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CONCAVE SCHLICHT FUNCTIONS WITH BOUNDED

OPENING ANGLE AT INFINITY

Abstract. Let D denote the open unit disc. In this article we con-

sider functions f(z) = z +
∑

∞

n=2 an(f)zn that map D conformally onto

a domain whose complement with respect to C is convex and that satisfy

the normalization f(1) = ∞. Furthermore, we impose on these func-

tions the condition that the opening angle of f(D) at infinity is less than

or equal to πA,A ∈ (1, 2]. We will denote these families of functions by

CO(A). Generalizing the results of [1], [3], and [5], where the case A = 2

has been considered, we get representation formulas for the functions in

CO(A). They enable us to derive the exact domains of variability of

a2(f) and a3(f), f ∈ CO(A). It turns out that the boundaries of these

domains in both cases are described by the coefficients of the conformal

maps of D onto angular domains with opening angle πA.

Let D denote the open unit disc. In this article we consider functions

f(z) = z +

∞
∑

n=2

an(f)zn

that map D conformally onto a domain whose complement with respect

to C is convex and that satisfy the normalization f(1) = ∞. Further-

more, we impose on these functions the condition that the opening angle

of f(D) at infinity is less than or equal to πA, A ∈ (1, 2]. We will de-

note these families of functions by CO(A). In [1] and [2], the following
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theorem has been proved for the class CO(2), which contains the classes

CO(A), A ∈ (1, 2].

Theorem A. Let f be holomorphic in D and normalized by f(0) =

f ′(0) − 1 = 0. Let the function Φ be defined by

Φ(z) = z +
2f ′(z)

f ′′(z)
, z ∈ D. (1)

Then f ∈ CO(2) if and only if

(i) Φ is holomorphic in D and |Φ(z)| ≤ 1 for z ∈ D.

(ii) Φ has its attractive fixed point at the point z = 1 and the angular

derivative of Φ at this point satisfies Φ′(1) ∈ [0, 1/3].

As a generalization of Theorem A we prove

Theorem 1. Let f be holomorphic in D and normalized by f(0) =

f ′(0) − 1 = 0. Let the function Φ be defined by

Φ(z) = z +
2f ′(z)

f ′′(z)
, z ∈ D.

Then for A ∈ (1, 2], the function f belongs to the class CO(A) if and only

if

(i) Φ is holomorphic in D and |Φ(z)| ≤ 1 for z ∈ D.

(ii) Φ has its attractive fixed point at the point z = 1 and the angular

derivative of Φ at this point satisfies Φ′(1) ∈ [0, (A − 1)/(A + 1)].

Proof. If f(D) has an opening angle πα, α ∈ [1, A] at infinity, the

boundary C of f(D) may be approximated by concave polygons Cm, m ∈

N, with opening angle πα, α ∈ [1, A], at infinity and m corners zk ∈

C, k = 1, ..., m, such that πβk, k = 1, ..., m, 0 < βk ≤ 1, is the change in

the direction of Cm at the corner zk. In the case α = 1, we only have to

consider a straight line.

According to the Schwarz-Christoffel formula we get for the maps f that

map D onto the concave domain bounded by Cm the existence of m

preimages of the corners at the points

exp(−itk), k = 1, ...m, 0 < t1 < ... < tm < 2π,

such that

f ′(z) = (1 − z)−α−1

m
∏

k=1

(

1 − eitkz
)βk ,

where
m
∑

k=1

βk = α − 1.
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Now, we consider the function

g(z) =
1

f ′(z)(1 − z)A+1
=

1

(1 − z)A−α
∏m

k=1 (1 − eitkz)βk

.

To these products we apply Lemma 1 and Theorem 1 of [4]. They imply

that products of the form

g(z) =
m+1
∏

k=1

(

1 − eitkz
)

−δk ,
m+1
∑

k=1

δk = A − 1,

have a representation

g(z) =

∫

∂D

dµ(x)

(1 − xz)A−1
,

where µ is a probability measure on ∂D. Hence, we get for the derivatives

of our polygonal mappings f the representation formula

1

f ′(z)
= (1 − z)A+1

∫

∂D

dµ(x)

(1 − xz)A−1
, z ∈ D,

and obviously this formula is valid for all f ∈ CO(A).

Consideration of the Taylor expansion of both sides reveals that the in-

equality

|2a2(f) − (A + 1)| ≤ A − 1 (2)

is valid. Now, we proceed exactly as in the proof of Theorem A (ii) in

[1] to get the assertion of Theorem 1.

Now we use Theorem 1 and the following Theorem B that was shown

in [5] to prove a representation formula for f ∈ CO(A).

Theorem B. Let λ > 1.

1) For any function Φ holomorphic in D, Φ(D) ⊂ D, with an attractive

boundary fixed point at the point 1 and an angular derivative Φ′(1) ∈

[0, 1/λ] the function ϕ defined by

ϕ(z) =
λ − 1 + z − λΦ(z)

λz − ((λ − 1)z + 1)Φ(z)
, z ∈ D,

is holomorphic in D and satisfies ϕ(D) ⊂ D.

2) For any function ϕ holomorphic in D, ϕ(D) ⊂ D, the function Φ

defined by

Φ(z) =
λ − 1 + z − λzϕ(z)

λ − ((λ − 1)z + 1)ϕ(z)
, z ∈ D, (3)

is holomorphic in D. Furthermore, there are two possibilities. The first

one occurs if ϕ ≡ 1, then Φ ≡ 1. In all other cases Φ(D) ⊂ D. In the
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latter cases Φ has an attractive boundary fixed point at the point 1 and

an angular derivative Φ′(1) ∈ [0, 1/λ].

The said representation theorem is as follows.

Theorem 2. Let A ∈ (1, 2]. A function f holomorphic in D and

satisfying f(0) = 0 belongs to the class CO(A) if and only if there exists

a function ϕ : D → D, holomorphic in D, such that

f ′(z) = (1 − z)−(A+1) exp

(

−(A − 1)

∫ z

0

ϕ(t) dt

1 − tϕ(t)

)

, z ∈ D. (4)

Proof. We apply Theorem 1 and Theorem B in the case λ = (A +

1)/(A−1). From the formulas (1) and (3) we get by a little computation

that f ∈ CO(A) if and only if there exists a function ϕ holomorphic in

D such that ϕ(D) ⊂ D and

d

d z

(

log
(

f ′(z)(1 − z)(A+1)
))

=
−(A − 1)ϕ(z)

1 − zϕ(z)
, z ∈ D.

Integration using the initial condition f ′(0) = 1 immediately yields the

assertion of Theorem 2.

Now, we want to present some corollaries to Theorem 2. Firstly, we

make (2) more precise.

Corollary 1. Let A ∈ (1, 2]. Then the domain of variability of

a2(f), f ∈ CO(A) is determined by the inequality
∣

∣

∣

∣

a2(f) −
A + 1

2

∣

∣

∣

∣

≤
A − 1

2
. (5)

Equality in (5) is attained if and only if

f(z) = fθ(z) =
1

A (1 + eiθ)

(

(

1 + eiθz

1 − z

)A

− 1

)

, θ ∈ [0, 2π] \ {π}. (6)

These functions map the unit disc onto an angular domain with opening

angle πA. The boundary point a2(f) = 1 of (5) is attained if and only if

f ∈ CO(2) maps D onto a half plane.

Proof. We insert the Taylor series

ϕ(z) =
∞
∑

k=0

ckz
k

into (4) from which we get the representation

2 a2(f) = A + 1 − (A − 1)c0.

The proof of (5) is a consequence of the fact that under our assumptions

on the function ϕ the inequality |c0| ≤ 1 is valid. In this inequality
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equality is attained if and only if ϕ ≡ exp(iθ), θ ∈ [0, 2π]. This together

with the integration of the corresponding differential equation (4) proves

the rest of the assertion.

The central role of the mappings fθ defined by (6) in the family CO(A)

may be recognized in a more formal way from the next corollary.

Corollary 2. Let A ∈ (1, 2] and f ∈ CO(A). Then there exists a

function ω : D → D, holomorphic in D, such that

f ′(z) =
(1 + zω(z))A−1

(1 − z)A+1
, z ∈ D. (7)

Proof. Theorem 2 implies that f ∈ CO(A) if and only if there exists

a function g ∈ CO(2) such that

f ′(z) = (g′(z))A−1(1 − z)2A−4.

The representation (7) follows from this equation and the fact that for the

derivative of any function g ∈ CO(2) there exists a function ω : D → D,

holomorphic in D, such that

f ′(z) =
1 + zω(z)

(1 − z)3
, z ∈ D. (8)

(8) has been proved in [3] and [5] in two different ways.

It is easily seen that a computation of the domain of variability of

a2(f), f ∈ CO(A) with the help of Corollary 2 delivers Corollary 1 again.

A detailed comparison of these two possibilities in the investigation of

a3(f) shows that in this case the analogous fact is not longer true for all

A ∈ (1, 2]. We shall prove here only the results of the determination of

a3(f), f ∈ CO(A).

Corollary 3. Let A ∈ (1, 2] and the function h be defined by

h(ζ) = ζ +
A − 2

2(A + 1)
ζ2.

Then the equation

{a3(f) | f ∈ CO(A)} =

{

(A + 1)(A + 2)

6
+ (A2 − 1)

τ

3

∣

∣

∣
τ ∈ h(D)

}

(9)

is valid. A point on the boundary of the set of variability of a3(f) given

in (9) is attained if and only if f is one of the functions defined in (5) or

the mapping of D onto a halfplane belonging to CO(2).
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Proof. To prove (9), we consider a variation of a function f ∈ CO(A).

To this end, let for ε ∈ D and the holomorphic function ϕ : D → D the

function ϕ̃ defined by

ϕ̃(z, ε) =
ϕ(z) − ε

1 − εϕ(z)
, z ∈ D.

Obviously, ϕ̃(·, ε) is holomorphic in D and ϕ̃(D, ε) ⊂ D. Hence, for any

f ∈ CO(A) given by (4) the function f(·, ε) defined by

f ′(z, ε) = (1 − z)−(A+1) exp

(

−(A − 1)

∫ z

0

ϕ̃(t, ε) dt

1 − tϕ̃(t, ε)

)

, z ∈ D, (10)

and f(0, ε) = 0 belongs to CO(A) for any ε ∈ D as well. Now, we

consider the Taylor expansion

f ′(z, ε) = 1 +
∞
∑

k=2

k ak(f, ε)zk−1. (11)

The point a3(f) is a inner point of the set {a3(f)|f ∈ CO(A)} if a3(f, ·)

maps a neighbourhood of ε = 0 onto a neighbourhood of a3(f). These

points are characterized by
(
∣

∣

∣

∣

∣

∂a3(f, ε)

∂ε

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂a3(f, ε)

∂ε

∣

∣

∣

∣

2
)
∣

∣

∣

∣

∣

ε=0

6= 0. (12)

Using (10), (11), and the above Taylor series for ϕ we get

3
∂a3(f, ε)

∂ε

∣

∣

∣

∣

ε=0

= −(A − 1)
(

c2
0(A + 1 + (2 − A)c0) + c0c1

)

and

3
∂a3(f, ε)

∂ε

∣

∣

∣

∣

ε=0

= (A − 1) (A + 1 + (2 − A)c0) .

To verify that (12) is valid for |c0| < 1 we use that |c1| ≤ 1−|c0|
2. Hence,

in this case it is sufficient to prove that

|A + 1 + (2 − A)c0| > |A + 1 + (2 − A)c0||c0|
2 + |c0|

(

1 − |c0|
2
)

.

The inequality

|A + 1 + (2 − A)c0| > |c0|

is equivalent to the inequality mentioned before and it is easy to see

using the triangle inequality that it holds as a consequence of |c0| < 1

and A > 1.

Now, we have proved that the boundary points of the set {a3(f)|f ∈

CO(A)} can stem only from |c0| = 1. Since |c0| = 1 if and only if

ϕ ≡ exp(iθ), θ ∈ [0, 2π], the only possibilities for extremal functions

of the set {a3(f)|f ∈ CO(A)} are the extremal functions of Corollary
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1. The computation of their third Taylor coefficients has as result the

boundary of the set on the right hand side of equation (9). Here, we have

to recognize that h(∂D) is a (convex) Jordan curve. The inequalities

0 ≤
2 − A

2(A + 1)
<

1

4

imply that h belongs to the family of univalent convex functions. This

completes the proof of Corollary 3.

We conclude with a little geometric observation closely related to the

mappings fθ defined in (6).

Theorem 3. Let A ∈ (1, 2]. Then the Koebe domain of CO(A) is

determined by

⋂

f∈CO(A)

f(D) =

{

w

∣

∣

∣

∣

Re w > −
1

2A

}

.

Proof. For A ∈ (1, 2) let us fix α ∈ [1, A] and consider the functions

f ∈ CO(A) with opening angle πα at infinity. For α = 1, there exists

only one such mapping, namely f(z) = z/(1 − z), z ∈ D. In all other

cases, we may proceed as follows. Since C \ f(D) is convex, this set is

contained in one of the sets C\fθ(D), θ ∈ [0, 2π]\{π}. The fact that the

union of the sets C \ fθ(D), θ ∈ [0, 2π] \ {π}, forms the closed half plane

{

w

∣

∣

∣

∣

Rew ≤ −
1

2α

}

proves the assertion of Theorem 3 in the cases A ∈ (1, 2).

For the proof in the case A = 2, it is sufficient to recognize that

⋃

A∈(1,2)

CO(A) ⊂ CO(2)

and that the end points of the half lines C \ fθ(D), θ ∈ [0, 2π] \ {π}, in

this case form the line
{

w

∣

∣

∣

∣

Re w = −
1

4

}

.
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