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Abstract. The paper studies the smoothness of solutions of the

degenerate Hamilton-Jacobi-Bellman (HJB) equation associated with a

linear-quadratic regulator control problem. We establish the existence

of a classical solution of the degenerate HJB equation associated with

this problem by the technique of viscosity solutions, and hence derive

an optimal control from the optimality conditions in the HJB equation.

1. Introduction

We are concerned with the quadratic control problem to minimize the

expected cost with discount factor β > 0:

J(c) = E[

∫ ∞

0

e−βt{h(xt) + |ct|
2}dt] (1)

over c ∈ A subject to the degenerate stochastic differential equation

dxt = [Axt + ct]dt + σxtdwt, x0 = x ∈ R, t ≥ 0, (2)
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for non-zero constants A, σ 6= 0, and a continuous function h on R, where

wt is a one-dimensional standard Brownian motion on a complete proba-

bility space (Ω,F , P ) endowed with the natural filtration Ft generated by

σ(ws, s ≤ t), and A denotes the class of all Ft−progressively measurable

processes c = (ct) with J(c) < ∞.

This kind of stochastic control problem has been studied by many

authors [3, 6] for non-degenerate diffusions to (1) and (2). We also assume

that h satisfies the following properties:

h(x) ≥ 0 : convex; (3)

There exists C > 0 such that h(x) ≤ C(1 + |x|n), xεR, (4)

for some constant C > 0, n ≥ 2. We refer to [5] for the quadratic case of

degenerate diffusions related to Riccati equations in case of h(x) = Cx2

and n = 2 with infinite horizon.

The purpose of this paper is to show the existence of a smooth solution

u of the associated Hamilton-Jacobi-Bellman (in short, HJB) equation

of the form:

−βu +
1

2
σ2x2u′′ + Axu′ + min

r∈R

(r2 + ru′) + h(x) = 0 in R, (5)

and to give a synthesis of optimal control. Our method consists in finding

the viscosity solution u of (5) [4, 6], by the limit of the solution v =

vL, L > 0, to the HJB equation

−βvL +
1

2
σ2x2v′′

L + Axv′
L + min

|r|≤L
(r2 + rv′

L) + h(x) = 0 in R, (6)

as L → ∞, and then in considering the smoothness of u by it’s convexity.

To show the existence of the viscosity solution vL, we assume that h has

the following property: there exists Cρ > 0, for any ρ > 0, such that

|h(x) − h(y)| ≤ Cρ|x − y|n + ρ(1 + |x|n + |y|n), ∀x, y ∈ R, (7)

for a fixed integer n ≥ 2.

This condition acts as the uniform continuity of h with order n, and

plays an important role for the existence of viscosity solutions [7, 8]. We

notice that (7) holds for h(x) = |x|n̄, n̄ ∈ [2,n],

In §2 we show that u(x) := limL→∞ vL(x) is a viscosity solution of (5),

as L → ∞. §3 is devoted to the study of smoothness of u. Finally in §4

we present an optimal control to the optimization problem (1) and (2).
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2. Convergences of the value function

In this subsection we show that vL(x) is a viscosity solution of the

Bellman equation (5) for any fixed L > 0, and then converges to a vis-

cosity solution u(x) of the Bellman equation (5). In order to introduce

solutions in the viscosity sense, given a continuous and degenerate elliptic

map H : R×R×R×R → R, we recall by [4] the definition of viscosity

solutions of

H(x, w, w′, w′′) = 0 in R. (8)

Definition 2.1. w ∈ C(R) is called a viscosity subsolution (resp., su-

persolution) of (8) if, whenever for ϕ ∈ C2(R), w − ϕ attains its local

maximum (resp., minimum) at x ∈ R, then

H(x, w(x), ϕ′(x), ϕ′′(x)) ≤ 0 (9)

resp., H(x, w(x), ϕ′(x), ϕ′′(x)) ≥ 0. (10)

We also call w ∈ C(R) a viscosity solution of (8) if it is both viscosity

sub- and supersolution of (8).

According to Crandall, Ishii and Lions [4] and Fleming and Soner [6] this

definition is equivalent to the following: for any x ∈ R,

H(x, w(x), p, q) ≤ 0 for (p, q) ∈ J2,+w(x)

H(x, w(x), p, q) ≥ 0 for (p, q) ∈ J2,−w(x),

where J2,+ and J2,− are the second-order superjets and subjets defined by

J2,+w(x)

= {(p, q) ∈ R2 : lim supy→x
w(y)−w(x)−p(y−x)− 1

2
q|y−x|2

|y−x|2
≤ 0},

J2,−w(x)

= {(p, q) ∈ R2 : lim infy→x
w(y)−w(x)−p(y−x)− 1

2
q|y−x|2

|y−x|2
≥ 0}.

Let us define the value function vL(x) = infc∈AL
J(c), where AL =

{c = (ct) ∈ A : |ct| ≤ L for all t ≥ 0}. We assume that there exists

β0 ∈ (0, β) satisfying

−β0 + σ2n(2n − 1) + 2n|A| < 0, (11)

and we set fk(x) = γ + |x|k for any 2 ≤ k ≤ 2n and a constant γ ≥ 1

chosen later.

Lemma 2.2. Assume (11). Then there exist γ ≥ 1 and η > 0, depend-

ing on L, k, such that

−β0fk +
1

2
σ2x2f ′′

k + Axf ′
k + max

|r|≤L
(r2 + rf ′

k) + ηfk ≤ 0 (12)
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Further

E[

∫ τ

0

e−β0sηfk(xs)ds + e−β0τfk(xτ )] ≤ fk(x) for 2 ≤ k ≤ 2n, (13)

E[sup
t

e−β0tfk(xt)] < ∞ for 2 ≤ k ≤ n, (14)

where τ is any stopping time and xt is the response to (ct) ∈ AL.

Proof. By (11), we choose η ∈ (0, β0) such that

−β0 +
1

2
σ2k(k − 1) + k|A| + η < 0, (15)

and then γ ≥ 1 such that

(−β0 +
1

2
σ2k(k − 1) + k|A| + η)|x|k + Lk|x|k−1 + (L2 + ηγ − β0γ) ≤ 0.

Then (12) is immediate. By (12) and Ito’s formula, we deduce (13).

Moreover, by moment inequalities for martingales we get

E[sup
t

e−β0tfk(xt)] ≤ fk(x) + E[sup
t

|

∫ t

0

e−β0sf ′
k(xs)σxsdws|]

≤ fk(x) + KE[(

∫ ∞

0

e−2β0sσ2|xs|
2kds)1/2],

for some constant K > 0. Therefore (14) follows from this relation

together with (13).

Theorem 2.3. We assume (3), (4), (7) and (11). Then

vL satisfies (3), (4), (7), (16)

and the dynamic programming principle holds, i.e.,

vL(x) = inf
c∈AL

E

[
∫ τ

0

e−βt{h(xt) + |ct|
2}dt + e−βτvL(xτ )

]

(17)

for any stopping time τ .

Proof. We suppress L of vL for simplicity. The convexity of v follows

from the same line as [5,Chap. 4, Lemma 10.6]. Let x0
t be the unique

solution of

dx0
t = Ax0

t dt + σx0
t dwt, x0

0 = x. (18)

Then, by (13) and (4)

v(x) ≤ E[

∫ ∞

0

e−βth(x0
t )dt] ≤ CE[

∫ ∞

0

e−β0tfn(x0
t )dt] ≤ Cfn(x)/η. (19)
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For the solution yt of (2) with y0 = y, it is clear that xt − yt satisfies

(18) with initial condition x − y. We note by (15) with k = n and Ito’s

formula that

E[e−β0t|x0
t |

n] ≤ |x|n.

Thus by (7) and (13)

|v(x) − v(y)| ≤ sup
c∈AL

E[

∫ ∞

0

e−βt|h(xt) − h(yt)|dt]

≤ sup
c∈AL

E[

∫ ∞

0

e−βt

{

Cρ|xt − yt|
n + ρ(1 + |xt|

n + |yt|
n)

}

dt]

≤ sup
c∈AL

∫ ∞

0

e−βt

{

Cρ|x − y|neβ0t + ρ(hn(x) + hn(y))eβ0t

}

dt

≤
1

β − β0
[Cρ|x − y|n + 2ργ(1 + |x|n + |y|n)] (20)

Therefore we get (16).

To prove (17), we denote by vr(x) the right hand side of (17). By the

formal Markov property

E[

∫ ∞

τ

e−βt{h(xt) + |ct|
2}dt|Fτ ] = E[

∫ ∞

0

e−β(t+τ){h(xτ+t) + |cτ+t|
2}dt|Fτ ]

= e−βτJc̃(xτ ),

with c̃ equal to c shifted by τ . Thus

Jc(x) = E

[
∫ τ

0

+

∫ ∞

τ

e−βt{h(xt) + |ct|
2}dt

]

= E

[
∫ τ

0

e−βt{h(xt) + |ct|
2}dt

]

+E

[
∫ ∞

τ

e−βt{h(xt) + |ct|
2}dt/Fτ

]

≥ E

[
∫ τ

0

e−βt{h(xt) + |ct|
2}dt + e−βτvL(xτ )

]

.

It is known in [6, 9] that this formal argument can be verified, and we

deduce vL(x) ≥ vr(x).

To prove the reverse inequality, let ρ > 0 be arbitrary. We set

Vc(x) = E[

∫ ∞

0

e−βt{h(xt) + |ct|
2}dt] (21)

By the same calculation as (20), there exists Cρ > 0 such that

|Vc(x) − Vc(y)| ≤ Cρ|x − y|n + ρ(1 + |x|n + |y|n).
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Take 0 < δ < 1 with Cρδ
n < ρ. Then, we have for |x − y| < δ,

|v(x) − v(y)| ≤ sup
c∈AL

|Vc(x) − Vc(y)|

≤ ρ(2 + |x|n + |y|n)

≤ ρ[2 + |x|n + 2n(1 + |x|n)]

= ρ[(2 + 2n) + (1 + 2n)|x|n]

≤ Ξρ(x) := ρ(2n + 2)(1 + |x|n).

Let {Si} be a sequence of disjoint subsets of R such that

diam(Si) < δ and ∪i Si = R.

For any i, we take x(i) ∈ Si and c(i) ∈ AL such that

Vc(i)(x
(i)) ≤ inf

c∈AL

Vc(x
(i)) + ρ.

Define cτ ∈ AL by

cτ
t = ct1{t<τ} + c

(i)
t−τ1{xτ∈Si}1{t≥τ}, for xτ ∈ Si.

Hence,

Vc(i)(xτ ) = Vc(i)(xτ ) − Vc(i)(x
(i)) + Vc(i)(x

(i))

≤ Ξρ(xτ ) + Vc(i)(x
(i))

≤ Ξρ(xτ ) + inf
c∈AL

Vc(x
(i)) + ρ

= Ξρ(xτ ) + v(x(i)) + ρ

≤ 2Ξρ(xτ ) + v(xτ ) + ρ

Now, by the definition of vr(x), we can find c ∈ AL such that

vr(x) + ρ ≥ E

[
∫ τ

0

e−βt{h(xt) + |ct|
2}dt] + e−βτv(xτ )

]

.

Thus, using the formal Markov property [6], we have

vr(x) + ρ

≥
∑

i

E

[
∫ τ

0

e−βt{h(xt) + |ct|
2}dt + e−βτ (Vc(i)(xτ ) − 2Ξρ(xτ ) − ρ) : xτ ∈ Si

]

= E

[
∫ τ

0

e−βt{h(xτ
t ) + |cτ

t |
2}dt +

∫ ∞

τ

e−βt{h(xτ
t ) + |cτ

t |
2}dt|Fτ

]

− 2E[e−βτΞρ(xτ )] − ρ

≥ v(x) − 2Ξρ(x) − ρ,

where xτ
t is the response to cτ

t with xτ
0 = xτ . Letting ρ → 0, we deduce

vr(x) ≥ v(x), which completes the proof.
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Theorem 2.4. We assume (3), (4), (7) and (11). Then vL is a viscosity

solution of (5). Furthermore, vL converges locally uniformly to a viscosity

solution u ∈ C(R) of (6) satisfying (4), (7) as L → ∞.

Proof. We note that (13) gives E[
∫ h

0
|xt|

2dt] ≤ eβ0hhf2(x) for h > 0,

and

E

[

sup
0≤s≤h

|xs − x|2
]

≤ 32

(

E[(

∫ h

0

|Axt|dt)2 + (

∫ h

0

|ct|dt)2 + ( sup
0≤s≤h

|

∫ s

0

σxtdwt|)
2]

)

≤ 32

(

|A|2hE[(

∫ h

0

|xt|
2dt)] + h2L2 + CE[

∫ h

0

|xt|
2dt]

)

.

for constant C > 0. Hence we have

lim
h→0

sup
c∈AL

E[ sup
0≤s≤h

|xs − x|2] = 0.

Thus we can apply a standard result of viscosity solutions [[4], Thm. 3.1,

p. 220] to obtain the viscosity property of vL, taking into account the

uniform continuity of h on each compact interval. Since vL(x) is non-

increasing, we can define u(x) by u(x) = limL→∞ vL(x). By Theorem 2.3,

it is clear that u satisfies (4), (7). Thus by Dini’s theorem, we can observe

the locally uniform convergence and the viscosity property of u [4]. The

proof is complete.

3. Classical solutions

We here study the smoothness of the viscosity solution u of (5).

Proposition 3.1. We assume (3), (4), (7) and (11). Further we assume

that h(x) : convex, then vL(x) and u(x) are convex.

Proof. For any ε > 0, there exist c, ĉ ∈ AL such that

E[

∫ ∞

0

e−βt{h(xt) + |ct|
2}dt] < vL(x) + ε,

E[

∫ ∞

0

e−βt{h(x̂t) + |ĉt|
2}dt] < vL(x̂) + ε,

where

dxt = [Axt + ct]dt + σxtdwt, x0 = x ∈ R,

dx̂t = [Ax̂t + ĉt]dt + σx̂tdwt, x̂0 = x̂ ∈ R.
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We set

c̃t = ξct + (1 − ξ)ĉt,

x̃t = ξxt + (1 − ξ)x̂t,

x̃0 = ξx + (1 − ξ)x̂ ≡ x̃,

for 0 < ξ < 1. Clearly,

dx̃t = [Ax̃t + c̃t]dt + σx̃tdwt.

Hence, by convexity

vL(x̃) ≤ E[

∫ ∞

0

e−βt{h(x̃t) + |c̃t|
2}dt]

≤ ξE[

∫ ∞

0

e−βt{h(xt) + |ct|
2}dt]

+(1 − ξ)E[

∫ ∞

0

e−βt{h(x̂t) + |ĉt|
2}dt]

≤ ξ(vL(x) + ε) + (1 − ξ)(vL(x̂) + ε).

Letting ε −→ 0, we get

vL(x̃) = vL(ξx + (1 − ξ)x̂) ≤ ξvL(x) + (1 − ξ)vL(x̂),

which completes the convexity of vL(x). From the definition of vL(x), for

each positive integer L, we have 0 ≤ vL+1(x) ≤ vL(x), x ∈ R. Since

vL(x) is non-increasing, we can define u(x) by u(x) = lim
L→∞

vL(x). Hence

we see that u(x) is also convex.

Theorem 3.2. We assume (3), (4), (7) and (11). Then we have

u ∈ C2(R \ {0}). (22)

Proof. Step 1: By the convexity of u we recall a classical result of

Alexandrov [6] to see that Lebesgue measure of R \ D ∪ {0} = 0, where

D =

{

x ∈ R : u is twice differentiable at x

}

. By the definition of

twice-differentiability, we have (u′(x), u′′(x)) ∈ J+2u(x)∩J−2u(x) for all x ∈

D, and hence

−βu +
1

2
σ2x2u′′ + Axu′ −

(u′)2

4
+ h(x) = 0, ∀x ∈ D.

Let d+u(x) and d−u(x) denote the right- and left-hand derivatives re-

spectively. For all x ∈ (R \ {0}), define r±(x) by

−βu(x) +
1

2
σ2x2r±(x) + Axd±u(x) −

(d±u(x))2

4
+ h(x) = 0. (23)
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Since d+u = d−u = u′ on D, we have r+ = r− = u′′ a.e. By

definition, d+u(x) is right continuous, and so is r+(x). Hence it is easy

to see that

u(y) − u(x) =

∫ y

x

d+u(s)ds

d+u(s) − d+u(x) =

∫ s

x

r+(t)dt, s > x.

Thus we get

R(u; y) : =

{

u(y) − u(x) − d+u(x)(y − x) −
1

2
r+(x)|y − x|2

}

/|y − x|2

=

∫ y

x

(

d+u(s) − d+u(x) − r+(x)(s − x)

)

ds/|y − x|2 (24)

=

∫ y

x

{
∫ s

x

(

r+(t) − r+(x)

)

dt

}

ds/|y − x|2 −→ 0 as y ↓ x.

Step 2: We claim that u(x) is differentiable at x ∈ R \ D ∪ {0} = 0.

It is well known in [2] that δu(x) =

[

d+u(x), d−u(x)

]

, for all x ∈

(R \ {0}), where δu(x) is the generalized gradient of u at x. Suppose

d+u(x) > d−u(x). We set

p̂ = ξd+u(x) + (1 − ξ)d−u(x)

r̂ = ξr+(x) + (1 − ξ)r−(x), 0 < ξ < 1.

If lim infy→x R(u; y) < 0, then we can find a sequence ym −→ x such that

limm→∞ R(u; ym) < 0. By (24), we may consider that ym ≤ ym+1 < x for

every m, taking a subsequence if necessary. Hence

lim
m→∞

u(ym) − u(x) − d+u(x)(ym − x)

|ym − x|
≤ 0,

this leads to d+u(x) ≤ d−u(x), which is a contradiction. Thus we have

(d+u(x), r+(x)) ∈ J2,−u(x) and similarly, (d−u(x), r−(x)) ∈ J2,−u(x).

By the convexity of J2,−u(x), we get (p̂, r̂) ∈ J2,−u(x). Now we note that

(p̂)2 < ξ(d+u(x))2 + (1 − ξ)(d−u(x))2,

and hence by (23)

−βu(x) +
1

2
σ2x2r̂ + Axp̂ −

(p̂)2

4
+ h(x) > 0.

On the other hand, by the definition of viscosity solution

−βu(x) +
1

2
σ2x2q + Axp −

p2

4
+ h(x) ≤ 0 ∀(p, q) ∈ J2,−u(x),
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which is a contradiction. Therefore we deduce that δu(x) is a singleton,

and so u is differentiable at x [2].

Step 3: We claim that u′ is continuous on (R \ {0}). Let xm −→ x and

pm = u′(xm) −→ p. Then we have by convexity u(y) ≥ u(x) + p(y −

x), for all y. Hence we see that p ∈ D−u(x), where

D−u(x) = {p ∈ R : lim inf
y→x

{u(y) − u(x) − p(y − x)}/|y − x| ≥ 0}.

Since δu(x) = D−u(x) and δu(x) is a singleton, we deduce p = u′(x) [[2],

prop.4.7,p.66]. Step 4: We set w = u′. Since

−βw(xm) +
1

2
σ2xm

2w′(xm) + Axmw(xm) −
(w(xm))2

4
+ h(xm) = 0,

where xm ∈ D, the sequence {w′(xm)} converges uniquely as xm −→ x ∈

R \D ∪ {0}, and w is Lipschitz near x by monotonicity. Hence, we have

a well-known result in nonsmooth analysis that δw(x) coincides with the

convex hull of the set

D∗w(x) =

{

q ∈ R : q = lim
m→∞

w′(xm), xm ∈ D → x

}

.

Then

−βu(x) +
1

2
σ2x2q + Axw(x) −

(w′(x))2

4
+ h(x) = 0 ∀q ∈ δw(x).

Hence we observe that δw(x) is a singleton, and then w(x) is differentiable

at x. The continuity of w′(x) follows immediately. Thus we conclude that

w ∈ C1(R \ {0}) and (R \ D ∪ {0}) is empty. The proof is complete.

Theorem 3.3. We assume (3), (4), (7) and (11). Further we assume

that

h(x)/x2 → ĥ ∈ R+ as x → 0. (25)

Then we have

u ∈ C1(R) ∩ C2(R \ {0}). (26)

In addition, if ĥ = 0, then

u ∈ C2(R). (27)

Proof. We first observe that vL is a viscosity solution of the boundary

value problem:

V ′′ + G(x, V, V ′) = 0 in (a, b) (28)

V (a) = vL(a), V (b) = vL(b),
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for any interval [a, b] ⊂ R \ {0} where

G(x, V, V ′) = 2{−αV + AxV ′ + min
|r|≤L

(|r|2 + rV ′) + h(x)}/σ2x2 = 0.

Standard elliptic regularity theory Fleming and Soner [[6], Thm. 4.1] and

the uniqueness of viscosity solutions Crandall, Ishii and Lions [4] yield

that vL is smooth in (a, b). Thus

| min
|r|≤L

(|r|2 + rvL
′)| ≤ |min

r∈R

(|r|2 + rvL
′)| = (|vL

′|/2)2

≤ {(|vL
′|/2)2 + 1}.

By the Theorem 3.2, we have u ∈ C2(R \ {0}).

To prove (26), it suffices to show that u has the following property:

u′(x) = o(1) as x → 0. (29)

By (25), there exists λ > 0, for any ε > 0 such that h(x) ≤ (ĥ +

ε)x2 for |x| < λ, and hence, by (4)

h(x) ≤ (ĥ + ε)x2 + C(1/λn + 1)|x|n, ∀x ∈ R. (30)

Note that u(x) ≤ E[
∫ ∞

0
e−βth(x0

t )dt]. Then we have by (13)

u′(x) = 0(x2) as x → 0. (31)

Now, by convexity

u(y) ≥ u(x) + u′(x)(y − x), x 6= 0.

Substituting y = 2x, and y = 0 we get u(2x) ≥ u(x) + u′(x)x and

u(x) − u′(x)x ≤ u(0) = 0 by (31). Hence

u(2x)

x2
≥

u′(x)

x
≥

u(x)

x2
, (32)

which implies (29).

Finally, suppose ĥ = 0. Then, by virtue of (30), we have u(x) = o(x2)

as x → 0. Moreover, by (32), u′(x) = o(x) as x → 0. Dividing (5) by x2

and passing to the limit, we get u′′(0) = 0, which implies (27).

4. An application to quadratic control theory

We shall study the quadratic control problem (1) over the class Aad of

admissible controls, subject to (2), where

Aad = {c = (ct) ∈ A : limT→∞ E[e−βT |xT |
n] = 0 for the response xt to

ct}. We consider the stochastic differential equation

dx∗
t = [Ax∗

t − u′(x∗
t )/2]dt + σx∗

t dwt, x∗
0 = x. (33)
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Theorem 4.1. We assume (3), (4), (7), (11) and (25). Then the

optimal control c∗t is given by

c∗t = −u′(x∗
t )/2. (34)

Proof. Since u′ is continuous, (33) admits a weak solution x∗
t up to

explosion time σ = inf{t : |x∗
t | = ∞}. Taking into account xu′(x) ≥ 0,

we can show (x∗
t )

2 ≤ (x0
t )

2 by the comparison theorem. Hence σ = ∞.

By the monotonicity of u′(x), the uniqueness of (33) holds. Thus we

conclude that (33) has a unique strong solution (x∗
t ).

It follows from (14) that

E[e−βT (1 + |x∗
T |

n)] ≤ e−(β−β0)T E[e−β0T fn(x0
T )] −→ 0 as T → ∞,

where x0
t is a unique solution of (18). So (c∗t ) ∈ Aad. Since u satisfies

(4), we see by (32) and (13) that

E[

∫ T

0

e−2βt(x∗
t u

′(x∗
t ))

2dt] ≤ E[

∫ T

0

e−2βtu(2x∗
t )

2dt]

≤ CE[

∫ T

0

e−2βt(1 + |x∗
t |

2n)dt]

≤ CE[

∫ T

0

e−2βtf2n(x0
t )dt] < ∞,

and hence
∫ t

0
e−βsσx∗

su
′(x∗

s)dws is a martingale. Then we apply Ito’s

formula for convex functions [7,p.219] to obtain

E[e−βT u(x∗
T )]

= u(x) + E

[
∫ T

0

e−βt

(

− βu + Axu′ + c∗t u
′ +

1

2
σ2x2u′′

)

|x=x∗

t
dt

]

= u(x) − E[

∫ T

0

e−βt{h(x∗
t ) + |c∗t |

2}dt].

Passing to the limit, we have J(c∗) = u(x). By the same calculation as

above , we can see that

E[e−βT∧τnu(xT∧τn
)] ≥ u(x) − E[

∫ T∧τn

0

e−βt{h(xt) + |ct|
2}dt],

where {τn} is a sequence of localizing stopping times for the local mar-

tingale. Letting τn −→ ∞ and then T −→ ∞, we obtain u(x) ≤ J(c) for

all c ∈ Aad. The proof is complete.

General stochastic control problem: we can further study a sto-

chastic control problem for linear degenerate systems to minimize the
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discounted expected cost:

J(c) = E[

∫ ∞

0

e−βt{h(xt) + |ct|
n}dt]

over c ∈ A subject to the degenerate stochastic differential equation (2)

and a continuous function f on R such that (4) and (7), in addition

k0|x|
n − k1 ≤ h(x)

for some constants k0, k1 > 0 and for a fixed integer n ≥ 2.
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