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ON THE EXISTENCE OF MEANS ON SOLENOIDS

(submitted by V. Lychagin)

Abstract. A mean on a topological space is a continuous idempotent

and symmetric operation on it. A proof of a criterion for the existence

of means on solenoids is given.

An n-mean, n ≥ 2, on a topological space X is a continuous map-

ping µ from the Cartesian product of n copies of X into X such that

µ(x, x, . . . , x) = x and µ(x1, x2, . . . , xn) = µ(xσ(1), xσ(2), . . . , xσ(n)) for all

x, x1, x2, . . . , xn ∈ X and any permutation σ of the set {1, 2, . . . , n}.
There is a large literature concerning the problem on the existence of

means on topological spaces (see, e.g., [1]—[5] and the references cited

there). G. Aumann [2] showed that the circle does not admit an n-

mean for any n. J. Keesling [4] gave necessary and sufficient conditions

for the existence of n-means on compact connected Abelian topological

groups. In particular, a compact connected Abelian group G admits

an n-mean if and only if the one-dimensional Čech cohomology group

H1(G,Z) with the integers Z as the coefficient group, or equivalently

the Pontryagin dual of G, is n-divisible (see [4, Theorem 1.1]). We recall

that an additive Abelian group H is said to be n-divisible provided that,

for each element h ∈ H, there exists an element g ∈ H such that h = ng.

Let N = (n1, n2, . . .) be a sequence of integers that are greater than 1.

The solenoid ΣN is defined as the inverse limit of the inverse sequence
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{

Xk, f
k+1
k ,N

}

, where N is the set of all positive integers and for each

k ∈ N the factor space Xk is the unit circle S1 in the complex

plane and the bonding mapping f k+1
k is the nk-fold covering mapping

S1 −→ S1 : z 7→ znk . The solenoid is a compact connected Abelian group

under the coordinatewise multiplication with the identity e = (1, 1, . . .).

In case N = ( 2, 2, . . .) the solenoid ΣN is said to be dyadic.

The exponential covering mapping from the reals R onto S1 induces

a one-to-one continuous homomorphism θ : R → ⊀N defined by

θ(α) = (exp(i2πα), exp(i
2πα

n1

), exp(i
2πα

n1n2

), . . .), α ∈ R, i2 = −1,

which is not a topological embedding. The image of the homomorphism

θ is the arc component of ΣN containing the identity e (see [6, § 5]).

The Pontryagin dual of ΣN is isomorphic (see [7, (25.3)]) to the dis-

crete additive group of rationals QN generated by the set
{

1

n1
,

1

n1n2
, · · · , 1

n1n2 . . . nk

, · · · | k ∈ N

}

.

It is easy to see that the group QN is n-divisible if and only if each prime

factor of n divides infinitely many terms of the sequence N .

Thus, by the above-mentioned facts, one has the criterion for the exis-

tence of n-means on solenoids:

Theorem 1. The solenoid ΣN admits an n-mean if and only if each

prime factor of n divides infinitely many terms of the sequence N .

A simple proof of Theorem 1 for 2-means was given by P. Krupski in

[5]. It is based on a method of B. Eckmann [3] and the following theorem

of W. Scheffer ([8, Corollary 2]).

Theorem 2. Let G be a compact connected topological group, and H

be a locally compact Abelian topological group. Then every continuous

mapping from G into H that preserves the unit element is homotopic to

exactly one continuous homomorphism from G into H, and the homotopy

can be chosen to preserve the identity.

In this note a similar proof of Theorem 1 is given for arbitrary n-means.

Proof of Theorem 1. Necessity. Suppose that the solenoid ΣN admits

an n-mean and p ≥ 2 is a prime factor of the integer n. It follows im-

mediately from the definition of an n-mean that the solenoid ΣN admits

a p-mean as well. We denote by µ a p-mean on ΣN .

According to Theorem 2, there exists a continuous homomorphism

φ : ΣN × ΣN × . . .× ΣN → ΣN ,
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which is homotopic to µ.

Choose any g ∈ ΣN . The points g and φ(g, g, . . . , g) lie in the same

arc component Γ of ΣN . It follows then from the equality

φ(g, g, . . . , g) = φ(g, e, . . . , e)φ(e, g, e, . . . , e)φ(e, . . . , e, g)

that (µ(g, e, . . . , e))p ∈ Γ. Consequently, we have φ(gp, e, . . . , e) ∈ Γ.

This implies that µ(gp, e, . . . , e) ∈ Γ. In other words, for each g ∈ ΣN ,

both points g and µ(gp, e, . . . , e) are contained in the same arc component

of the space ΣN .

To obtain a contradiction we suppose now that there exists an integer

k ∈ N such that nj is not a multiple of p for each j ≥ k. Since ΣN

and Σ(nk,nk+1,...) are homeomorphic we can assume that for every j ∈ N

the prime p is not a divisor of the integer nj.

Now we shall construct an element g ∈ ΣN such that gp = e (cf. [9,

the proof of Proposition 4]). Let p
√

1 denote the multiplicative cyclic

group of all values of the p-th root of 1 generated by ξ = exp(i 2π
p

).

For each term nj of the sequence N we consider the homomorphism

ψnj
: p
√

1 → p
√

1 defined by ψnj
(z) = znj , z ∈ p

√
1. Since the integers p

and nj are relatively prime the mapping ψnj
is a bijection. Denote by

φnj
: p
√

1 → p
√

1 the inverse of ψnj
. We have (φnj

(z))nj = z for each

z ∈ p
√

1. So that the sequence

g = (ξ, φn1
(ξ), φn2

◦ φn1
(ξ), . . .)

is an element of ΣN and gp = e. Therefore we get µ(gp, e, . . . , e) ∈ θ(R).

On the other hand, it is obvious that the point g does not lie in θ(R)

(see also Remark below). Thus the points g and µ(gp, e, . . . , e) belong to

distinct arc components of the space ΣN . This contradicts the observa-

tion made above.

Sufficiency. If each prime factor of an integer n divides infinitely many

terms of the sequence N , then one can readily show that the solenoid ΣN

is homeomorphic to ΣM , where M = (m1, m2, . . .) with mj = nkj, kj ∈ N,

for all j ∈ N. It is straightforward to check that the mapping

µ : ΣM × ΣM × . . .× ΣM → ΣM

determined by the formula

µ((z11, z12, . . .), (z21, z22, . . .), . . . , (zn1, zn2, . . .)) =

= ((z12z22 . . . zn2)
k1 , (z13z23 . . . zn3)

k2, . . .)

is an n-mean on the solenoid ΣM . This completes the proof of Theorem 1.
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Remark. It is interesting to note that any non-trivial continuous self-

homomorphism of the solenoid ΣN bijectively maps arc components onto

arc components (see [10, Proposition 3]).

It is known that the problem on the existence of n-means on compact

connected Abelian groups is closely related to the question of existence

or nonexistence of finite-sheeted connected coverings (see, e.g., [11]). By

a connected covering of a topological group we mean a covering mapping

from a connected Hausdorff topological space onto a group. Using Theo-

rem 1 and the conditions for the existence and nonexistence of finite-

sheeted connected coverings of solenoids (see, e.g., [9, Theorem 2]), one

can easily obtain the following theorem.

Theorem 3. The solenoid ΣN admits an n-mean if and only if for

each prime factor p of n there is no p-fold connected covering of ΣN .
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