

global sections from a fine resolution of the sheaf O of antiholomorphic

functions on Σ, its cohomology in degree 1 is isomorphic with H1(Σ,O).

Therefore the kernel of the universal central extension has dimension

equal to the genus of Σ. A nontrivial central extension is known also for

the Zassenhaus algebras in positive characteristic [5].
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By now the most comprehensive results on cohomology of the Lie al-

gebras we consider have been achieved in the cases of formal and C∞

vector fields (see [6]). The cohomology with coefficients in tensor fields

of certain types was computed in all dimensions. However, the technique

of glueing used here is not available in other situations. It should be

mentioned that the Lie algebras and modules in those results were un-

derstood as topological objects, and the cohomology computed was that

of continuous cochains. On the contrary, we deal with arbitrary linear co-

cycles. In fact, we don’t even need a ground field and work over the ring

of integers. Nevertheless, we show that every 1-cocycle in our settings is

a differential operator of order at most 3. Therefore the continuous and

algebraic cohomologies for the Lie algebras of vector fields coincide in de-

gree 1. Another feature of our approach is that there is no big difference

between local and global aspects. All constructions are done without the

resort to glueing of cocycles defined locally.

1. The category of representations

At the beginning we fix notations and recall the definition of a certain

representation category from [24, section 6]. Let R be a commutative,

associative and unital ring, W ⊂ Der R a Lie Z-algebra of derivations

such that RW = W , that is, W is an R-submodule in Der R. Put

Ω1 = HomR(W,R) and define df ∈ Ω1 for each f ∈ R by the rule

df(D) = Df , D ∈ W . The assumptions throughout the whole paper are

as follows:

(1.1) 2 is invertible in R ,

(1.2) W is R-projective of constant finite rank n > 0 ,

(1.3) Ω1 = R · dR .

We furnish the R-module g = Ω1 ⊗R W with an R-bilinear Lie product

setting

[θ ⊗D, θ′ ⊗D′] = 〈θ′, D〉 θ ⊗D′ − 〈θ, D′〉 θ′ ⊗D

for elements θ, θ′ ∈ Ω1 and D, D′ ∈ W , where 〈·, ·〉 stands for the natural

pairing Ω1 × W → R. There is an isomorphism σW of g onto the Lie

algebra glR W of all R-linear transformations of W defined by the rule

σW (θ ⊗D)(D′) = −〈θ,D′〉D .

Definition 1.1. Denote by C1 the category whose objects are additive

groups M together with a system of operators fM , ρM(D), σM(T ) defined

for each f ∈ R, D ∈ W , T ∈ g so that the following properties are

satisfied:

(1.4) the operators fM give M the structure of an R-module ,
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(1.5) the operators ρM(D) give M the structure of a W-module ,

(1.6) [ρM(D), fM ] = (Df)M ,

(1.7) [σM(T ), fM ] = 0 ,

(1.8) ρM(fD) = fM ◦ ρM(D) + σM(df ⊗D) ,

(1.9) σM(fT ) = fM ◦ σM(T ) .

The morphisms in C1 are the maps that commute with the actions of R

and W . Denote by C0 the full subcategory of C1 consisting of objects M

with σM = 0.

The category C1 is closed under several operations. If M, N are its

objects then the R-modules M ⊗R N and HomR(M, N) are in a natural

way objects of C1 too. We agree to write M⊗N suppressing the subscript

in the tensor product. The corresponding operators are given by

ρM⊗N(D)(u⊗ v) = ρM(D)u⊗ v + u⊗ ρN(D)v,

σM⊗N(T )(u⊗ v) = σM(T )u⊗ v + u⊗ σN(T )v,

ρHomR(M,N)(D)ξ = ρM(D) ◦ ξ − ξ ◦ ρN(D)

σHomR(M,N)(T )ξ = σM(T ) ◦ ξ − ξ ◦ σN(T ),

where u ∈ M , v ∈ N , ξ ∈ HomR(M, N). These are well defined in

view of the compatibility conditions (1.6), (1.7). In particular, the r-fold

tensor power
⊗rM of the underlying R-module of M is an object of C1.

The same is valid for the symmetric power SrM and the exterior power∧rM of the R-module M as these are factors of
⊗rM by subgroups

stable under all operators involved. Both W and g operate in the tensor,

symmetric and exterior algebras of the R-module M via derivations.

We regard R as an object of C0 letting ρR be the natural action of W

on R and σR = 0. Similarly, W together with the adjoint representation

ρW and σW defined earlier is an object of C1. Hence Ω1 and g are objects

of C1 too. Most of the natural R-linear maps that we will happen to deal

with are in fact morphisms in C1. For instance, so is σM : g → EndR M

for any M ∈ C1. That σM is a W-equivariant map is asserted in Lemma

1.1 below. Another example is the contraction γ : Ω1 ⊗ g → R defined

by the rule γ(θ ⊗D) = 〈θ, D〉 for θ ∈ Ω1 and D ∈ W .

Note that (1.2) enables one to define the trace function tr : EndR W →
R as follows. The R-module

∧nW is projective of rank 1. Therefore

EndR

∧nW ∼= R. There is a natural representation of the Lie algebra

glR W in
∧nW via R-linear transformations. Each element TW ∈ glR W

acts as a multiplication by a certain element of R called the trace of TW .

Now γ(T ) = − tr σW (T ) for T ∈ g. Similarly, γ(T ) is the trace of the

R-linear endomorphism σΩ1(T ).
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It may be helpful to think of a particular example in which R is the

ring of C∞ functions and W the Lie algebra of C∞ vector fields on a

smooth manifold. In this case Ω1 is the module of linear differential

forms. Tensor fields of any possible type constitute an object of the

category C1 according to the constructions above. The representation

ρ is given by Lie derivatives, whereas σ involves certain contractions of

tensors. This generalizes to real analytic manifolds and Stein spaces.

Lemma 1.1. Let M be an object of C1. Then the operators σM(T ) with

T ∈ g define a representation of g and [ρM(D), σM(T )] = σM

(
ρg(D)T

)
for all D ∈ W , T ∈ g. Every morphism in C1 is a g-module homomor-

phism.

Proof. In view of (1.3) every element of g is a sum of certain dg ⊗ D′

with g ∈ R and D′ ∈ W , so it suffices to consider only such elements. If

T ′ = dg ⊗D′ then σM(T ′) = ρM(gD′)− gM ◦ ρM(D′), and

[ρM(D), σM(T ′)]

= ρM([D, gD′])− gM ◦ ρM([D, D′])− (Dg)M ◦ ρM(D′)

= σM

(
ρg(D)T ′)

since ρg(D)T ′ = dg ⊗ [D,D′] + d(Dg) ⊗ D′. Now for T = df ⊗ D with

f ∈ R and D ∈ W we express σM(T ) from (1.8) and get

[σM(T ), σM(T ′)] = σM

(
ρg(fD)T ′ − f · ρg(D)T ′) = σM

(
σg(T )T ′) .

One checks that

σg(T )T ′ = σΩ1(T )(dg)⊗ T ′ + dg ⊗ σW (T )D′

= 〈dg, D〉 df ⊗D′ − dg ⊗ 〈df, D′〉D = [T, T ′] .

The final conclusion of the Lemma follows again from (1.8). ¤
If M ∈ C1 and m is a maximal ideal of R then M/mM is a module for

the Lie algebra g/mg over the field R/m. We may identify g/mg with the

Lie algebra gl(W/mW ) of all linear transformations of the vector space

W/mW . In a sense M can be regarded as being glued from a family of

representations of general linear Lie algebras parametrized by the max-

imal ideals of R. This is indeed a correct point of view provided M is

R-projective. Of particular importance are the following assumptions on

an object Q ∈ C1:

(1.10) Q is a finitely generated projective R-module ,

(1.11) for each maximal ideal m of R the quotient Q/mQ is an

absolutely irreducible module for the Lie algebra g/mg .



74 S. SKRYABIN

Lemma 1.2. Suppose that Q ∈ C1 satisfies (1.10), (1.11). Then the

associative R-algebra EndR Q is generated by the endomorphisms σQ(T )

with T ∈ g.

Proof. Put A = EndR Q, and let B be its subalgebra (containing the

identity endomorphism) generated by all σQ(T ). For each maximal ideal

m of R the image of B in A/mA ∼= EndR/m(Q/mQ) is the associative

subalgebra generated by all endomorphisms of an absolutely irreducible

representation in Q/mQ. It is therefore the whole A/mA, i.e., B +mA =

A. Since Q is a finitely generated projective R-module, A is finitely

generated over R too. The global version of Nakayama’s Lemma [1, II,

§3, Proposition 11] yields B = A. ¤
It turns out that for application to the central extensions in section 7

more general objects of C1 have to be dealt with. Hence we are led to

the following

Definition 1.2. Suppose that Q ∈ C1 is an object satisfying (1.10),

(1.11). We say that an object M ∈ C1 is of type Q if there is a homomor-

phism of associative R-algebras EndR Q → EndR M which takes σQ(T )

to σM(T ) for each T ∈ g.

If M is of type Q, then so is every subobject M ′ ⊂ M as well. In fact,

the image of EndR Q in EndR M is the subalgebra, say AM , generated by

the endomorphisms σM(T ) with T ∈ g. Each σM ′(T ) is the restriction of

σM(T ). Therefore M ′ is stable under AM , and the resulting homomor-

phism of R-algebras AM → EndR M ′ takes σM(T ) to σM ′(T ). Similarly,

along with M , every its factor object is of type Q. A particular example

of an object satisfying (1.10), (1.11) is R itself. An object M ∈ C1 is of

type R if and only if σM(T ) = 0 for all T ∈ g, that is, M ∈ C0.

Lemma 1.3. Suppose that Q is an object of C1 satisfying (1.10), (1.11).

Then the functor M0 7→ M0⊗Q is an equivalence between C0 and the full

subcategory of C1 consisting of objects of type Q.

Proof. Put A = EndR Q. Note that Q is a projective generator in the

category of R-modules. By Morita theory the functor M0 7→ M0 ⊗ Q

is an equivalence between the categories of R-modules and A-modules

with the inverse equivalence M 7→ HomA(Q,M). We will check that it

induces an equivalence between the categories in question.

Suppose that M ∈ C1 is of type Q. Then the homomorphism A →
EndR M afforded by the definition 1.2 makes M into an A-module. Let

M0 = HomA(Q,M). Then M0 ⊂ H where H = HomR(Q,M) is an

object of C1. In view of Lemma 1.2 η ∈ H is in M0 if and only if η

commutes with the action of g. Hence M0 is the kernel of the morphism
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ϕ : H → HomR(g, H) in C1 defined by the rule

ϕ(η)(T ) = σH(T )η = σM(T ) ◦ η − η ◦ σQ(T )

for η ∈ H, T ∈ g. Thus M0 ∈ C1 and, since the induced action of g in

M0 is trivial, in fact M0 ∈ C0. The canonical map M0 ⊗ Q → M is a

morphism in C1. It is bijective by Morita theory.

Conversely, suppose that M0 ∈ C0. Then M = M0 ⊗Q is an object of

C1 and σM(T ) = id ⊗ σQ(T ) for all T ∈ g. The assignment ξ 7→ id ⊗ ξ

defines a homomorphism of R-algebras A → EndR M which takes σQ(T )

to σM(T ). Thus M is of type Q. The canonical map M0 → HomA(Q,M)

is a bijective morphism in C0. ¤
Lemma 1.4. Let Q,Q′ be two objects of C1 satisfying (1.10), (1.11).

Suppose that M, M ′ ∈ C1 are objects of type Q and Q′ respectively, so

that M ∼= M0 ⊗ Q and M ′ ∼= M ′
0 ⊗ Q′ for some M0,M

′
0 ∈ C0. If the

g/mg-modules Q/mQ and Q′/mQ′ are not isomorphic for every maximal

ideal m of R then MorC1(M, M ′) = 0. If Q = Q′ then MorC1(M,M ′) ∼=
MorC0(M0,M

′
0).

Proof. Suppose there is a nonzero morphism M → M ′ in C1. Its image

N is a factor object of M and a subobject of M ′ in C1. It is therefore

of type Q and Q′ simultaneously. Put A = EndR Q, A′ = EndR Q′, and

let B be the subalgebra of the associative R-algebra EndR N generated

by all endomorphisms σN(T ) with T ∈ g. There is a homomorphism of

R-algebras A → B which takes σQ(T ) to σN(T ) for each T ∈ g. Clearly

it is surjective. Since A is finitely generated over R, so is B as well.

Furthermore, B 6= 0 because N 6= 0. By Nakayama’s Lemma there

exists a maximal ideal m of R such that B 6= mB. Fix such an ideal.

The factor algebra B/mB is a homomorphic image of a simple associa-

tive algebra A/mA ∼= EndR/m(Q/mQ). It follows that B/mB ∼= A/mA.

By symmetry we have B/mB ∼= A′/mA′ as well. Up to isomorphism,

Q/mQ is a unique simple module for A/mA. Similarly, A′/mA′ has a

unique simple module Q′/mQ′. If we let A/mA operate in Q′/mQ′ via the

algebra isomorphism ϕ : A/mA →∼ A′/mA′ constructed above, there has

to be an isomorphism of A/mA-modules ι : Q/mQ →∼ Q′/mQ′. Denote

by σm : g/mg → A/mA the reduction modulo m of the map σQ : g → A

and by σ′m : g/mg → A′/mA′ the reduction of σQ′ : g → A′. Then

σ′m = ϕ ◦ σm by the construction. Hence ι is an isomorphism of g/mg-

modules. This proves the first statement of the Lemma. The second one

is a general fact that a category equivalence is bijective on morphisms.

¤
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Next we are going to introduce certain operators on objects M ∈ C1.

Whereas by the definition these operators are R-linear endomorphisms

of M , Lemma 1.5 shows that they can be expressed in terms of the

endomorphisms ρM(D), D ∈ W , solely. It is worth keeping in mind that

the χM defined below is an R-multilinear function of its arguments. For

θ, θ′ ∈ Ω1 and D,D′ ∈ W put

χM(θ, θ′, D,D′) =
(
σM(θ ⊗D)− 〈θ, D〉M

)
σM(θ′ ⊗D′)

+
(
σM(θ′ ⊗D)− 〈θ′, D〉M

)
σM(θ ⊗D′) .

Lemma 1.5. Let M ∈ C1. Then for all f, g ∈ R and D, D′ ∈ W we

have

− ρM(fgD) ρM(D′) + ρM(fD) ρM(gD′)

+ ρM(gD) ρM(fD′)− ρM(D) ρM(fgD′) = χM(df, dg, D, D′) .

This is checked straightforwardly using relations (1.6)–(1.9) [24, Lemma

6.1].

We need a modification of the category C1 in which the role of Ω1

is transferred to the R-module of Kähler differentials which we denote

as Ω̃1. Recall that it is defined together with a derivation d : R →
Ω̃1, universal in the class of derivations with values in R-modules (a Z-

linear map ∆ : R → M with M an arbitrary R-module is a derivation if

∆(fg) = f ∆g + g ∆f for all f, g ∈ R). The universality property gives

a unique R-linear map Ω̃1 → Ω1 rendering commutative the diagram

R
d

ÄÄ~~
~~

~~
~

d

ÂÂ@
@@

@@
@@

@

Ω̃1 // Ω1

This map is surjective in view of (1.3). It induces an R-bilinear pairing

Ω̃1 ×W → R. The same formula as in the case of g defines now a Lie

multiplication on g̃ = Ω̃1 ⊗W , the tensor product being over R.

Definition 1.3. Denote by C̃1 the category whose objects are additive

groups M together with a system of operators fM , ρM(D), σM(T ) defined

for each f ∈ R, D ∈ W , T ∈ g̃ subject to the conditions (1.4)–(1.9). The

morphisms in C̃1 are the maps that commute with the actions of R and

W .
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The epimorphism of R-modules Ω̃1 → Ω1 induces a surjective homo-

morphism of Lie algebras g̃ → g over R. The category C1 can be iden-

tified therefore with the full subcategory in C̃1 whose objects M satisfy

σM(T ) = 0 for all T in the kernel of g̃ → g. All natural operations in

C1 have their analogues in C̃1. If M ∈ C̃1 then its R-linear transforma-

tions χM(θ, θ′, D, D′) make sense for elements θ, θ′ ∈ Ω̃1 and D,D′ ∈ W .

Lemmas 1.1 and 1.5 generalize to C̃1 as they are formal consequences of

(1.4)–(1.9).

Lemma 1.6. The R-module Ω̃1 can be in a unique way furnished with ad-

ditional operators which make it an object of C̃1 and the universal deriva-

tion d : R → Ω̃1 a W-equivariant map. Furthermore,

σΩ̃1(θ ⊗D) θ′ = 〈θ′, D〉 θ for θ, θ′ ∈ Ω̃1 and D ∈ W.

The canonical map Ω̃1 → Ω1 is an epimorphism in C̃1 and its kernel J

an object of the subcategory C0.

Proof. Put M = Ω̃1. Given D ∈ W , make the direct sum of additive

groups E = M ⊕M into an R-module setting

f · (θ′, θ) =
(
fθ′ + (Df)θ, fθ

)
for f ∈ R and θ, θ′ ∈ M.

The projection π : E → M onto the second summand is a homomorphism

of R-modules. One checks that the assignment f 7→ (dDf, df) defines a

derivation R → E. By the universality property of Kähler differentials

there is an R-linear map ϕ : M → E sending df to (dDf, df). The

composite πϕ has to be the identity endomorphism of M . Therefore

ϕ(θ) =
(
ρ(D)θ, θ) for some operator ρ(D) on M . One has ρ(D)(df) =

dDf and

ρ(D)(fθ) = f · ρ(D)θ + (Df) θ

for all f ∈ R, D ∈ W , θ ∈ M . These two identities determine ρ(D)

uniquely as M = R ·dR. It follows ρ([D, D′]) = [ρ(D), ρ(D′)] for D, D′ ∈
W , i.e., ρ is a Lie algebra representation. Next, ρ(fD) − fM ◦ ρ(D) is

an R-linear transformation of M . Indeed, this is a consequence of the

identity (1.6) which we have verified above. One computes

(
ρ(fD)− fM ◦ ρ(D)

)
(dg)

= d(f ·Dg)− f · d(Dg) = (Dg) · df = 〈dg,D〉 df = σ(df ⊗D)(dg)

where f, g ∈ R, D ∈ W and σ = σM is defined in the statement of the

Lemma. Clearly σ satisfies (1.7) and (1.9). Since M = R ·dR, (1.8) holds

too. The map Ω̃1 → Ω1 is a W-equivariant homomorphism of R-modules,

i.e., a morphism in the category C̃1. If θ′ ∈ J then 〈θ′, D〉 = 0 for all
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D ∈ W . It follows from the definition of σ that σ(T )θ′ = 0 for all T ∈ g̃.

Thus J ∈ C0. ¤

2. The differential order of a cocycle

A 1-cocycle ϕ : W → M with coefficients in a W-module M is a

Z-linear map satisfying

ϕ([D, D′]) = ρM(D)ϕ(D′)− ρM(D′)ϕ(D)

for all D, D′ ∈ W . In this section we will prove that, when M ∈ C1, every

1-cocycle is a differential operator of order at most 3. In general, given

two R-modules M and N , a Z-linear map ξ : N → M and an element

f ∈ R, define

δfξ = ξ ◦ fN − fM ◦ ξ

where fM and fN are multiplication operators on M and N . We call ξ a

differential operator of order ≤ r if δf1 · · · δfr+1ξ = 0 for all f1, . . . , fr+1 ∈
R. Denote by Diffr(N,M) the group of all differential operators of order

≤ r. For f, g ∈ R one has

δfδgξ = δgδfξ and δfgξ = (δfξ) ◦ gN + fM ◦ (δgξ) .

It follows that the map R × · · · × R (r times) → HomR(N, M) given

by the rule (f1, . . . , fr) 7→ δf1 · · · δfrξ is symmetric and is a derivation

in each of its arguments whenever ξ ∈ Diffr(N,M). By the universality

property of Kähler differentials it induces a symmetric R-multilinear map

Ω̃1×· · ·×Ω̃1 (r times) → HomR(N,M), hence also an R-linear map from

the r-th symmetric power SrΩ̃1 to HomR(N, M). There is therefore an

R-linear map

ξ[ : SrΩ̃1 ⊗N → M

such that

ξ[(df1 · · · dfr ⊗ u) = (δf1 · · · δfrξ)(u)

for f1, . . . , fr ∈ R and u ∈ N . It is called the r-th order symbol of ξ.

The notation ξ[ that we use is somewhat ambiguous as every differential

operator of order ≤ r is also a differential operator of order ≤ r + 1. If

P is a third R-module and η : P → N a Z-linear map then δf (ξ ◦ η) =

δfξ ◦η+ξ ◦δfη. It follows by induction that ξ ◦η is a differential operator

of order ≤ r + s when ξ ∈ Diffr(N, M) and η ∈ Diffs(P, N). Its symbol

can be computed as

(ξ ◦ η)[(θ1 · · · θr+s ⊗ u) =
∑

ξ[
(
θi1 · · · θir ⊗ η[(θir+1 · · · θir+s ⊗ u)

)
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for θ1, . . . , θr+s ∈ Ω̃1 and u ∈ P , where the sum ranges over all permuta-

tions of indices 1, . . . , r + s such that i1 < . . . < ir and ir+1 < . . . < ir+s.

The exact sequence 0 → J → Ω̃1 → Ω1 → 0 in our settings induces

a surjective homomorphism of symmetric algebras SΩ̃1 → SΩ1 whose

kernel is the ideal of SΩ̃1 generated by J . If the symbol of a differential

operator ξ ∈ Diffr(N,M) vanishes on all elements in the image of the

canonical map (J ·Sr−1Ω̃1)⊗N → SrΩ̃1⊗N then it induces an R-linear

map SrΩ1 ⊗ N → M which we still call the symbol of ξ and denote as

ξ[.

Lemma 2.1. Let M ∈ C1. Then every 1-coboundary ϕ : W → M is a

differential operator of order ≤ 1.

Proof. There is m ∈ M such that ϕ(D) = ρM(D)m for all D ∈ W . By

(1.8) (δfϕ)(D) = σM(df ⊗ D)m for f ∈ R, D ∈ W , whence δfϕ is an

R-linear map according to (1.9). ¤
Lemma 2.2. Suppose that ϕ : W → M is a 1-cocycle where M is an

object of C1. If ϕ is a differential operator of order ≤ 2 then its symbol ϕ[

induces a morphism S2Ω1⊗W → M in C1. If ϕ is a differential operator

of order ≤ 3 and either rkR W > 1 or 3 is invertible in R then ϕ[ induces

a morphism S3Ω1 ⊗W → M .

Proof. Assume ϕ ∈ Diff3(W,M). Its symbol ϕ[ : S3Ω̃1 ⊗ W → M

is an R-module homomorphism. We will show that ϕ[ is a W-module

homomorphism as well, hence a morphism in C̃1. The Lie algebra W

operates on the Z-linear maps ξ : W → M in a natural way, and D ·δfξ =

δDfξ+δfDξ for f ∈ R, D ∈ W . Now Dϕ is the coboundary of ϕ(D) ∈ M ,

whence δfδg(Dϕ) = 0 for all f, g ∈ R by Lemma 2.1. We deduce

D · δf1δf2δf3ϕ = δDf1δf2δf3ϕ + δf1δDf2δf3ϕ + δf1δf2δDf3ϕ

for f1, f2, f3 ∈ R and D ∈ W . Evaluating at D′ ∈ W yields

ρM(D)ϕ[(ω ⊗D′)− ϕ[(ω ⊗ [D, D′]) = ϕ[(Dω ⊗D′)

where ω = df1 · df2 · df3. Since Ω̃1 = R · dR, the equality holds actually

for all ω ∈ S3Ω̃1 and gives the W-invariance of ϕ[.

Next we want to show that ϕ[ factors through S3Ω1⊗W . The kernel k

of the canonical homomorphism g̃ → g annihilates M and W since both

modules are in C1. As ϕ[ is g̃-equivariant by the C̃1 version of Lemma

1.1, it must vanish on the R-submodule K ⊂ S3Ω̃1 ⊗ W spanned by

the tensors ω ⊗ D with ω ∈ k · S3Ω̃1 and D ∈ W . We will show that

k · S3Ω̃1 = J · S2Ω̃1, which means that K is the kernel of the canonical

epimorphism S3Ω̃1⊗W → S3Ω1⊗W , as required. Recall that g̃ operates

in the symmetric algebra SΩ̃1 via derivations. Given D ∈ W , let iD
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denote the derivation of SΩ̃1 such that iDf = 0 for f ∈ R and iDθ′ =

〈θ′, D〉 for θ′ ∈ Ω̃1. The composite θiD of iD with the multiplication

by θ ∈ Ω̃1 is again a derivation. Hence θ ⊗ D acts in the symmetric

algebra as θiD, both derivations having the same values on elements of

R and Ω̃1. Now k is spanned by the tensors θ ⊗D with θ ∈ J , D ∈ W .

Therefore k · S3Ω̃1 = JN , where N ⊂ S2Ω̃1 is the R-submodule spanned

by the elements iDω with D ∈ W , ω ∈ S3Ω̃1. It remains to verify that

N = S2Ω̃1.

If P ⊂ Ω̃1 is a finitely generated R-submodule then so is the span

P 2 ⊂ S2Ω̃1 of all θθ′ with θ, θ′ ∈ P . By Nakayama’s Lemma the inclusion

P 2 ⊂ N holds if and only if P 2 ⊂ N +mP 2 for all maximal ideals m of R.

It suffices to prove these inclusions only for those P that project onto the

whole Ω1 since the latter is finitely generated over R. Fix P and m. Let

θ ∈ P . If rkR W > 1 then Ω1/mΩ1 ∼= (W/mW )∗ has dimension > 1 over

R/m. We can find D′ ∈ W and θ′ ∈ P such that 〈θ, D′〉 ≡ 0, 〈θ′, D′〉 ≡ 1

modulo m. Then θ2 ≡ iD′(θ
2θ′) modulo mP 2, so that θ2 ∈ N + mP 2. In

view of (1.1) the squares θ2 span the whole P 2. Suppose now rkR W = 1

but 3R = R. If θ /∈ mP we can find D ∈ W such that 〈θ,D〉 ≡ 1 modulo

m. Then 3θ2 ≡ iD(θ3) modulo mP 2, whence again θ2 ∈ N + mP 2. If

θ ∈ mP , take θ′ ∈ P such that θ′ /∈ mP . Since the squares of θ′, θ′ + θ,

θ′−θ are all in N +mP 2, so is θ2 as well. That completes the proof. The

case when ϕ is a differential operator of order ≤ 2 is treated similarly. ¤

Lemma 2.3. The Z-linear span X of all endomorphisms χW (θ, θ′, D, D′)
with θ, θ′ ∈ Ω1 and D, D′ ∈ W coincides with A = EndR W .

Proof. Obviously, X is an R-submodule in A. Since A is finitely generated

over R, it suffices to show that A = X + mA for every maximal ideal m

of R. Note that

σW (θ ⊗D) ◦ σW (θ′ ⊗D′) = −〈θ, D′〉σW (θ′ ⊗D)

and therefore χW (θ, θ, D,D) = −4〈θ,D〉σW (θ⊗D) where we take θ, θ′ ∈
Ω1 and D,D′ ∈ W . If 〈θ,D〉 /∈ m then we can find f ∈ R such that

−4〈θ, D〉f ≡ 1 modulo m. Multiplying the previous equality by f , we

deduce immediately that σW (θ⊗D) ∈ X +mA. Suppose that 〈θ, D〉 ∈ m

but D /∈ mW . Then 〈θ′, D〉 /∈ m for some θ′ ∈ Ω1. Since σW (θ′⊗D) and

σW ((θ + θ′)⊗D) are both in X + mA, so is σW (θ⊗D) as well. Suppose

finally that D ∈ mW . Pick out D′ ∈ W such that D′ /∈ mW . Then

σW (θ ⊗ D′) and σW (θ ⊗ (D + D′)) are both in X + mA, whence so is

σW (θ⊗D). We proved that σW (g) ⊂ X + mA, which gives the assertion

because A = σW (g). ¤
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Proposition 2.4. Let M ∈ C1. Then every 1-cocycle ϕ : W → M is a

differential operator of order ≤ 3. If rkR W > 1 then every 1-cocycle is

actually a differential operator of order ≤ 2.

Proof. If D ∈ W then Dϕ is a coboundary. By Lemma 2.1

Dϕ = ρM(D) ◦ ϕ− ϕ ◦ ρW (D) ∈ Diff1(W,M) .

In view of (1.6) ρM(D) ∈ Diff1(M,M) and similarly ρW (D) ∈ Diff1(W,W ).

Hence

ρM(D) ρM(D′) ϕ− ϕ ρW (D) ρW (D′) = ρM(D)
(
ρM(D′) ϕ− ϕρW (D′)

)

+
(
ρM(D) ϕ− ϕρW (D)

)
ρW (D′)

is a differential operator of order ≤ 2 for all D, D′ ∈ W . The linear

combination given in Lemma 1.5 yields

χM(θ, θ′, D,D′) ◦ ϕ− ϕ ◦ χW (θ, θ′, D, D′) ∈ Diff2(W,M) (∗)
for all θ, θ′ ∈ dR ⊂ Ω1 and D, D′ ∈ W . The inclusion holds actually for

all θ, θ′ ∈ Ω1 since χM(fθ, θ′, D, D′) = χM(θ, θ′, D, fD′), where f ∈ R,

and similarly for χW . We get

(δfϕ)◦χW (θ, θ′, D, D′) = ϕ◦fW◦χW (θ, θ′, D, D′)−fM◦ϕ◦χW (θ, θ′, D,D′)

= fM ◦ (
χM(θ, θ′, D,D′) ◦ ϕ− ϕ ◦ χW (θ, θ′, D, D′)

)

− χM(fθ, θ′, D, D′) ◦ ϕ + ϕ ◦ χW (fθ, θ′, D, D′) ∈ Diff2(W,M) .

It follows (δf1 · · · δf4ϕ) ◦ χ = 0 for all f1, . . . , f4 ∈ R and all χ in the

subgroup X ⊂ EndR W described in Lemma 2.3. Since 1W ∈ X, we

deduce δf1 · · · δf4ϕ = 0, i.e., ϕ is a differential operator of order ≤ 3.

Suppose rkR W > 1 further on. Consider the symbol ϕ[ : S3Ω1⊗W →
M . The map ϕ is a differential operator of order ≤ 2 if and only if ϕ[ = 0.

Put

N = {ω ∈ S3Ω1 | ω ⊗D ∈ Ker ϕ[ for all D ∈ W} .

Applying δf1δf2δf3 to (∗), we get

χM(θ, θ′, D,D′) ◦ δf1δf2δf3ϕ = δf1δf2δf3ϕ ◦ χW (θ, θ′, D,D′), i.e.,

χM(θ, θ′, D, D′)
(
ϕ[(θ1θ2θ3 ⊗D′′)

)
= ϕ[

(
θ1θ2θ3 ⊗ χW (θ, θ′, D, D′)D′′)

for all θ, θ′, θ1, θ2, θ3 ∈ dR and D,D′, D′′ ∈ W . In view of (1.3) this holds

actually for all θ’s in Ω1. In other words,

χM(θ, θ′, D,D′) ◦ ϕ[ = ϕ[ ◦ (
id⊗ χW (θ, θ′, D, D′)

)
. (∗∗)
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It follows that all endomorphisms id⊗χW (θ, θ′, D, D′), hence by Lemma

2.3 all endomorphisms in id⊗EndR W , leave the kernel of ϕ[ stable. The

endomorphism id⊗ σW (θ ⊗D) decomposes as

S3Ω1 ⊗W
−iθ−−−→ S3Ω1

jD−−→ S3Ω1 ⊗W

where the maps iθ, jD are given by

iθ(ω ⊗D′) = 〈θ, D′〉ω, jD(ω) = ω ⊗D, ω ∈ S3Ω1, D′ ∈ W.

As Ker ϕ[ is stable under jD ◦ iθ for every D ∈ W and θ ∈ Ω1 by the

above, we see that iθ(Ker ϕ[) ⊂ N for every θ. On the other hand, ϕ[ is

a morphism in C1 by Lemma 2.2. In particular, ϕ[ commutes with the

actions of g. Therefore

χM(θ, θ′, D, D′) ◦ ϕ[ = ϕ[ ◦ χS3Ω1⊗W (θ, θ′, D,D′).

Comparing this with (∗∗), we see that the endomorphisms

χS3Ω1⊗W (θ, θ′, D, D′)− id⊗ χW (θ, θ′, D, D′)

have images in Ker ϕ[.

Now we are ready to prove that N = S3Ω1, and so ϕ[ = 0. By

Nakayama’s Lemma it suffices to show that S3Ω1 = N + m · S3Ω1 for

all maximal ideals m of R. Fix m. Let θ, θ′ ∈ Ω1. We will check that

θ2θ′ ∈ N +m ·S3Ω1, whence our assertion. Since the vector space W/mW

and its dual Ω1/mΩ1 have dimension > 1 over R/m, we can find D1 ∈ W ,

D1 /∈ mW , such that 〈θ′, D1〉 ≡ 0, and then find D2 ∈ W , θ1, θ2 ∈ Ω1

such that 〈θi, Dj〉 ≡ δij modulo m for i, j = 1, 2. Put

a =
(
χS3Ω1⊗W (θ, θ, D1, D1)−id⊗χW (θ, θ, D1, D1)

)
(θ2

1θ
′⊗D2) ∈ S3Ω1⊗W.

As we noted above, a ∈ Ker ϕ[. Now compute a. Using Lemma 2.5

below, we get a = ω1⊗D1 +ω2⊗D2 where ω1 turns out to be irrelevant,

while

ω2 = χS3Ω1(θ, θ,D1, D1)(θ
2
1θ
′) ≡ 4θ2θ′ (mod m · S3Ω1) .

It follows iθ2(a) ≡ ω2 ≡ 4θ2θ′ modulo m · S3Ω1. Since iθ2(a) ∈ N , we get

the conclusion about θ2θ′. ¤
Lemma 2.5. Suppose that θ ∈ Ω1, D ∈ W and A,B ∈ C1. Then the

endomorphism χA⊗B(θ, θ, D, D) is equal to

χA(θ, θ, D,D)⊗ 1B + 4σA(θ, D)⊗ σB(θ,D) + 1A ⊗ χB(θ, θ, D,D) .

Denote by iD the derivation of the symmetric algebra SΩ1 such that iDf =

0 for f ∈ R and iDθ′ = 〈θ′, D〉 for θ′ ∈ Ω1. If A = SΩ1 and ω ∈ A then

χA(θ, θ, D,D) ω = 2θ2 · i2Dω .
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Proof. One checks (i) straightforwardly using the definitions of operators.

Under hypotheses of (ii), σA(θ,D)ω = θ · iDω. The conclusion of (ii)

follows from the computation

σA(θ, D)2ω = θ2 · i2Dω + 〈θ,D〉θ · iDω = θ2 · i2Dω + 〈θ,D〉σA(θ, D)ω .

¤

3. First order prolongations

If M is an object of the category C0 then the standard cochain complex

C•(W,M) of Z-multilinear alternating maps W ×· · ·×W → M contains

a subcomplex C•
R(W,M) whose elements are R-multilinear maps. The

cohomology H•
R(W,M) of the latter is one of the ingredients in the coho-

mology H•(W,M) of the ambient complex and can not be simplified any

further in the general settings. Since W is a finitely generated projective

R-module, C•
R(W,M) ∼= M ⊗ Ω• where Ω• is the exterior algebra of the

R-module Ω1. In particular, C•
R(W,R) ∼= Ω• generalizes the classical de

Rham complex. If now M ∈ C1 then a part of H•(W,M) is related to

the cohomology of R-multilinear cochains for a certain extension of W

which we describe below.

Consider, more generally, a pair W̃ , π where W̃ is an additive group

endowed with structures of a Lie algebra over Z and a module over R,

and π : W̃ → W a map which is surjective and is a homomorphism of

both structures simultaneously. Assume, moreover, that

(3.1) [D̃, fD̃′] = f [D̃, D̃′]+
(
π(D̃)f

)
D̃′, for all f ∈ R and D̃, D̃′ ∈ W̃ .

Such algebraic structures under different names were considered by many

people [11, 14, 17, 19, 23]. In particular, the pair W , idW satisfies these

conditions. Suppose M is an additive group endowed with an R-module

and a W̃ -module structures. Denote by ρ̃M(D̃) and fM the operators on

M corresponding to elements D̃ ∈ W̃ and f ∈ R. If the identities

(3.2) [ρ̃M(D̃), fM ] =
(
π(D̃)f

)
M ,

(3.3) ρ̃M(fD̃) = fM ◦ ρ̃M(D̃)

are fulfilled for M then the R-multilinear alternating maps W̃×· · ·×W̃ →
M form a cochain complex with respect to the standard differential (see

the references above). Denote by H•
R(W̃ , M) its cohomology.

The kernel k of π is an ideal of W̃ on which the Lie multiplication is

R-bilinear in view of (3.1). Similarly, (3.2), (3.3) show that the induced

action k × M → M is an R-bilinear operation. Denote by H•
R(k,M)

the cohomology of the standard complex of R-multilinear alternating
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maps k × · · · × k → M . The Lie algebra W̃ operates naturally in that

cohomology group. As the action of k is trivial, there is the induced

action of the factor algebra W ∼= W̃/k. In particular, the k-invariants

in M form an R-submodule M k which has the induced structure of a

W-module. As (3.2), (3.3) carry over to the induced representation of W

in M k, the R-linear cohomology H•
R(W,M k) is defined too.

There is an analogue of the Hochschild-Serre spectral sequence relating

the cohomology groups just described (see [16] for the construction in

the settings of Lie algebroids). We will need only an exact sequence

associated with the initial terms of this spectral sequence.

Lemma 3.1. There is an exact sequence

0 → H1
R(W,M k) → H1

R(W̃ , M) → H1
R(k,M)W → H2

R(W,M k) .

Proof. The map on the left is obtained by taking the composites of the

R-linear 1-cocycles W → M k with π. It is injective since a 1-coboundary

W̃ → M factors through W only if it is the differential of a 0-cochain

lying in M k. Restricting the R-linear 1-cocycles W̃ → M to k gives the

next map. Its images are W-invariant classes in H1
R(k,M) since W̃ acts

in H1
R(W̃ , M) trivially. If a cocycle W̃ → M vanishes on k then it has

values in M k and factors through W , which shows the exactness at the

second term.

Suppose now we are given an R-linear 1-cocycle ϕ′ : k → M whose

cohomology class is W-invariant. Then η(D̃) = D̃ϕ′ is a coboundary for

every D̃ ∈ W̃ . We get thus a map η : W̃ → B1
R(k,M) with values in the

group of coboundaries k → M . If f ∈ R, D̃ ∈ W̃ , T ∈ k then

η(fD̃)(T ) = ρ̃M(fD̃)ϕ′(T )− ϕ′
(
[fD̃, T ]

)

= f · ρM(D̃)ϕ′(T )− ϕ′
(
f [D̃, T ]

)
= f · η(D̃)(T ) .

Hence η is R-linear. Obviously η(T ) is the coboundary of ϕ′(T ) for every

T ∈ k. We can extend ϕ′ to an R-linear map ϕ̃ : W̃ → M with the

property that η(D̃) is the coboundary of ϕ̃(D̃) for every D̃ ∈ W̃ . In fact,

the exact sequence

0 → k → W̃ → W → 0

splits as a sequence of R-modules in view of (1.2). In other words, W̃ =

k⊕ c with c an R-submodule. Since c is R-projective and the differential

M → B1
R(k,M) is an epimorphism of R-modules, the restriction c →

B1
R(k,M) of η can be lifted to an R-linear map ϕ′′ : c → M . Taking ϕ̃ to

be ϕ′ on k and ϕ′′ on c fulfills our requirement. Let now ψ : W̃ ×W̃ → M
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be the coboundary of ϕ̃. Then ψ vanishes when one of its arguments is in

k. It induces therefore a 2-cocycle ψ : W ×W → M which takes values in

M k. The last map in the statement of the Lemma takes the cohomology

class of ϕ′ to that of ψ. One can check that it is well defined and gives

the exactness in the same way as for ordinary Lie algebras. ¤
Now take W̃ = g×W to be the direct product of underlying additive

groups. Note that W operates on g by means of ρg as a Lie algebra

of derivations. Furnish W̃ with the semidirect product of Lie algebra

structures and a certain R-module structure. Explicit formulas are
[
(T, D), (T ′, D′)

]
=

(
[T, T ′] + ρg(D)T ′ − ρg(D

′)T, [D,D′]
)
,

f · (T, D) = (fT − df ⊗D, fD) ,

where f ∈ R, T, T ′ ∈ g and D, D′ ∈ W . The projection π onto the

second factor is clearly a homomorphism of both structures. The same

definitions are in effect when g is replaced by g̃. The kernel of π is g in

the former case and g̃ in the latter. Identity (3.1) is a bit cumbersome,

but we propose a more sophisticated argument in just a moment.

Definition 3.1. We call g×W (respectively g̃×W ) with the Lie algebra

and R-module structures just described the first order prolongation of W

with kernel g (respectively g̃).

Lemma 3.2.Suppose that W̃ is the first order prolongation of W with

kernel g or g̃. Then C1 (respectively C̃1) is isomorphic to the category

whose objects are additive groups M together with an R-module and a

W̃ -module structures satisfying identities (3.2), (3.3) and morphisms are

the maps compatible with both structures.

Proof. If we fix an R-module structure on an additive group M then the

rule

ρ̃M(T, D) = σM(T ) + ρM(D) , T ∈ g, D ∈ W,

establishes a one-to-one correspondence between the families of operators

ρ̃M(D̃) on M defined for each D̃ ∈ W̃ and the families of operators

ρM(D), σM(T ) defined for each D ∈ W and T ∈ g. Property (3.2)

translates to the pair of (1.6) and (1.7), property (3.3) to (1.8) and (1.9).

If ρ̃M is a Lie algebra representation then so is its restriction ρM to W .

Conversely, if M ∈ C̃1 then it is immediate from Lemma 1.1 that ρ̃M

is a Lie algebra representation. The same Lemma shows also that the

morphisms in C̃1 are precisely the maps that are homomorphisms of R-

module and W̃ -module structures. ¤
Now we can verify (3.1). Suppose that M is an object of C1 (re-

spectively C̃1) such that the induced representation ρ̃M is faithful. For
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instance, we can take M = W in case when the kernel is g. Since W

is a faithful R-module by (1.2), property (3.2) implies that ker ρ̃M ⊂
ker π = g. However g acts in W faithfully. In case of kernel g̃ we can

take M = Ω̃1. Again (1.2) ensures the faithfulness of σM and ρ̃M . It

remains to observe that, in view of (3.2) and (3.3), the elements at both

sides of (3.1) act in M as

fM ◦ [
ρ̃M(D̃), ρ̃M(D̃′)

]
+

(
π(D̃)f

)
M
◦ ρ̃M(D̃′) .

Thus we can apply Lemma 3.1 to the situation where M is an object

of C1 or even C̃1 and W̃ is the first order prolongation of W with kernel

g̃. In this case k = g̃. Consider now the canonical embedding ι : W → W̃

such that ι(D) = (0, D) for D ∈ W . Then ι is a differential operator of

order 1. In fact (δf ι)(D) = (df ⊗ D, 0) for f ∈ R and D ∈ W . Hence

the symbol of ι is given by the formula ι[(T ) = (T, 0) for T ∈ g̃. ¤
Lemma 3.3.Suppose that M ∈ C1 and W̃ is the first order prolonga-

tion of W with kernel g̃. Given a differential operator ϕ : W → M of

order ≤ 1, there exists a unique R-linear map ϕ̃ : W̃ → M such that

ϕ = ϕ̃ ◦ ι. Moreover, if ϕ is a cocycle then so is ϕ̃ as well. In this case

the symbol ϕ[ : g̃ → M of ϕ is also an R-linear cocycle. In order that a

cocycle ϕ be R-linear, it is necessary and sufficient that ϕ̃ vanish on g̃.

Proof. Every Z-linear map ϕ̃ : W̃ → M satisfying ϕ = ϕ̃ ◦ ι can be

written as

ϕ̃(T, D) = ϕ′(T ) + ϕ(D) for T ∈ g̃ and D ∈ W.

where ϕ′ is a Z-linear map g̃ → M . In order that ϕ̃ be R-linear, it is

necessary and sufficient that ϕ′ be R-linear and the equality ϕ(fD) −
fϕ(D) = ϕ′(df ⊗ D) hold for all f ∈ R and D ∈ W . Thus ϕ′ = ϕ[ is

the only choice which gives the desired property. Suppose that ϕ is a

cocycle. Let N = M ⊕ R be the direct sum of two R-modules. Define

operators

ρN(D)(m,h) =
(
ρM(D)m + hϕ(D), Dh

)

σN(T )(m, h) =
(
σM(T )m + hϕ[(T ), 0

)

where D ∈ W , T ∈ g̃, m ∈ M , h ∈ R. One checks straightforwardly that

N is now an object of the category C̃1. By Lemma 3.2 ρN extends to a

representation ρ̃N of W̃ satisfying (3.2), (3.3). In fact we have an exact

sequence 0 → M → N → R → 0 in C̃1 which is also an exact sequence

of W̃ -modules. Furthermore,

ρ̃N(D̃)(0, 1) = σN(T )(0, 1)+ρN(D)(0, 1) =
(
ϕ[(T )+ϕ(D), 0

)
=

(
ϕ̃(D̃), 0

)
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for any D̃ = (T, D) ∈ W̃ . Applying the operator

ρ̃N([D̃, D̃′]) = [ρ̃N(D̃), ρ̃N(D̃′)]

to (0, 1), where D̃′ ∈ W̃ is a second element, we get the cocycle condition

for ϕ̃. Since the symbol ι[ : g̃ → W̃ is the canonical embedding which is

a homomorphism of Lie algebras, ϕ[ = ϕ̃◦ ι[ is a cocycle as well. Finally,

ϕ is R-linear if and only if ϕ[ = 0, i.e., if ϕ̃ ◦ ι[ = 0. ¤

4. Construction of universal cocycles

Among the 1-cocycles ϕ : W → M of differential order ≤ 2 with values

in the objects of C1 one can look for a one which satisfies the following

universality property: for every object M ′ ∈ C1 and a 1-cocycle ϕ′ : W →
M ′ of differential order ≤ 2 there exists a unique morphism ξ : M → M ′

in C1 such that the 1-cocycle ϕ′ − ξ ◦ ϕ is a differential operator of order

≤ 1. In fact proposition 4.1 gives such a cocycle ϕ : W → S2Ω1 ⊗ W

which will be called the universal differential order 2 cocycle. When

rkR W = 1, proposition 4.5 describes a 1-cocycle W → Ω1⊗Ω1 satisfying

a similar universality property with respect to 1-cocycles of differential

order ≤ 3. We call it the universal differential order 3 cocycle.

Definition 4.1. A Z-bilinear map ∇ : W × W → W is a torsion-free

connection on W if

(4.1) ∇(fD′, D′′)− f ∇(D′, D′′) = 0 ,

(4.2) ∇(D′, fD′′)− f ∇(D′, D′′) = (D′f) D′′,

(4.3) ∇(D′, D′′)−∇(D′′, D′) = [D′, D′′]

for all f ∈ R and D′, D′′ ∈ W . If only the first two identities are fulfilled

then ∇ is a connection on W . A 1-cocycle ψ : W → R is a divergence

on W if it satisfies the identity

(4.4) ψ(fD)− f ψ(D) = Df, f ∈ R, D ∈ W.

Proposition 4.1. There is a 1-cocycle ϕ : W → S2Ω1 ⊗ W which is

a differential operator of order 2 and whose symbol ϕ[ is the identity

endomorphism of S2Ω1 ⊗W .

Proof. The Lie algebra W operates on the Z-bilinear maps W ×W → W

in a natural way. If ∇ is a torsion-free connection on W , put

ϕ(D) = D · ∇, D ∈ W.

One checks straightforwardly that D · ∇ is a symmetric R-bilinear map

for every element D. By the assumption (1.2) we may identify S2Ω1⊗W

with the group of such maps. Namely, given θ1, θ2 ∈ Ω1 and D ∈ W , the
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tensor θ1θ2 ⊗D determines the map

(D′, D′′) 7→ (〈θ1, D
′〉〈θ2, D

′′〉+ 〈θ1, D
′′〉〈θ2, D

′〉)D , D′, D′′ ∈ W.

Thus ϕ takes values in S2Ω1 ⊗W . It is a cocycle since it comes from a

coboundary in a larger module. Let f, g ∈ R. We have

(δfϕ)(D)(D′, D′′)

= [fD, ∇(D′, D′′)]− f [D, ∇(D′, D′′)]−∇([fD, D′], D′′)

+ f ∇([D, D′], D′′)−∇(D′, [fD, D′′]) + f ∇(D′, [D, D′′])

= −(∇(D′, D′′)f
)
D + (D′f)∇(D, D′′)− (D′f) [D, D′′]

+ (D′′f)∇(D′, D) + (D′D′′f) D ,

and

(δgδfϕ)(D)(D′, D′′) =
(
(D′f)(D′′g) + (D′′f)(D′g)

)
D .

In other words, (δgδfϕ)(D) = (df ·dg)⊗D. We see that ϕ is a differential

operator of order 2 with symbol ϕ[ = id. To complete the proof we need

the Lemma below.

Lemma 4.2. A torsion-free connection on W does exist.

Proof. Let W̃ be the first order prolongation of W with kernel g, as

described in section 3. The projection W̃ → W is an epimorphism of

R-modules. It splits by the projectivity of W over R. Thus there exists

a map ξ : W → g such that the assignment D 7→ (
ξ(D), D

)
defines an

R-module homomorphism W → W̃ . That means that ξ(fD) = f ξ(D)−
df ⊗ D for all f ∈ R, D ∈ W . Now g operates on W by means of σW ,

and we have

ξ(fD)D′ = f · ξ(D)D′ + (D′f)D

for all f ∈ R, D, D′ ∈ W . Setting ∇(D′, D′′) = ξ(D′′)D′, we get a

connection on W . Let

τ(D′, D′′) = ∇(D′, D′′)−∇(D′′, D′)− [D′, D′′] .

Then τ : W × W → W is a skewsymmetric R-bilinear map, the tor-

sion of the connection. By a well known characterization of finitely

generated projective modules, there exists a finite number of elements

D1, . . . , Ds ∈ W and θ1, . . . , θs ∈ Ω1 such that every D ∈ W is expressed

as
∑ 〈θi, D〉Di. We get

τ(D′, D′′) =
s∑

i,j=1

〈θi, D
′〉〈θj, D

′′〉 τ(Di, Dj) = ν(D′, D′′)− ν(D′′, D′)
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where ν(D′, D′′) =
∑

i<j 〈θi, D
′〉〈θj, D

′′〉 τ(Di, Dj). Thus ν : W ×W →
W is an R-bilinear map and ∇′ = ∇− ν a torsion-free connection on W .

¤
Lemma 4.3. There exists a Z-linear map ψ : W → R satisfying identity

(4.4). If rkR W = 1 then any such ψ is a divergence.

Proof. Let γ : g → R be the contraction and ξ : W → g the map

considered in the proof of Lemma 4.2. Then ψ = −γ ◦ ξ satisfies (4.4).

Assume that ψ is an arbitrary Z-linear map satisfying (4.4). One checks

straightforwardly that its coboundary ω : W ×W → R,

ω(D, D′) = D
(
ψ(D′)

)−D′(ψ(D)
)− ψ

(
[D, D′]

)
for D,D′ ∈ W,

is R-bilinear and skewsymmetric. It corresponds therefore to a homo-

morphism of R-modules
∧2W → R. If rkR W = 1, then

∧2W = 0, and

ω = 0. In other words, ψ is a cocycle. ¤
Lemma 4.4. The composite ϕ : W → R → Ω1 of a divergence ψ with

the differential d is a 1-cocycle. Furthermore, ϕ is a differential operator

of order 2 whose symbol ϕ[ is the epimorphism π : S2Ω1 ⊗W → Ω1 in

C1 defined by the rule

θθ′ ⊗D 7→ 〈θ, D〉θ′ + 〈θ′, D〉θ for θ, θ′ ∈ Ω1 and D ∈ W .

Proof. Clearly π is a morphism in C1. Its surjectivity can be verified

by passing to the reductions modulo the maximal ideals of R, where it

becomes immediate. Since ψ is a cocycle and d a W-equivariant map, ϕ

is a cocycle. Both ψ and d are differential operators of order 1 whose

symbols are given by

ψ[(θ ⊗D) = 〈θ,D〉 and d[(θ ⊗ h) = h θ ,

where θ ∈ Ω1, D ∈ W , h ∈ R. Hence ϕ is a differential operator of order

2, and the computation of its symbol gives π, as required. ¤
Proposition 4.5. Suppose that rkR W = 1 and 3 is invertible in R.

Then there is a 1-cocycle ϕ : W → Ω1⊗Ω1 which is a differential operator

of order 3 with symbol ϕ[ : S3Ω1 ⊗W → Ω1 ⊗Ω1 an isomorphism in C1.

Proof. The symmetric and the tensor powers of the R-module Ω1 coincide

because rkR Ω1 = rkR W = 1. To put it differently, every R-multilinear

expression involving several arguments from Ω1 is symmetric in these

arguments. The same observation applies to W . Identify Ω1 ⊗ Ω1 with

the group of R-bilinear maps W ×W → R so that a tensor θ1 ⊗ θ2 with

θ1, θ2 ∈ Ω1 corresponds to the map

(D′, D′′) 7→ 〈θ1, D′〉〈θ2, D′′〉 , where D′, D′′ ∈ W.
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Let ψ : W → R be a divergence. Take ϕ to be the composite

W
ψ−−→ R

d−−→ Ω1
ψ∗−−→ Ω1 ⊗ Ω1,

where ψ∗(θ)(D′, D′′) = ψ(D′), θ(D′′) − D′′(〈θ,D′〉) for θ ∈ Ω1 and D′,
D′′ ∈ W .

It is immediate that ψ∗(θ) is R-linear in D′′. Given f ∈ R, the expres-

sion

ψ∗(θ)(fD′, D′′)− f · ψ∗(θ)(D′, D′′) = (D′f) 〈θ,D′′〉 − (D′′f) 〈θ,D′〉
is skewsymmetric in D′, D′′. So it has to vanish as well. Thus ψ∗ is well

defined. Now

ψ∗(fθ)(D′, D′′)− f · ψ∗(θ)(D′, D′′) = −(D′′f) 〈θ, D′′〉,
whence ψ∗(fθ) − f ψ∗(θ) = −θ ⊗ df . It follows that ψ∗ is a differential

operator of order 1 with symbol (ψ∗)[ minus identity transformation of

S2Ω1 ∼= Ω1 ⊗ Ω1. We saw in the proof of Lemma 4.4 that both ψ and

d are differential operators of order 1. The composite ϕ is therefore a

differential operator of order 3. Its symbol is computed as follows

ϕ[(θ1θ2θ3 ⊗D) = −
∑

〈θi1 , D〉 θi2θi3 = −6 〈θ1, D〉 θ2θ3

for θ1, θ2, θ3 ∈ Ω1 and D ∈ W , where the sum is taken over all per-

mutations of indices 1, 2, 3 and we use that the terms are symmetric in

θ’s. Since the natural pairing between Ω1 and W induces an isomor-

phism of R-modules Ω1 ⊗ W ∼= R, again by the rank one assumption,

ϕ[ : S3Ω1 ⊗ W → S2Ω1 is an isomorphism as well. To show that ϕ

is a cocycle we embed S2Ω1 into the W-module of all Z-bilinear maps

W ×W → R. Define ω : W ×W → R by the rule

ω(D′, D′′) = ψ(D′) ψ(D′′)−D′(ψ(D′′)
)−D′′(ψ(D′)

)

for D′, D′′ ∈ W . As ψ is a cocycle, Dψ is the coboundary of ψ(D) for

every D ∈ W . Hence

(Dω)(D′, D′′)

= (Dψ)(D′)·ψ(D′′)+ψ(D′)·(Dψ)(D′′)−D′((Dψ)(D′′)
)−D′′((Dψ)(D′)

)

= D′(ψ(D)
)·ψ(D′′)+ψ(D′)·D′′(ψ(D)

)−D′D′′(ψ(D)
)−D′′D′(ψ(D)

)
.

On the other hand, computing ϕ(D) straightforwardly yields

ϕ(D)(D′, D′′) = ψ(D′) ·D′′(ψ(D)
)−D′′D′(ψ(D)

)
.

Since the left hand side is symmetric in D′, D′′, we get Dω = 2ϕ(D).

Thus ϕ is a coboundary in a larger module. ¤
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5. Determination of cohomology

Let M ∈ C1. We introduce a filtration on the group of 1-cocycles

Z1(W,M) letting FiZ
1(W,M) for i ≥ 0 denote its subgroup consisting

of cocycles W → M which are differential operators of order ≤ i. Set

F−1Z
1(W,M) = 0. We have seen in proposition 2.4 that F3Z

1(W,M)

(respectively F2Z
1(W,M) when rkR W > 1) exhausts all the 1-cocycles.

Let FiH
1(W,M) be the image of FiZ

1(W,M) in the cohomology group

H1(W,M). First we are going to determine the factors

gri H
1(W,M) = FiH

1(W,M)/Fi−1H
1(W,M) .

Proposition 5.1. Let M ∈ C1. Then there are isomorphisms

(5.1) gr0 H1(W,M) ∼= H1
R(W, M g) ,

(5.2) gr1 H1(W,M) ∼= Ker
(
H1

R(g̃,M)W → H2
R(W, M g)

)
,

(5.3) gr2 H1(W,M) ∼= MorC1(S
2Ω1 ⊗W, M) ,

(5.4) gr3 H1(W,M) ∼= MorC1(Ω
1⊗Ω1, M) when rkR W = 1 and 3R =

R.

Proof. Let W̃ be the first order prolongation of W with kernel g̃. The

canonical embedding W → W̃ is a Lie algebra homomorphism and also

a differential operator of order 1. Hence the restriction to W of ev-

ery R-linear cocycle W̃ → M is in F1Z
1(W,M). The resulting map

Z1
R(W̃ ,M) → F1Z

1(W,M) is bijective by Lemma 3.3. Obviously the W̃ -

coboundaries correspond to the W-coboundaries. It follows F1H
1(W,M) ∼=

H1
R(W̃ , M). Again by Lemma 3.3

gr0 H1(W,M) ∼= F0H
1(W,M) ∼= Ker

(
H1

R(W̃ , M) → H1
R(g̃,M)

)

since the cohomology classes on the left are represented by the R-linear

cocycles W → M , while those on the right by the cocycles W̃ → M with

zero restriction to g̃. Lemma 3.1 gives now (5.1). Moreover, (5.2) also

follows because

gr1 H1(W,M) ∼= Coker
(
F0H

1(W,M) → F1H
1(W,M)

)

∼= Coker
(
H1

R(W, M g) → H1
R(W̃ ,M)

)
.

Next, by Lemma 2.2 we have a map

F2Z
1(W,M) → MorC1(S

2Ω1 ⊗W, M) (∗)
which assigns to a 1-cocycle ϕ : W → M in the F2 term of the filtration

its symbol ϕ[. The kernel of this map is clearly F1Z
1(W,M). Since all

coboundaries are in F1Z
1(W,M) by Lemma 2.1, the map above induces

an embedding of gr2 H1(W,M) into MorC1(S
2Ω1⊗W, M). Suppose now

that ξ : S2Ω1⊗W → M is a morphism in C1. Let ϕ : W → S2Ω1⊗W be
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the 1-cocycle given by proposition 4.1. Then ξ ◦ϕ is a 1-cocycle W → M

which lies in F2Z
1(W,M) and has symbol ξ ◦ϕ[ = ξ as ξ is R-linear and

ϕ[ = id. Thus (∗) is surjective. The assertion about gr3 H1(W,M) is

proved similarly, taken into account proposition 4.5. ¤
Lemma 5.2. Suppose that 0 → C0 → C1 → . . . is a cochain complex

of finitely generated projective R-modules and q > 0 an integer such that

H i(C•/mC•) = 0 for all maximal ideals m of R in all degrees i < q.

Then H i(C• ⊗M) = 0 for any R-module M and i < q.

Proof. The differential d : C0 → C1 induces by passing to the reductions

modulo any maximal ideal m an injective map C0/mC0 → C1/mC1 be-

cause H0(C•/mC•) vanishes. It follows that d maps C0 isomorphically

onto a direct summand of C1. In fact, the localizations C0
m and C1

m at

m are free modules of finite rank over the local ring Rm, and therefore

C0
m is mapped isomorphically onto a direct summand of C1

m by [1, II, §3,

Proposition 6]. Hence d is injective by [1, II, §3, Theorem 1]. The coker-

nel of d is a finitely presented R-module because C0 and C1 are finitely

generated and projective. By [1, II, §3, Corollary 1 to Proposition 12]

dC0 is a direct summand of C1, as required.

Now C• decomposes into a direct sum A• ⊕ B• of two subcomplexes

where A0 = C0, A1 = dC0 and Ai = 0 in all other degrees, while B1

is any R-module complement of A1 in C1. If M is an R-module then

C• ⊗M is a direct sum of complexes A• ⊗M and B• ⊗M . Therefore

H i(C• ⊗M) ∼= H i(A• ⊗M)⊕H i(B• ⊗M)

for all i. Since the differential A0⊗M → A1⊗M is an isomorphism, we

have H i(A•⊗M) = 0 for all i. Taking M = R/m gives H i(B•/mB•) = 0

for all maximal ideals m in degrees i < q. Since nonzero terms in B•

start from degree 1, we complete the proof reindexing B• and applying

induction on q. ¤
Lemma 5.3. Suppose that Q ∈ C1 is an object satisfying (1.10), (1.11)

and M ∈ C1 an object of type Q. If H1(g/mg, Q/mQ) = 0 for all maximal

ideals m of R then H1
R(g,M) = 0 as well.

Proof. Consider the standard cochain complex C•
R(g, Q) of R-multilinear

alternating maps g × . . . × g → Q. Its components are finitely gener-

ated projective R-modules since so are Q and the exterior powers of g.

Furthermore, if M0 is an R-module on which g operates trivially, then

C•
R(g, Q⊗M0) ∼= C•

R(g, Q)⊗M0 .

In particular, C•(g/mg, Q/mQ) ∼= C•
R(g, Q/mQ) ∼= C•

R(g, Q) ⊗ R/m

for every m. The reduced modulo m complexes have zero cohomology
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in degree 1 according to the assumptions. Since g/mg has a proper

commutant, the first cohomology group of the trivial g/mg-module is

nonzero. Hence Q/mQ is not trivial, and therefore H0(g/mg, Q/mQ) = 0

as well. By Lemma 1.3 M ∼= Q ⊗ M0 for a suitable M0. We complete

the proof applying Lemma 5.2 with q = 2. ¤
Lemma 5.4. Let V be a vector space of dimension n over a field k of

characteristic p 6= 2. Denote by K the kernel of the linear map S2V ∗ ⊗
V → V ∗ defined by the rule

θθ′ ⊗ v 7→ 〈θ, v〉 θ′ + 〈θ′, v〉 θ for θ, θ′ ∈ V ∗ and v ∈ V .

The gl V -modules V , V ∗, V ∗ ⊗∧nV ∗, and K when n > 1 and n + 1 6≡
0 (mod p) are nontrivial, absolutely irreducible, pairwise nonisomorphic

and have zero cohomology in degree 1 (with the exceptions only for p = 3,

n ≤ 2).

The gl V -module S2V ∗ ⊗ V is isomorphic with the direct sum K ⊕ V ∗

of two irreducible modules when n > 1 and n + 1 6≡ 0 (mod p). It has a

single irreducible factor module isomorphic to V ∗ otherwise. The gl V -

module K has never V ∗ as its factor module.

Proof. The assertion about irreducibility is immediate for all modules

stated, except for K. In fact, S2V ∗ ⊗ V is the component of degree 1

in the graded Lie algebra of general Cartan type G−1 ⊕ G0 ⊕ G1 ⊕ · · ·
having G−1 = V and G0 = gl V. The structure of G1 as a G0-module

was investigated in [15, I, §10]. If n > 1 and p does not divide n+1 then

K is irreducible and G1
∼= K ⊕ V ∗. This is clearly not affected by field

extensions, so that we get the absolute irreducibility. Note that

dim K = dim S2V ∗⊗V −dim V ∗ =
1

2
n2(n+1)−n =

1

2
n(n−1)(n+2) > n .

However, the first three modules under consideration all have dimension

n. It is easy to check that these three are nonetheless pairwise noniso-

morphic with an exception for p = 3, n = 1.

The vanishing of cohomology is a general fact when p = 0. If p > 0 it

is achieved by inspection of weights with respect to a Cartan subalgebra

h of gl V . The weights ε1, . . . , εn of V constitute a basis for the dual

space h∗. The weights of V ∗ are now −εi, the weights of V ∗ ⊗∧nV ∗ are

−εi − δ, and those of K are εl − εi − εj, where δ = ε1 + · · · + εn and

1 ≤ i, j, l ≤ n. None of them is among the roots of gl V , which are εl− εi

(except when p = 3, n = 2).

Look now at the other possibilities for G1 and K. If n = 1 then K = 0

and G1
∼= V ∗. Suppose that n > 1 but p divides n + 1. By [15] K

is a single maximal submodule of G1. Moreover, G1 contains a single
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irreducible submodule, say V ′, which satisfies V ′ ⊂ K and V ′ ∼= V ∗. The

factor module K/V ′ is irreducible of dimension greater than n. The only

exception is the case n = 2, p = 3 when gl V acts trivially in K/V ′. In

any case V ∗ is not a factor module of K, as asserted. ¤
The category C1 contains objects Q satisfying (1.10) and (1.11) which

give a certain canonical glueing of the g/mg-modules of each type con-

sidered in Lemma 5.4. Three of these are W , Ω1, and Ω1 ⊗ Ωn where

n = rkR W and Ωn =
∧n Ω1. Denote by K the kernel of the epimorphism

π : S2Ω1⊗W → Ω1 defined in Lemma 4.4. Since both Ω1 and S2Ω1⊗W

are finitely generated projective R-modules, so is K as well. If m is a

maximal ideal of R then K/mK is the kernel of the induced linear map

S2V ∗ ⊗ V → V ∗ of vector spaces over R/m where V = W/mW and V ∗

is its dual. Suppose that (n+1)R = R. Then it follows from Lemma 5.4

that K/mK is an absolutely irreducible g/mg-module, and so K satisfies

(1.10), (1.11). Moreover, there is a canonical decomposition

S2Ω1 ⊗W ∼= K ⊕ Ω1

in C1. To see this consider the morhism µ : Ω1 ⊗ g → S2Ω1 ⊗W defined

by the rule θ ⊗ (θ′ ⊗D) 7→ θθ′ ⊗D for θ, θ′ ∈ Ω1 and D ∈ W . Then

π ◦ µ(θ ⊗ T ) = σΩ1(T )θ + γ(T )θ for all θ ∈ Ω1 and T ∈ g ,

where γ : g → R is the contraction. Since σΩ1 : g → EndR Ω1 is an iso-

morphism in C1, there is a W-invariant element 1 ∈ g which corresponds

to the identity endomorphism of Ω1. The assignment θ 7→ µ(θ⊗1) defines

obviously a morphism ν : Ω1 → S2Ω1 ⊗W in C1. Since γ(1) = tr 1Ω1 =

rkR Ω1 = n, we deduce that π ◦ ν = (n + 1) · 1Ω1 . If n + 1 is invertible

in R then the restriction of π gives an isomorphism Im ν → Ω1. In this

case Im ν is a subobject complementary to K in S2Ω1 ⊗W .

Now we have come to the final results on cohomology. Let Q ∈ C1 be

an object satisfying conditions (1.10), (1.11) and M ∈ C1 an object of

type Q. Recall that n = rkR W . In addition to (1.1) assume that 3 is

invertible in R as well, at least when n = 1.

Theorem 5.5. If for every maximal ideal m of R the g/mg-module

Q/mQ is isomorphic to neither the trivial module, nor W/mW , nor

(W/mW )∗, nor K/mK when n > 1 and char R/m does not divide n + 1,

nor
⊗2(W/mW )∗ when n = 1, then

H1(W,M) ∼= H1
R(g,M)W .

If, moreover, H1(g/mg, Q/mQ) = 0 for all m then H1(W,M) = 0.
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If R is an algebra over a field of characteristic 0 then char R/m = 0

for every maximal ideal m of R. In this case the reductive Lie alge-

bra g/mg over the field R/m has zero cohomology with coefficients in

any nontrivial irreducible finite dimensional module, i.e., the condition

H1(g/mg, Q/mQ) = 0 is fulfilled automatically. We will be proving the-

orem 5.5 simultaneously with the next result which treats exceptional

modules.

Theorem 5.6. Suppose that M = M0 ⊗Q where M0 ∈ C0, and let MW
0

be the subgroup of W-invariants in M0.

i) If Q = R, so that M ∈ C0, then there is an exact sequence

0 → H1
R(W,M) → H1(W,M) → MW .

The final map is surjective provided that there exists a divergence

W → R. If ϕ : W → M is a 1-cocycle and m ∈ MW the image

of its cohomology class then ϕ(fD) = f ϕ(D) + (Df)m for all

f ∈ R and D ∈ W .

ii) If Q = W then M is canonically embedded into the W-module

Der(R, M0) of Z-linear derivations R → M0. Denote by N the

group of those ∆ ∈ Der(R,M0) which satisfy D · ∆ ∈ M for all

D ∈ W . Then H1(W,M) ∼= N/M .

iii) If Q = Ω1 then

H1(W,M) ∼= MorC1(Ω
1,M) ∼= MW

0 .

Every cohomology class is represented by a cocycle which is the

composite of the universal differential order 2 cocycle W → S2Ω1⊗
W , the canonical morphism S2Ω1 ⊗ W → Ω1 and a morphism

Ω1 → M in C1.

iv) Suppose n > 1 and (n + 1)R = R. If Q = K then

H1(W,M) ∼= MorC1(K, M) ∼= MW
0 .

Every cohomology class is represented by a cocycle which is the

composite of the universal differential order 2 cocycle W → S2Ω1⊗
W , the canonical projection S2Ω1 ⊗ W → K and a morphism

K → M in C1.

v) Suppose n = 1. If Q = Ω1 ⊗ Ω1 then

H1(W,M) ∼= MorC1(Ω
1 ⊗ Ω1, M) ∼= MW

0 .

Every cohomology class in this group is represented by a cocycle

which is the composite of the universal differential order 3 cocycle

W → Ω1 ⊗ Ω1 and a morphism Ω1 ⊗ Ω1 → M in C1.
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Proof. Using proposition 5.1, we examine those objects Q for which the

groups gri H
1(W,M) are not all zero. If a nonzero factor occurs for i = 0,

then Mg 6= 0. Clearly M g is a subobject of M , and in fact Mg ∈ C0. The

inclusion Mg ↪→ M is a nonzero morphism in C1. By Lemma 1.4 Q/mQ

is a trivial g/mg-module for at least one maximal ideal m of R.

Next, gr1 H1(W,M) 6= 0 implies that H1
R(g̃,M)W 6= 0. There is a

surjective homomorphism g̃ → g of Lie algebras over R whose kernel is

J ⊗ W , where J is the kernel of the canonical map Ω̃1 → Ω1. Each

R-linear cocycle ϕ : g̃ → M determines by restriction an R-linear map

J ⊗W → M . Furthermore, the coboundaries restrict to J ⊗W trivially

because g̃ operates in M via g. If the cohomology class of ϕ is W-

invariant, then Dϕ is a coboundary and therefore restricts to J ⊗ W

trivially for every D ∈ W . That means that the restriction J ⊗W → M

of ϕ is a W-invariant map and therefore a morphism in C1. It is zero if

and only if ϕ factors through g. Thus there is an exact sequence

0 → H1
R(g,M)W → H1

R(g̃,M)W → MorC1(J ⊗W, M) . (∗)
If H1

R(g,M) 6= 0 then H1(g/mg, Q/mQ) 6= 0 for at least one m by Lemma

5.3. On the other hand, J ⊗W ∈ C1 is an object of type W since J ∈ C0

according to Lemma 1.6. By Lemma 1.4 MorC1(J ⊗W, M) 6= 0 implies

Q/mQ ∼= W/mW as g/mg-modules for at least one m.

Consider the case gr2 H1(W,M) 6= 0. By (5.3) there exists a nonzero

morphism ξ : S2Ω1 ⊗ W → M in C1. Its image, say M ′, is a nonzero

subobject of M . Then M ′ ∈ C1 is an object of type Q, and M ′ ∼= M ′
0⊗Q

with M ′
0 ∈ C0 by Lemma 1.3. Since W and Ω1 are finitely generated over

R, so is M ′ as well. Hence M ′ 6= mM ′ for at least one maximal ideal

m. The quotient M ′
0/mM ′

0 is a trivial g/mg-module. The g/mg-module

M ′/mM ′ ∼= M ′
0/mM ′

0 ⊗ Q/mQ is therefore completely reducible with

all irreducible submodules isomorphic to Q/mQ. On the other hand,

M ′/mM ′ is an epimorphic image of S2(W/mW )∗ ⊗W/mW . According

to Lemma 5.4 either Q/mQ ∼= (W/mW )∗ or n > 1 , n + 1 is invertible in

R/m and Q/mQ ∼= K/mK.

Finally, gr3 H1(W,M) 6= 0 implies that n = 1 and

Q/mQ ∼=
2⊗

(W/mW )∗

for at least one m by similar reasons. Under the hypotheses of theo-

rem 5.5, the groups gri H
1(W,M) vanish for all i 6= 1. Both Mg and

MorC1(J ⊗W, M) are zero by Lemma 1.4. Hence (5.2) and (∗) give

H1(W,M) ∼= gr1 H1(W,M) ∼= H1
R(g̃,M)W ∼= H1

R(g,M)W .
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The final statement of theorem 5.5 follows from Lemma 5.3. We now

check one by one all cases in theorem 5.6.

(i) By the above gri H
1(W,M) = 0 for i = 2, 3. Hence an exact

sequence

0 → gr0 H1(W,M) → H1(W,M) → gr1 H1(W,M) → 0 .

The term on the left is retrieved from (5.1), where Mg = M . In view

of (5.2) and (∗) there is an embedding gr1 H1(W,M) ↪→ H1
R(g̃,M)W ∼=

H1
R(g,M)W . Since g annihilates M , we have

H1
R(g,M) ∼= HomR(g/[g, g], M).

The commutant [g, g] consists of all elements of g that act in W with

trace zero. Hence [g, g] is the kernel of the contraction γ : g → R. It

follows that γ induces an isomorphism g/[g, g] ∼= R, and H1
R(g,M) ∼=

HomR(R,M) ∼= M . We get thus the required exact sequence. Every 1-

cocycle ϕ : W → M is a differential operator of order ≤ 1 and its symbol

ϕ[ : g → M is an R-linear cocycle. By the above ϕ[(θ ⊗ D) = 〈θ, D〉m
for θ ∈ Ω1, D ∈ W , where m ∈ MW is the element corresponding to the

cohomology class of ϕ. If f ∈ R, D ∈ W then

ϕ(fD)− f ϕ(D) = ϕ[(df ⊗D) = 〈df,D〉m = (Df)m.

Suppose now that ψ : W → R is a divergence. Given a W-invariant

m ∈ MW , the assignment f 7→ fm defines a morphism ιm : R → M in C1.

The composite ϕ = ιm ◦ψ is then a cocycle W → M . Furthermore, ϕ[ =

ιm ◦ ψ[. Since ψ[ = γ, the map H1(W,R) → RW takes the cohomology

class of ψ to 1. As the map H1(W,M) → MW is natural in M , it takes

the cohomology class of ϕ to ιm(1) = m.

(ii) Here gri H
1(W,M) vanishes for i 6= 1. By lemmas 5.3 and 5.4

H1
R(g,M) = 0. From (5.2) and (∗) we deduce now an embedding

H1(W,M) ∼= gr1 H1(W,M) ↪→ H1
R(g̃,M)W ↪→ MorC1(J ⊗W, M) .

The exact sequence 0 → J → Ω̃1 → Ω1 → 0 in C̃1 splits as a sequence

of R-modules since Ω1 is R-projective. It gives rise therefore to an exact

sequence in C̃1

0 → HomR(Ω1, M0) → HomR(Ω̃1,M0) → HomR(J,M0) → 0 .

Here HomR(Ω1, M0) ∼= M0 ⊗ HomR(Ω1, R) ∼= M0 ⊗ W = M . On the

other hand, HomR(Ω̃1,M0) ∼= Der(R, M0) by the universality property of

Kähler differentials. Thus M is embedded into Der(R, M0) and

N/M =
(
Der(R, M0)/M

)W ∼= HomR(J,M0)
W = MorC0(J,M0) .
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Consider the diagram

(
Der(R,M0)/M

)W ∼= MorC0(J,M0)

↓ ↓o
H1(W,M) ↪−−→ MorC1(J ⊗W,M)

where the left vertical arrow is the connecting map in cohomology arising

from the short exact sequence of W-modules 0 → M → Der(R, M0) →
Der(R,M0)/M → 0 and the right one is the isomorphism of Lemma 1.4.

Now take a W-invariant coset ∆ + M where ∆ ∈ N . Pushing it right

in the diagram gives a morphism J → M0 in C0 which is the restriction

of the R-linear map ξ : Ω̃1 → M0 defined by the rule ξ(df) = ∆f for

f ∈ R. Pushing ∆ + M down gives the cohomology class of the cocycle

ϕ : W → M such that ϕ(D) = D · ∆ for D ∈ W . Pushing ϕ further

right, we come to a morphism J ⊗W → M in C1 which is the restriction

of the symbol ϕ[ : Ω̃1 ⊗ W → M of ϕ. If f ∈ R, D ∈ W then the

derivation (fD) ·∆− f(D ·∆) takes g ∈ R to

ρM0(fD)(∆g)− f · ρM0(D)(∆g)−∆(fDg) + f ·∆(Dg) ∈ M0 .

The first two terms cancel as σM0 = 0. Hence the result is −(Dg) · (∆f),

which is the value at g of the element −∆f ⊗D ∈ M0 ⊗W regarded as

a derivation R → M0. In other words, ϕ[(df ⊗ D) = −∆f ⊗ D. Since

ϕ[ = −ξ ⊗ 1W , the diagram is anticommutative. It follows that the left

arrow is an isomorphism.

(iii) In this case gri H
1(W,M) = 0 for i 6= 2. If ξ : K → M is a mor-

phism in C1 then its image K ′ is a subobject of M . Hence K ′ is of type

Ω1, and so K ′ ∼= K ′
0 ⊗ Ω1 with K ′

0 ∈ C0 by Lemma 1.3. For every max-

imal ideal m of R the g/mg-module K ′/mK ′ ∼= K ′
0/mK ′

0 ⊗ (W/mW )∗

is completely reducible with all irreducible submodules isomorphic to

(W/mW )∗. On the other hand, K ′/mK ′ is an epimorphic image of

K/mK which does not have (W/mW )∗ as its factor module according

to Lemma 5.4. Hence K ′ = mK ′. Since K ′ is finitely generated over

R, it follows K ′ = 0 by Nakayama’s Lemma. Thus every morphism

S2Ω1 ⊗ W → M vanishes on K and therefore factors through Ω1. By

(5.3)

H1(W,M) ∼= gr2 H1(W,M) ∼= MorC1(S
2Ω1 ⊗W, M) ∼= MorC1(Ω

1,M) .

(iv) Again gri H
1(W,M) is nonzero for i = 2 only. Since MorC1(Ω

1,M) =

0 by Lemma 1.4, we have

H1(W,M) ∼= gr2 H1(W,M) ∼= MorC1(K ⊕ Ω1, M) ∼= MorC1(K, M) .
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(v) Here gri H
1(W,M) = 0 for i 6= 3, and

H1(W,M) ∼= gr3 H1(W,M) ∼= MorC1(Ω
1 ⊗ Ω1, M) .

The description of cocycles representing cohomology classes is imme-

diate from the construction of isomorphisms. Lemma 1.4 shows also that

in any of the cases

MorC1(Q,M) ∼= MorC0(R, M0) = HomR(R,M0)
W ∼= MW

0 .

¤
Corollary 5.7. The Lie algebra Der W of all Z-linear derivations of

W is isomorphic with the normalizer N of W in Der R.

Proof. The adjoint representation of N in its ideal W induces a homo-

morphism of Lie algebras N → Der W . It is an isomorphism because so

is the induced map N/W → Der W/ ad W ∼= H1(W,W ) by (ii). ¤
This result was obtained earlier [22] under assumptions weaker than

(1.2), (1.3). If k ⊂ RW is a subring, then a derivation ∆ ∈ N is k-linear

if and only if so is the induced derivation ad ∆ ∈ Der W . Therefore

the subalgebra Derk W of k-linear derivations of W is isomorphic with

N ∩ Derk R, where Derk R are the k-linear derivations of R. If R is

the ring of functions on X, a smooth manifold, real analytic one or a

Stein space, and k the field of real or complex numbers then Derk R is

isomorphic with the Lie algebra of vector fields Vect X of respective class

on X. It follows that all k-linear derivations of Vect X are inner.

6. The case of commuting derivations

We will specialize our assumptions on R, W . Suppose that R is an al-

gebra over a field k and that W is a free R-module generated by a system

of pairwise commuting k-linear derivations ∂1, . . . , ∂n. We still keep our

basic assumptions (1.1)–(1.3). There is a very explicit construction of

certain representations of W in this case. I would like to thank Naihong

Hu who drew my attention to Shen’s paper [20] where this construction

appeared under the name of mixed products. Accordingly, we are able

to write down the 1-cocycles quite explicitly. Commuting derivations

appear in many interesting situations. For instance, the Lie algebras of

Witt type in positive characteristic fit into our present settings. Degree

one cohomology in that special case was considered by Chiu and Shen

[3] and Dzhumadil’daev [4].
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Denote by D the k-linear span of ∂1, . . . , ∂n. This is an abelian subal-

gebra of W = RD ∼= R⊗k D. We have

g ∼= glR W ∼= R⊗k glk D .

Let Eij be the linear transformation of D such that Eij∂l = δjl∂i where

indices i, j, l are taken among 1, . . . , n. If θ ∈ Ω1 then the element θ⊗∂i ∈
g corresponds to −∑

j 〈θ, ∂j〉⊗Eij under the isomorphism above. Given

a representation σV of glk D in a vector space V over k, put

RV = R⊗k V

and define a representation of W in this space setting

ρRV (g∂i) = g∂i ⊗ idV −
∑

j

(∂jg)R ⊗ σV (Eij) for g ∈ R, i = 1, . . . , n,

where fR stands for the multiplication operator on R corresponding to

an element f ∈ R. The operators fR ⊗ idV give RV a compatible R-

module structure, so that (1.6) is fulfilled. Extend σV by R-linearity to

a representation of g in RV . If θ ∈ Ω1 then

σRV (θ ⊗ ∂i) = −
∑

j

〈θ, ∂j〉R ⊗ σV (Eij) .

Take f, g ∈ R. As

ρRV (g∂i)−(gR⊗ idV )◦ρRV (∂i) = −
∑

j

(∂jg)R⊗σV (Eij) = σRV (dg⊗∂i) ,

we have for D = g∂i ∈ W

ρRV (fD)− (fR ⊗ idV ) ◦ ρRV (D)

= σRV (d(fg)⊗ ∂i)− σRV (f · dg ⊗ ∂i) = σRV (df ⊗D) .

Thus (1.8) is fulfilled too. We see that RV together with the three

module structures we have described is an object of C1. In fact R is a

functor from the category of glk D-modules to C1. It takes the tensor

product of two glk D-modules to the tensor product of the corresponding

objects in C1, the symmetric and exterior powers of a glk D-module to

the symmetric and exterior powers in C1. If dim V < ∞ and V ∗ is the

contragredient glk D-module then RV ∗ ∼= HomR(RV, R) in C1.

Clearly RV is free over R. It has finite rank provided dim V < ∞. If

V is an absolutely irreducible glk D-module, then so is RV/(m · RV ) ∼=
R/m⊗kV as a module over g/mg ∼= R/m⊗kglk D where m is any maximal

ideal of R. In this case RV satisfies (1.10) and (1.11). Therefore we can

determine its cohomology applying theorems 5.5, 5.6 where we take M =

Q = RV . Note that Q corresponds to M0 = R under the equivalence
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of Lemma 1.3. Denote by RW the ring of W-invariant elements in R. In

case char k = 3 assume n > 1. There are several cases.

(i) If V = k is the trivial glk D-module then RV ∼= R and

H1(W,R) = H1(Ω)⊕RW· cls(ψ)

where the first summand is the subgroup of cohomology classes repre-

sented by the R-linear cocycles and the second summand is a free cyclic

module over the ring RW whose generator is the cohomology class of a

divergence ψ : W → R. One can take ψ with zero values on D. Then

ψ(f∂i) = ∂if for f ∈ R and i = 1, . . . , n.

(ii) If V = D is the natural glk D-module, then we have RV ∼= W and

H1(W,W ) ∼= N/W , where N is the normalizer of W in Der R.

(iii) If V = D∗ then RV ∼= Ω1 and H1(W, Ω1) is a free cyclic module

over RW generated by the cohomology class of any cocycle ϕ : W → Ω1

whose symbol is the canonical epimorphism S2Ω1 ⊗W → Ω1 in C1. By

Lemma 4.4 one can take ϕ = d ◦ ψ where ψ : W → R is a divergence. If

ψ is the same as in (i), then

ϕ(f∂i)(∂j) = ∂j

(
ψ(f∂i)

)
= ∂j∂if for f ∈ R and 1 ≤ i, j ≤ n .

(iv) Suppose n > 1 and char k does not divide n + 1. If V is the

kernel of the canonical linear map S2D∗ ⊗ D → D∗ then RV ∼= K is

the kernel of the canonical epimorphism π : S2Ω1 ⊗ W → Ω1 in C1.

The group H1(W,K) is a free cyclic module over RW generated by the

cohomology class of the cocycle ϕ = πK ◦ϕu where πK : S2Ω1⊗W → K

is the projection and ϕu : W → S2Ω1 ⊗ W the universal differential

order 2 cocycle of proposition 4.1. We can take a torsion free connection

∇ : W × W → R with zero restriction to D × D. Let f, g ∈ R and

1 ≤ i, j, j′ ≤ n. Then ∇(f∂j, g∂j′) = (f∂jg) · ∂j′ , and so

ϕu(f∂i)(∂j, ∂j′) = −∇([f∂i, ∂j], ∂j′)−∇(∂j, [f∂i, ∂j′ ]) = (∂j∂j′f) · ∂i

We have πK = id− 1
n+1

ν ◦ π where ν : Ω1 → S2Ω1 ⊗W is the canonical

morphism in C1 such that π ◦ ν = (n+1) · 1Ω1 . Let ε1, . . . , εn be the dual

basis for the free R-module Ω1, so that 〈εi, ∂j〉 = δij. Since
∑

r εr⊗∂r ∈ g

corresponds to the identity endomorphism of Ω1 under σΩ1 , the morphism

ν takes θ ∈ Ω1 to
∑

r θεr ⊗ ∂r. Now ϕu(f∂i) = 1
2

∑
r,s (∂r∂sf) · εrεs⊗ ∂i .

Applying π to this, we get
∑

s (∂i∂sf) · εs in Ω1. Applying next ν, we get∑
r,s (∂i∂sf) · εsεr ⊗ ∂r in S2Ω1 ⊗W . It follows

ϕ(f∂i)(∂j, ∂j′) = (∂j∂j′f) · ∂i − 1

n + 1
(∂i∂jf) · ∂j′ − 1

n + 1
(∂i∂j′f) · ∂j .
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(v) Suppose that n = 1. If V = D∗ ⊗ D∗ then RV ∼= Ω1 ⊗ Ω1

and H1(W, Ω1 ⊗ Ω1) is a free cyclic module over RW generated by the

cohomology class of the cocycle ϕ described in proposition 4.5. Recall

that ϕ = ψ∗ ◦ d ◦ψ where ψ is a divergence. As an R-module, Ω1⊗Ω1 is

free with one generator ε2 = ε⊗ε, where ε ∈ Ω1 is specified by the relation

〈ε, ∂1〉 = 1. We take ψ with zero value on ∂1. Then ψ∗(fε)(∂1, ∂1) =

−∂1f , and so ψ∗(fε) = −(∂1f) · ε2, for f ∈ R. As dψ(f∂1) = (∂2
1f) · ε,

we get

ϕ(f∂1) = −(∂3
1f) · ε2.

(vi) Suppose that V is an absolutely irreducible finite dimensional

glk D-module other than those considered in (i)–(v). Then H1(W,RV ) ∼=
H1

R(g,RV )W . The standard cochain complex for g admits the following

identification:

C•
R(g, RV ) ∼= HomR(

∧
g, RV ) ∼= R⊗kHomk(

∧
glk D, V ) = RC•(glk D, V )

with the differential 1R ⊗ dV where dV is the differential of the standard

cochain complex C•(glk D, V ) of k-multilinear alternating maps glk D×
· · ·×glk D → V . What we get above is, moreover, an isomorphism in the

category C1. Since dV is a glk D-equivariant map, the differential 1R⊗dV

is a morphism in C1. By passing to the cohomology we still get objects

of C1 and an isomorphism in this category

H•
R(g, RV ) ∼= R⊗k H•(glk D, V ) = RH•(glk D, V ) .

As glk D acts in the cohomology group of its module V trivially, the action

of W in the corresponding object of C1 is given by the rule D · (f ⊗ ζ) =

Df⊗ζ for D ∈ W , f ∈ R and ζ ∈ H•(glk D, V ). Taking the W-invariants,

we conclude

H1(W, RV ) ∼= RW ⊗k H1(glk D, V ).

We want to describe this isomorphism on the level of cocycles. Given a

1-cocycle ϕ′ : glk D → V , define a map ϕ : W →RV by the rule

ϕ(f∂i) = −
∑

j

∂jf ⊗ ϕ′(Eij) for f ∈ R and i = 1, . . . , n .

Clearly, ϕ is a differential operator of order 1. Since ϕ(∂i) = 0, we have

ϕ[(df⊗∂i) = ϕ(f∂i) = −
∑

j

(1R⊗ϕ′)(∂jf⊗Eij) = (1R⊗ϕ′)
(
σW (df⊗∂i)

)
.

Thus ϕ[ = (1R⊗ϕ′)◦σW , that is, ϕ[ : g →RV is an R-linear cocycle and

cls(ϕ[) corresponds to 1 ⊗ cls(ϕ′), where cls stands for the cohomology

class of a cocycle. Let us check that ϕ is itself a cocycle. Consider the

first order prolongation W̃ of W with kernel g̃. By Lemma 3.3 there
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is an R-linear map ϕ̃ : W̃ → RV whose composite with the canonical

embedding ι : W → W̃ gives ϕ. Denote by η : W̃ × W̃ → RV its

coboundary. Then η(T, T ′) = 0 for all T, T ′ ∈ g̃ since ϕ̃ ◦ ι[ = ϕ[ is a

cocycle. Observe now that ϕ is a D-equivariant map and vanishes on D.

Hence ϕ̃ is also D-equivariant and vanishes on ι(D). It follows that η has

zero value whenever one of its arguments is in ι(D). Since η is R-bilinear

and g̃ + ι(D) generates W̃ as an R-module, η is identically zero. Thus

ϕ̃ is a cocycle, and so is ϕ as well. We see that cls(ϕ) corresponds to

1⊗ cls(ϕ′).

7. Universal central extensions

Recall that a Z-split central extension of W by a Z-module V is an ex-

act sequence 0 → V → L → W → 0 where L → W is a homomorphism

of Lie algebras over Z whose kernel is a central ideal and also a Z-module

direct summand of L. We call V the kernel of the central extension. An

extension is said to be split if L contains a subalgebra mapped isomor-

phically onto W . The equivalence classes of Z-split central extensions of

W by V are in a one-to-one correspondence with the cohomology classes

of Z-bilinear 2-cocycles W × W → V , the coefficients being a trivial

W-module. A Z-split central extension Lu of W by a Z-module U is

universal if for every other Z-module V and a Z-split central extension

L of W by V there is a unique Z-linear map U → V which extends to a

morphism between the two extensions:

0 // U //

²²

Lu //

²²

W //

id
²²

0

0 // V // L // W // 0.

In other words, a universal central extension corresponds to an isomor-

phism of functors H2(W,V ) ∼= HomZ(U, V ) in V . Recall that Ω• =
∧

Ω1

is the de Rham complex relative to W .

Theorem 7.1. Assume that 3R = R. If rkR W > 1 then every Z-

split central extension of W splits. If rkR W = 1 then the universal

central extension of W has kernel H1(Ω) and is determined by the 2-

cocycle ϕ : W ×W → H1(Ω) such that ϕ(D,D′) for D, D′ ∈ W is the

cohomology class of the 1-form ψ(D) · dψ(D′), where ψ : W → R is a

divergence.

Without assumption 3R = R the same proof shows that W has no

nontrivial central extensions provided rkR W > 2.
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Proof. Put n = rkR W . There is an obvious embedding

H2(W,V ) ↪→ H1
(
W, HomZ(W,V )

)
(∗)

obtained by separating the two arguments of the cocycles W ×W → V .

The image of H2(W,V ) consists precisely of the cohomology classes repre-

sented by the 1-cocycles ϕ : W → HomZ(W,V ) which satisfy ϕ(D)(D) =

0 for all D ∈ W . Consider the W-module M = HomZ(W,V ) and denote

by ρM the corresponding representation of W . In a natural way M is a

right module for the ring EndR W , hence a left module for the opposite

ring (EndR W )op. In particular, M is also an R-module. Let f ∈ R,

D ∈ W , ξ ∈ M . As ρM(D)ξ = −ξ ◦ ρW (D) and fMξ = ξ ◦ fW , we get

[ρM(D), fM ] ξ = ξ◦(−fW ◦ρW (D)+ρW (D)◦fW

)
= ξ◦(Df)W = (Df)Mξ ,

which verifies (1.6). For T ∈ g define an endomorphism σM(T ) ∈
EndR M by the rule

σM(T ) ξ = ξ ◦ (
γ(T ) · 1W − σW (T )

)
, ξ ∈ M,

where γ : g → R is the contraction. As

(
ρM(fD)ξ − f · ρM(D)ξ

)
(D′) = ξ

(−[fD, D′] + [D, fD′]
)

= ξ
(
(Df)D′ − σW (df ⊗D)D′)

for f ∈ R and D, D′ ∈ W , we get (1.8). The other identities in the

definition 1.1 are immediate. Thus M is now an object of C1. Put

Q = Ω1 ⊗ Ωn. This is an object of C1 satisfying (1.10), (1.11). Since

Ωn is a projective R-module of rank 1, its endomorphism algebra can be

identified with R, which yields isomorphisms of R-algebras

EndR Q ∼= EndR Ω1 ⊗ EndR Ωn ∼= EndR Ω1 ∼= (EndR W )op.

Let T ∈ g. The endomorphism σΩn(T ) is just the multiplication by the

trace of σΩ1(T ), that is, by γ(T ). Hence

σQ(T ) = σΩ1(T )⊗ 1Ωn +1Ω1 ⊗σΩn(T ) = σΩ1(T )⊗ 1Ωn +γ(T ) · 1Ω1 ⊗ 1Ωn .

Under the isomorphisms above it is sent to σΩ1(T )+γ(T )·1Ω1 in EndR Ω1,

and then to γ(T ) · 1W − σW (T ) in (EndR W )op. Thus M is of type Q.

We apply theorems 5.5, 5.6 to compute H1(W,M). If m is a maximal

ideal of R then Q/mQ ∼= (W/mW )∗⊗∧n(W/mW )∗. By Lemma 5.4 this

g/mg-module is isomorphic to neither the trivial module, nor W/mW ,

nor (W/mW )∗, nor K/mK. Furthermore, H1(g/mg, Q/mQ) = 0. It

follows H1(W,M) = 0 provided n > 1. If n = 1 then

H1(W,M) ∼= MorC1(Ω
1 ⊗ Ω1, M) .



DEGREE ONE COHOMOLOGY 105

The right hand side can be described as the W-invariant elements in

HomR(Ω1 ⊗ Ω1, M) ∼= HomZ(Ω
1 ⊗ Ω1 ⊗W, V ) ∼= HomZ(Ω

1, V )

because Ω1 ⊗W ∼= R. Taking the W-invariants, we get

MorC1(Ω
1 ⊗ Ω1, M) ∼= HomW (Ω1, V ) ∼= HomZ(Ω

1/ρΩ1(W )(Ω1), V ) .

Since Ω2 = 0, the classical formula relating the action of W and the

interior product on differential forms gives ρΩ1(D) θ = d(〈θ, D〉) for θ ∈
Ω1, D ∈ W . Since the elements 〈θ,D〉 span the whole R, again by

the projectivity assumption, the group ρΩ1(W )(Ω1) consists of all exact

1-forms. Hence Ω1/ρΩ1(W )(Ω1) ∼= H1(Ω).

Now take a Z-linear map η : H1(Ω) → V and write out the corre-

sponding 1-cocycle ϕ : W → M . Tracing back the isomorphisms above,

we first find the morphism ζ : Ω1 ⊗ Ω1 → M in C1. It is related to η as

follows:

ζ(ω)(D) = η
(
cls(iDω)

)
for ω ∈ Ω1 ⊗ Ω1, D ∈ W,

where iDω ∈ Ω1 is given by (iDω)(D′) = ω(D,D′) for D′ ∈ W (recall that

Ω1 ⊗ Ω1 can be identified with the group of R-bilinear maps W ×W →
R) and cls refers to the cohomology class of a 1-form. Then ϕ is the

composite of ζ and the cocycle of proposition 4.5, that is, ϕ = ζ◦ψ∗◦d◦ψ
where ψ : W → R is a divergence. Note that

iD′
(
ψ∗(θ)

)
= ψ(D′) θ − d(〈θ, D′〉) for θ ∈ Ω1, D′ ∈ W.

We have ϕ(D) = ζ(ω) where ω = ψ∗(θ) and θ = dψ(D). As iD′ω ≡
ψ(D′)θ modulo the exact 1-forms, it follows

ϕ(D)(D′) = η
(
cls(ψ(D′) · dψ(D))

)
for D, D′ ∈ W.

Since ψ(D) · dψ(D) = 1
2
dψ(D)2 is an exact form, we have ϕ(D)(D) = 0.

This shows that (∗) is an isomorphism and so

H2(W,V ) ∼= HomZ
(
H1(Ω), V

)
.

Thus the central extension corresponding to V = H1(Ω) and the iden-

tity map η : H1(Ω) → V is universal. The corresponding cocycle is

determined as well. ¤
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