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ABSTRACT. We consider a transformation of a normalized measure
space such that the image of any point is a finite set. We call such a
transformation an m-transformation. In this case the orbit of any point
looks like a tree. In the study of m-transformations we are interested
in the properties of the trees. An m-transformation generates a sto-
chastic kernel and a new measure. Using these objects, we introduce
analogies of some main concept of ergodic theory: ergodicity, Koop-
man and Frobenius-Perron operators etc. We prove ergodic theorems
and consider examples. We also indicate possible applications to fractal
geometry and give a generalization of our construction.

1. MAIN DEFINITIONS AND EXAMPLES

Throughout the paper (X, B, 11) denotes a normalized measure space.
Let m be a positive integer.

Definition 1. We call a multivalued transformation S : X — X an m-
transformation if 1 < |S(x)| < m for any x € X, where |A| is just a
number of elements in A.
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Let
Spd(B) ={z € X :|S(x)] = k,[S(x) N B| =1},
where B C X and k,l € N. Note that sets Sk_ll (B) are pairwise disjoint
for the fixed B.

Definition 2. The m-transformation S : X — X is measurable if
Sk_ll(B) € B for all B € B and k,l € N.

Let K : X x B— RT be the function
1
K(z,B) = ——
S ()] 2

XB(@/) .
y€S(w)

For each x € X, K(z,-) : B— R is a normalized measure and for each
B € B, K(-,B) : X — R" is measurable by the Definition 2. Therefore
K is a stochastic kernel that describes the m-transformation S. We
will use K as a tool for proving some results. Fore a more complete study
of stochastic kernels the reader is referred to [5].

For any measurable m-transformation S we define a new measure Sy
on (X, B, 1)

Su(B) = [ K(e.B) du=>" 3" 1 n(ScH ()

Definition 3. We say the measurable m-transformation S : X — X
preserves measure j or that p is S-invariant iof Sy = p.

Definition 4. Let the m-transformation S : X — X preserve measure
w. The quadruple (X, B, u, S) is called an m-dynamical system.

The next proposition gives a number of examples of m-dynamical sys-
tems.

Proposition 1. Let {S;}¥ be a finite collection of the u-preserving m;-
transformations of (X, B, u) and let S(z) = Ule Si(x) be measurable.
Let K, K; be the stochastic kernels that generates S, S;, respectively. If
for any B € B

k
1
for almost all x € X, then S is p-preserving.

» For any measurable B we have

su(B) = [ K(.B) du=1 Y [ Pe.B) dn = u(B). <
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In the following examples A denotes the Lebesgue measure on [0, 1].
Example 1. Let S : [0,1] — [0, 1] be defined by S(x) = {x,1—a}. Then
S is \-preserving.

Example 2. Let S : [0,1] — [0,1] be defined by

[ {2z,1 -2z}, z€]0,3]
S(””)_{ (20 -1}, we (i1

Then S is A-preserving.

The following example show that not every A-preserving m-transformation
is union of A-preserving transformations.

Example 3. Let S : [0,1] — [0,1] be defined by

{%x} , x € |0, %)
S(z) = {%x, %x — %} , T € [%, %]

{%JI—%}, xE(%al]
Then S is A-preserving, but S can not be represented as union of A-
preserving transformations.

» Assume S(z) = UF_,S;(z), where S; are the A\-preserving transfor-
mations. Then there are a measurable set B C [%, %] of positive measure
and transformation S; (for instance Si), such that S;(B) C [0,1]. We
have

_ 1 3

ASTH(S1(B))) = MBU (B = 3)) = 2M(B) and A(S1(B)) = 5A(B) .

Since S is the A-preserving transformation, A(S1(B)) = A\(B) =0. <«

Example 4. Let S : [0,1] — [0,1] be defined by
{22,1 —2z,2} , z€]0,3]
S(x) =
{2z - 1,2}, =ze(31].

Then S isn’t A-preserving.

» For instance,
1 2 1 1,13 11 1
SA([0, Q]) = g)\([(), Q]) + 5)\([57 ZD =5 # A([0, 5]) ~
Nevertheless, we can represent S as the union of the \-preserving trans-
formations S;(z) = x and Sy from Example 2. Of course, (1) does not
hold true. «
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Let S7Y(B) = {z € X : S(x) N B # 0} denote the full preimage of B.

Definition 5. A measurable m-transformation S : X — X 1is said to be
nonsingular if for any B € B such that u(B) = 0, we have u(S™Y(B)) =
0, i.e., Sp < p.

2. RECURRENCE AND ERGODIC THEOREMS

Let S : X — X be an m-transformation. The n-th iterate of S
is denoted by S™. The tree at xy € X is the set {x € X : z €
S™(xo) for some n > 0}. Any sequence g, 1, T, ... with 2,41 € S(z,)
for all n > 0 is called the orbit of z,.

In the study of m-dynamical systems, we are interested in properties of
the trees. For example, in the recurrence of trees of 5, i.e., the property
that if the tree in x starts in a specified set, some orbits of x return to
that set infinitely many times.

Proposition 2. Let S be a nonsingular m-transformation on (X, B, 1)
and let p(A) < p(S~H(A)) for any A € B. If u(B) > 0, then for almost
all x € B there is an orbit of x that returns infinitely often to B.

» Let B be a measurable set with p(B) > 0, and let us define the
set A of points that never return to B, i.e., A={x € B:S"(z)NB =
() for allm > 1} = B\ U2, S7™(B). Consider a collection of sets

A= AUST(A), A= AUS (A y), i>2.
It is clear that AN S™1(A;_;) = (). Hence
u(Ai) = p(A) + p(S7H (A1) = p(A) + p(Aia) > > (i + Dp(A)

Therefore, 1(A) = 0. Since p is nonsingular, p(S~"(A)) = 0 for any n >
0. This gives u(B\U, S™™(A)) = u(B), and for any = € B\ |J,, S7"(A)
there exists an orbit of x that returns infinitely often to B. <

If S is measure preserving, then we have an analogue of Poincare’s
Recurrence Theorem.

Corollary 1. Let S be a measure-preserving m-transformation on (X, B, j1).
If w(B) > 0, then for almost all x € B there is an orbit of x that returns
infinitely often to B.

» Note that S < p and for any measurable A

plA) = Su(A) = 325" 1 (S} (A4) < (57 (A)) .
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Example 1 shows there are orbits that do not return to B. If B = |0, %),
then for any x € B the orbit {z,1 —z,1 — x,...} does not return to B.
For any nonsingular m-transformation S and function f on X we define

a new function U f on X by the equality

U () = / f K (z, ) 15%,5” S ).

X yeS(z)

Proposition 3. If S is a nonsingular m-transformation and f is a real-
valued measurable function on X, then

){/deuz)(/deu,

in the sense that if one of these integrals exists then so does the other
integral and the two integrals are equal.

» We first show that Uf is measurable. Given any a € R consider

an increasing sequence of rational numbers oy < ... < ay, where £ < m
and Y% a; < ka. Then the set

Boq ----- o — S_l(f_l(_oo7 al])mS_l(f_l(ab a2])ﬂ' . 'mS_l(f_l(O‘k’—lﬁ ak])

is measurable. Taking the union of B,, ., for all possible k& < m and

aq, ..., o, we conclude that the set {z : (Uf)(z) < a} is measurable.
When f = xp is the characteristic function of B € B,

/XB dSp = Su(B)

X
and
/UXB duz/ /XB dK(x,) | du
X X X

:/K(.CE,B) dp = Su(B) . (2)

Since U is a linear operator, the formula is also true for simple functions.
If f is a nonnegative measurable function, then f is the Spu-pointwise limit
of an increasing sequence of simple functions f;, and the result follows
from the fact that U f is the p-pointwise limit of the increasing sequence
of functions U f; and the monotone convergence theorem. Finally, any
measurable function f can be written as the difference f = f* — f~ of
two nonnegative measurable functions, so the formula is true in general. <
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Corollary 2. Let S : X — X be a measurable m-transformation on
(X, B, ). Then S is p-preserving if and only if

X/fdMZX/deu

» This follows from the Proposition above and from (2). <

for any f € L.

Proposition 4. Let S : X — X be a p-preserving m-transformation on
(X, B, ). Then the positive linear operator U is a contraction on LP for
any 1 < p < 0.

» [t is easily seen that U is a contraction on £%*°. By the Jensen

inequality |Uf|P < U|f|P for any p > 1 and f € LP (see [5], Chapter 1,
Lemma 7.4 for a more general statement). Then

sl = [10se aus [UlP an= [1o7au=s; .
X X X

For a function f on X and an m-transformation S : X — X, we define
the averages

1n—l
An(f):EZU’“f, n=12....
k=0

From the Birkhoff Ergodic Theorem for Markov operators (see [4] for
the details) and from the Proposition above we get the following theorem.

Theorem 1. Suppose S : (X, B, u) — (X, B, u) is a measure preserving
m-transformation and f € L'. Then there exists a function f* € L' such
that

An(f) = [ —ae.
Furthermore, U f* = f* p-a.e. and [, f* dp= [y f dp.
Corollary 3. Let 1 < p < oo and let S be a measure preserving m-

transformation on (X, B,u). If f € LP, then there exists f* € LP such
that U f* = f* p-a.e. and ||f* — A,(f)|l, — 0 as n — oo.

» Let us fix 1 < p < oo and f € LP. Since [|A,(f)]l, < ||fllp, we have
by Fatou’s lemma,

[1570 au < timint [ 14,007 au< [ 157 de.
X X X

Hence, the operator L : LP — LP defined by L(f) = f* is a contraction
on L£P. By Theorem 1 ||f* — A, (f)|[, — 0 as n — oo for any bounded
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function f € LP. Let f € LP be a function, not necessarily bounded. For
any € > 0 we can find a bounded function fp € £ such that || f— fz]], <
. Then, since L is a contraction on LP, we have

17" = An(Dllp < 1f5 = An(FB)llp + 1An(f = FB)llp + 1(f = T5)7[lp -

which can be made arbitrarily small. «

3. ERGODICITY

Assume U f = f for some measurable function f. It is very important
to know condition on S under which f is constant.

Definition 6. We call a nonsingular m-transformation S ergodic if
for any B € B, such that B\S™'(B) = B\S™'(B¢) =0, u(B) =0 or
u(B) = 0.

It is obvious that if S is the union of u-preserving m-transformations
(see Proposition 1) one of which is not ergodic, then S is not ergodic.

Theorem 2. The following three statements are equivalent for any non-
singular m-transformation S : X — X.
(1) S is ergodic
(2) for any B € B, such that u(B\S™(B)) = u(B\S™YB°)) = 0,
w(B) =10 or u(B°) =0.
(3) for any disjoint sets By, By € B, such that u(B;\S™'(B;)) =
p(B\S™(By)) = 0, u(B1) = 0 or p(B>) = 0.

» It is evident that (3)=(1).

(1)=-(2) Suppose S is ergodic and B € B, such that u(B\S *(B)) =
u(BAN\S™HB)) = 0. Let Ay = (BN S™YB)) U (BN\SHBY)), A; =
A 1N SH A ) fori > 2, and A = N2, A;. We have A; D Ay D ...
and
A \A; CSTHAL\A ) C ... C ST (AN\Ay) € STHYB\STY(B)) .
Therefore, p(AAB) = 0. Let x € A, then there is at least one point in
S(x) that belongs to infinite many of A;. This gives A C S~(A).

Let Cy = A¢, C;=C;y NS HCi_y) fori > 2, and C = NX,C;. We
have C7 D Cy D ... and

Cia\Ci C ... CSTF(CN\Cy) € STHBAS™H(B)) US™(B\A) .

Therefore, u(CAB®) = 0. Let x € C, then there is at least one point
in S(z) that belongs to infinite many of C;. This gives C C S~(C).
Moreover,

Cc=AUC\C C SHA)USHC\C)US~H(A) = S~ .
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We conclude from the ergodicity of S that p(B¢) = u(C) =0 or u(B) =
u(Ce) = 0.

(2)=(3) Suppose (2) holds true and let By, By € B be the disjoint sets,
such that M(Bl\S_I(Bl)) = /L(BQ\S_l(BQ» = 0. Let Cl = Bf, Cz =
Cz'_l N S_I(Ci_l) for ¢ > 2, and C = ﬂfilCi. We have Cl D) CQ DI
and p(Bx\C;) = 0. Therefore pu(C) > u(Bsy). Let x € C, then there is
at least one point in S(x) that belongs to infinite many of C;. This gives
C c S7HC). Moreover u(C\S7(C¢)) = 0 and u(C°) > u(B;). By
assumption u(C) =0 or u(C¢) = 0. This finishes the proof. «

Example 5. We will prove the ergodicity of
{22,1 -2z}, z€]0,4]
S(x) =
{22 -1}, =ze(3,1].

» Let
B C S7Y(B) and B°C S7'(B") . (3)

Set Ay = {x : {z,1 —z} C B}, A4y = {z : {z,1 — 2} C B°} and
Az = (A1 U Ay

Let z € A;. By (3)

1+x 2—x 11—z T

5 €eB, 5 eB, 5 63,563.
Therefore S71(A;) C A;, where S is the well known ergodic single-
valued transformation S(z) = 2x (mod 1), z € [0,1]. By ergodicity
of S, A(4;) = 0 or A(A;) = 1. Similarly, A(4y) = 0 or A(A,) = 1.

Since A(A;) =1 leads to A(B¢) = 0 and A(A2) = 1 leads to A(B) =0,
we need only consider

AAz)=1. (4)
Let z € B. By (3) and (4)
1+ 2—x

1—
5 € B, TEBCa.s., TxEBCa.s., ;eBa.s.

Therefore A\(S71(B)\B). By ergodicity of S, A\(B) =0 or A(B) = 1. «
Example 6. The 2-transformation S : [0,1] — [0, 1]
{32}, z €[0,3)

S(z) = {%%%x—%}) = [l 2]

{%x_%}> x€(§>1]‘

15 not ergodic.
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» For instance, [0,1) € S7Y([0,3)) and [3,1] € S7!([3,1]) . «
Proposition 5. Let S be ergodic. If f is measurable and (U f)(z) = f(z)
a.e., then f is constant a.e.

» Foreachr e R, E, ={z € X : (Uf)(z) = f(x) > r} is measurable.
Then B, C S7Y(E,) and E¢ C S™!(E¢), hence E, has measure 0 or 1. But
if f is not constant a.e., there exists an r € R such that 0 < u(E,) < 1.
Therefore f must be constant a.e. «

Corollary 4. If a measure preserving m-transformation S is ergodic and
f € L', then the limit of the averages f* = [, f du is constant a.e. Thus,
if w(B) > 0, then for almost all x € X there is a orbit of x that returns
infinitely often to B.

» We conclude from Theorem 1 and from Proposition 5, that f* =
/ + f dp. To prove the second statement we consider f = xp and apply
Corollary 1. <«

Corollary 5. Let measure preserving m-transformation S be ergodic and
w(SHH(X)) < 1, i.e., the set {w € X : |S(x)| > 2} has positive measure.
If u(B) > 0, then for almost all x € X there are uncountable many orbits
of x that return infinitely often to B.

» We just apply the Corollary above to the sets B and S;;'(X)°. <«

Corollary 6. Let S be a measure preserving ergodic m-transformation
and f € L' such that f(z) > f(y)(f(z) < f(y)), for anyy € S(x). Then

f is constant a.e.
» We have Uf < f, hence the limit of averages f* < f. By Corollary
4 f = f*is constant a.e. <«

4. THE FROBENIUS-PERRON OPERATOR

Assume that a nonsingular m-transformation S : X — X on a nor-
malized measure space is given. We define an operator P : £ — L! in

two steps.
1. Let f € £ and f > 0. Write

v(B) = /f(a:)K(:E,B) dp .

Then, by the Radon-Nikodym Theorem, there exists a unique element in
L', which we denoted by Pf, such that

I/(B):/Pfdu.

B
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2. Now let f € L£! be arbitrary, not necessarily nonnegative. Write
f=/f"—f and define Pf = Pf* — Pf~. From this definition we have

[Pran= [ r@k@B d- [ @K@B) du

or, more completely,

[ Pran= [ r)KB) au. (5)
B X

Definition 7. If S : X — X is a nonsingular m-transformation the
unique operator P : L' — L' defined by equation (5) is called the
Frobenius-Perron operator corresponding to S.

It is straightforward to show that P is a positive linear operator and

/Pfdu:/fd,u.

X X

Proposition 6. If f € L' and g € L™, then (Pf,g) = (f,Ug), i.e.,

/(Pf)-gduz/f-(Ug)du. (6)

X

» Let B be a measurable subset of X and g = xp. Then the left hand
side of (6) is

[ Prau= [ @5 4

B
and the right hand side is

[ an=[5-( [xoartn | an = [ soxem a

Hence (6) is verified for characteristic functions. Since the linear com-
binations of characteristic functions are dense in £*, (6) holds for all
feltand g€ L. <

The following proposition says that a density f, is a fixed point of
P if and only if it is a density of an S-invariant measure v, absolutely
continuous with respect to a measure p.

Proposition 7. Let S : X — X be nonsingular and let f, € L be a
density function on (X,B,u). Then Pf, = f. a.e., if and only if the
measure v = f, - 1, defined by v(B) = [, f« dp, is S-invariant.
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» Let B C X be measurable. Then

On the other hand
I/(B):/f*d,u. <
B

Proposition 8. Let S : X — X be a nonsingular m-transformation and
P the associated Frobenius-Perron operator. Assume that an f >0, f €
LY is given. Then

supp f C S~ *(supp Pf) a.s.

» By the definition of the Frobenius-Perron operator, we have P f(x) =
0 a.e. on B implies that f(x) = 0 for a.a. z € S7'(B). Now setting
B = (supp f)¢, we have Pf(x) = 0 for a.a. = € B and, consequently,
f(z) =0 for a.a. x € S~Y(B), which means that supp f C (S~(B))".
Since (S71(B))¢ € S7!(B°) a.s., this completes the proof. «

Proposition 9. Let S : X — X be a nonsingular m-transformation and
P the associated Frobenius-Perron operator. If S is ergodic, then there
s at most one stationary density f. of P.

» Assume that S is ergodic and that f; and fy are different stationary
densities of P. Set g = f; — fo, so that Pg = ¢g. Since P is a Markov
operator, gt and ¢~ are both stationary densities of P. By assumption,
f1 and fy are not only different but are also densities we have g™ # 0
and g~ # 0. Set

B, =suppg® and B, =suppg .

It is evident that B; and B, are disjoint sets and both have positive
measure. By Proposition 8, we have

By C S7Y(By) as. and B, C S !(B,) as.

But, from Theorem 2 it follows that p(By) =0 or pu(By) = 0. <«

5. APPLICATIONS AND GENERALIZATION

We now apply the method of m-transformation to the intersection of
two middle-3 Cantor sets (see [8] and the references given there).
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Let a € [3,2] and ¢y(z) = ax, ¢1(z) = az + 1 — « be contracting
similarity maps on I = [0, 1] endowed with Lebesgue measure A. There

is a unique compact set C', C I which satisfies the set equation

Co = U1 (Cq) Uthe(Cly) .

It is easily checked that C,, is the middle-3 Cantor set for § = 1—2a. Let
x € [ and f(x) = dimy(C, N (C, + x)) denotes the Hausdorff dimension
of the set C,,N(Cy+x). Let Byj = ¢;(Cy) N;(Coy+ 1), 1,5 = 1,2. From
the construction of C,, it follows that By = (),

f(Z), 0sz<a

dimH311 == dimH322 ==

0, a<zr<l

and
0, 0<zr<l1-2«
dimgBy; =< f(-2+1-1), 1-2a<z<l-a
fE=141), 1-a<z<l1.

Since Ca N (Ca + l’) = BH U Bgl U BQQ, we have
f(z) = max{dimp B;; : i, j = 1,2} = max{f(y) : y € S(x)} , (7)

where
( {z1, 0<z<1-2a

«

22411}, 1-2a<z<a

o

S(x) =
{-24+1-1}, a<z<l-a
\ g—é—l—l}, l—-a<z<1
(compare with Examples 2 and 5 under a = ).

Using Leibniz’s rule, we find the Frobenius-Perron operator corre-
sponding to S:

aoffl—a+ax)+ fl—a—az)+ flaz)), 0<z << -2
(Pf)x)=
olfl—a+ar)+3f(l—a—ax)+3f(ax), - —2 <z <1

Assume there exist a stable point f, of P. Then by Proposition 7 the
measure p = f, - A is S-invariant. If in addition S : (I, B, n) — (I, B, u)
is ergodic, then by (7) and Corollary 6 f is constant p-a.e. The same
method works in case of the intersection of two arbitrary self-similar sets.
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Using m-transformations, we can develop a new approach to the self-
similar sets with overlaps (see [2], [7]). Let 1,...,%,, be contracting
similarity maps on R™, and let X = U 9;(X) be an attractor of the
iterated function system. Given normalized measure g on X we consider
m-transformation of X

s@= U v
{i:wedi(X)}
Assume, using the Frobenius-Perron operator corresponding S, we have
found S-invariant ergodic measure on X. This measure gives us an inter-
esting information about X. For instance, if the conditions of Corollary
5 hold true, we see that a.a. points of X have uncountable many of
addresses (see [3] for details).

From these examples we see that the main problem of the investigation
is to find an S-invariant ergodic measure. To decide this problem we
propose a following generalization of an m-transformation.

Given m-transformation S on a normalized measure space (X, B, i)
we consider a collection of pairs {S;, a;}7,, where S; : X — X are the
single-valued measurable transformations such that S(z) = U™, S;(x) for
any x € X, and «; : X — [0, 1] are the measurable functions such that
Yo ai(x) =1 for any x € X. Let us consider the stochastic kernel

K(z,B) = Z ai(z)xB(Si(x))
i=1
and a new measure on X

Su(B) = / K(z. B) dp

If we choose S; and «; such that Sp = u, we can employ the results of
this paper to the measure preserving transformation S.
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