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Abstract. This text investigates homogeneous systems of linear

ODEs with smooth coefficients. Associating to an equation a differen-

tial module proves that these equations form a monoidal category with

respect to the tensor product of modules, and objects in this category

include homomorphisms, symmetric and exterior powers as well as dual

equations. Viewing symmetries as endomorphisms of the D-modules en-

ables direct application of results from the theory of representations of

Lie algebras. In particular we find decomposition and solution meth-

ods of equations with semisimple symmetry algebras, as well as solvable

symmetry algebras. Sufficient conditions for equations to be solved by

algebraic manipulations and quadrature are given, and unlike most pre-

vious results, there is no requirement on the symmetry algebras of having

dimension equal to the order of the equations, in some cases even a single

symmetry is sufficient to solve an equation.

1. Introduction

This text is devoted to the study of linear ordinary differential equa-

tions. Main results are found in Sections 9 and 10, where we obtain meth-

ods to decompose and solve equations with both solvable and semisimple
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Lie algebras of symmetries. We prove that for a number of such equa-

tions one can obtain solutions through combining algebraic methods and

quadrature. Also, there are no requirements on the dimension of a sym-

metry algebra of an equation being equal to the order of the equation, the

ability to solve the problem rather depends on eigenvalues and weights of

the representation of the symmetry algebra into the relevant module of

endomorphisms. Given the right conditions it may even be sufficient with

a single symmetry to solve an equation through eigenvalue decomposition

and quadrature.

The starting point is to connect to systems of linear ODEs algebraic

objects, differential modules, or D-modules. The equations considered

have coefficients in the differential R-algebra A = C∞(R), with derivation

being the usual derivative in the variable x, δA = d
dx

.

The notion of a differential module appears in differential algebra, see

e.g. [14, 15], but differential Galois theory and Picard-Vessiot theory

deals with modules over differential fields, and mainly the study of dif-

ferential field extensions by solutions of ODEs. That approach may be

used to state whether solutions are algebraic with respect to the base

field, study solvability of the extensions and address inverse problems in

differential Galois theory etc. The approach in this text has geometrical

roots, dating back to Sophus Lie, and points in a different direction with

respect to applications.

The correspondence

System of linear ODEs ⇔ D-module (E, δ) over (A, δA),

is given by the isomorphism of vector spaces

Solution space of the ODE ⇔ ker δ ⊂ E.

A straightforward explanation of this correspondence can be found in

Section 2, based purely on the definition of D-modules.

Sophus Lie initiated a geometric approach to differential equations,

where one uses symmetries of equations to study their properties and

to reduce and solve them. Viewing ODEs as submanifolds of an appro-

priate jet space provides a geometrical framework widely used to study

geometric properties and symmetries of equations. From this framework

D-modules emerge in the following way. A linear ODE is a linear sub-

bundle in jet space, with a linear connection determined by the Cartan

distribution. The D-module corresponding to an equation can be identi-

fied with the A-module of sections in the linear bundle, with derivation

determined by the lifting of d
dx

by the linear connection. This relation is

accounted for in Section 6. D-modules form a monoidal category, and
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Section 3 describes this category and algebraic constructions within the

category. That forms the basic algebraic framework used to produce the

results of this text, with the key result being Theorem 3.3. It is the

main tool allowing us to lift properties and results which apply to the

vector space ker δ to the whole module E. Section 4 provides proce-

dures to describe a D-module of a given equation, particularly in terms

of so called primitive element bases.

In Section 5 a third view on D-modules is introduced, through linear

differential operators. From a practical viewpoint this is an important

addition to the theory, giving a generic way to calculate with classes of

operators being the elements in the D-modules.

In Section 7 we investigate equations with Euclidean, symplectic,

complex and Hermitian structures. For second order equations we de-

termine classes of equations with such structures. Also, we encounter

D-modules with S2-representations produced by solutions of the Yang -

Baxter equation.

Section 8 contains results on symmetries of equations in general. Due

to Theorem 3.3 we establish how to apply results from the theory of rep-

resentations of Lie algebras into vector spaces to D-modules, and whence

to equations with these symmetry algebras. Sections 9 and 10 are based

on this observation.

Section 8.2 explains how to incorporate symmetry operators in the D-

module picture. Proposition 8.3 determines how a symmetry operator

of an equation induces a δ-invariant endomorphism of the corresponding

D-module, and Theorem 8.2 explains how it acts inside ker δ.

Section 9 deals with equations with solvable symmetry algebras and

eigenvalue decompositions of D-modules. We find a sufficient condition

for when an equation can be solved by use of a single symmetry, Theo-

rem 9.1. Theorem 9.7 gives a sufficient condition for equations with

solvable symmetry algebras to be solvable in terms of quadratures.

In Section 10 we encounter semisimple symmetry algebras. For a

semisimple Lie algebra g there is an associated symmetry ring D(g), an

analogue of the the Grothendieck ring of isomorphism classes of finite

dimensional vector space representations of g, and its symmetry ring is

generated by a finite number of elements just as its Grothendieck ring

is. The generators are isomorphism classes of D-modules with symmetry

algebra g, Theorem 10.2.

As a consequence, any D-module with symmetry algebra g is polyno-

mial in D-modules isomorphic to the generators, meaning that solutions
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of the generator differential equations generate all solutions of the original

equation.

In particular, any equation with an sl2-algebra of symmetries has so-

lution space spanned by powers of solutions of second order model equa-

tions of sl2, Schrödinger equations, Theorem 10.6. Solutions may in

many cases be obtained by algebraic methods and quadrature, and an

algorithmic approach is outlined.

2. Connecting modules and equations

2.1. D-modules over a general algebra. Fix an algebra A over a field

K, and a derivation δA : A → A. A pair (A, δA) is called a differential

algebra.

Definition 2.1. A D-module over (A, δA) is a pair (E, δ) where E is a

module over A and the map

δ : E → E

is a derivation over δA, i. e. it is (i) K-linear, and satisfies a Leibniz

rule (ii) with respect to δA :

(i) δ(e1 + e2) = δ(e1) + δ(e2) e1, e2 ∈ E , (1)

(ii) δ(ae) = δA(a)e + aδ(e) a ∈ A, e ∈ E . (2)

Throughout the text we will consider free D-modules, i.e. free modules

over an algebra A, that are also D-modules. D-modules (E, δ) over a fixed

pair (A, δA) constitute the objects of a category which we will denote C,

and morphisms are A-homomorphisms of modules that commute with

the respective derivations.

Proposition 2.1. C is monoidal with respect to the tensor product of

modules with the induced derivation δ over δA as defined in Definition

3.1.

Note that (A, δA) is a unit object in C.

2.2. D-modules corresponding to linear ODEs. Fix A = C∞(R),

the R-algebra of smooth functions in one real variable. The pair (A, δA =
d
dx

) is a differential algebra.

Definition 2.2. By a D-module over (C∞(R), d
dx

) we mean a pair (E, δ)

where E is a free module of rank = n <∞ over C∞(R) and the map

δ : E → E
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is a derivation over δA = d
dx

, i. e. it is (i) R-linear, and satisfies a

Leibniz rule (ii) with respect to d
dx

:

(i) δ(e1 + e2) = δ(e1) + δ(e2) , e1, e2 ∈ E ,

(ii) δ(ae) =
da

dx
e + aδ(e) , a ∈ A, e ∈ E .

From the definition we can immediately deduce a correspondence between

a D-module (E, δ) of rank n and a system of linear ordinary differential

equations.

Theorem 2.1. Given a rank = n D-module (E, δ) as in Definition 2.2.

Then the R-vector space E# = ker δ ⊂ E is isomorphic to the solution

space of an n× n system of linear first order differential equations.

Proof. E is a free module of rank n over A, so there is a basis {e1 , . . . , en}

of E over A. The action of δ on E can be written in matrix form

δ (e) = Ae

where A = (aij(x)), entries aij ∈ A, and e = [e1, . . . , en]T . Considering a

general element

h = h1(x)e1 + . . . + hn(x)en ∈ E , (3)

coefficients hi(x) ∈ A. Then δ applied to h is

δ(h) =
n∑

i=1

( h′i ei + hi δei) =
n∑

i=1

( h′i ei + hi

n∑

j=1

aijej)

=

n∑

s=1

( h′s +

n∑

i=1

aishi ) es .

(4)

Thus,

δ (h) = 0

if and only if the coefficient functions h1(x), . . . , hn(x) satisfy the system

h′ + ATh = 0 , (5)

where h = [h1(x), . . . , hn(x)]T .

The map

φ : h solution of (5) 7→ h =
n∑

i=1

hiei ∈ ker δ

is an isomorphism of vector spaces. �
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3. The monoidal category of linear ODEs

Proposition 3.1. D-modules in the sense of Definition 2.2, over the

fixed differential algebra

(A = C∞(R) , δA =
d

dx
)

constitute the objects of a category which we will denote LODE, linear

ODEs.

For objects (E1, δ1), (E2, δ2) in LODE, morphisms, Mor( (E1, δ1), (E2, δ2) ),

are A-homomorphisms F such that the diagram (6) commutes

E1
F

−−−→ E2

δ1

y
yδ2

E1 −−−→
F

E2

(6)

i.e. δ2 ◦ F = F ◦ δ1.

Proof. The only category property of composition of D-module mor-

phisms we need to check is that the composition ψ◦φ of A-homomorphisms

φ : E1 → E2 and ψ : E2 → E3 really satisfies the necessary commutator

relations. But

(ψ ◦ φ) ◦ δ1 = ψ ◦ (φ ◦ δ1) = ψ ◦ (δ2 ◦ φ)

= (ψ ◦ δ2) ◦ φ = δ3 ◦ (ψ ◦ φ) ,
(7)

so φ ∈ Mor( (E1, δ1), (E2, δ2) ), ψ ∈ Mor( (E2, δ2), (E3, δ3) ) implies that

ψ ◦ φ ∈Mor( (E1, δ1), (E3, δ3) ) . �

All tensorial constructions of D-modules belong in this category, and

each corresponds to an equation. Taking the tensor product of two mod-

ules in the category,the resulting D-module with an induced δ is as fol-

lows.

Definition 3.1. The product of two D-modules (E1, δ1) and (E2, δ2) is

the object (E1 ⊗A E2, δ) where

δ : E1 ⊗A E2 −→ E1 ⊗A E2

is defined by the requirement that it is a derivation over (A, δA) and that

δ(e1 ⊗ e2) = δ1(e1) ⊗ e2 + e1 ⊗ δ2(e2)

on decomposable elements, e1 ∈ E1, e2 ∈ E2.

Theorem 3.1. LODE is monoidal with respect to the tensor product of

modules with the induced δ as defined in Definition 3.1.

(A, δA) is a unit object in the category.
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Proof. We may take basis element 1 ∈ A. For any object (E, δ) in the

category we have the following isomorphism l : A⊗ E → E defined by

1 ⊗ e 7→ e , e ∈ E ,

and requiring A-linearity. Note that l is a morphism in the category:

(δE ◦ l)(b⊗ e) = δE(e) = l (b⊗ δE(e))

= l ◦ (δAb⊗ e + b⊗ δEe)

= l ◦ δA⊗E(b⊗ e)

(8)

�

Corollary 3.1. The unit object (A, δA) in the category LODEcorresponds

to the first order equation

y′ = 0 (9)

Proof. Obviously f ∈ ker δ ⊂ A if and only if f ′ = 0. �

We also have products of morphisms.

Given D-modules (E1, δE1
), (E2, δE2

), (F1, δF1
) and (F2, δF2

) and two

module homomorphisms φ : E1 → F1, ψ : E2 → F2 we may consider their

usual tensor product

φ⊗ ψ : E1 ⊗ E2 → F1 ⊗ F2 , (10)

which on decomposable elements is

φ⊗ ψ : (e1 ⊗ e2) 7→ φ(e1) ⊗ ψ(e2) .

Proposition 3.2. Given morphisms φ ∈ Mor( (E1, δE1
) , (F1, δF1

) ) and

ψ ∈Mor( (E2, δE2
) , (F2, δF2

) ). Then their product is again a morphism,

φ⊗ ψ ∈ Mor( (E, δE) , (F, δF ) ), where E = E1 ⊗A E2, F = F1 ⊗A F2

and δE, δF the induced derivations on the products E, F .

Proof. We need only check that φ⊗ψ satisfies the necessary composition

property (φ⊗ ψ) ◦ δE = δF ◦ (φ⊗ ψ). Writing δE = δE1
⊗ IE2

+ IE1
⊗ δE2

and δF = δF1
⊗ IF2

+ IF1
⊗ δF2

in product notation we see that

(φ⊗ ψ) ◦ δE = (φ⊗ ψ) ◦ (δE1
⊗ IE2

+ IE1
⊗ δE2

)

= (φ ◦ δE1
) ⊗ ψ + φ⊗ (ψ ◦ δE2

)

= (δF1
◦ φ) ⊗ ψ + φ⊗ (δF2

◦ ψ)

= (δF1
⊗ IF2

+ IF1
⊗ δF2

) ◦ (φ⊗ ψ)

= δF ◦ (φ⊗ ψ) .

(11)

Thus, (φ⊗ ψ) ∈Mor( (E, δE) , (F, δF ) ). �
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Some D-modules come with a bit of extra structure, we will encounter

both algebras and Lie algebras, the D-module versions are as follows.

Definition 3.2. A D-algebra (E, δ) is a D-module with a product

m : E ⊗A E −→ E

such that
E ⊗ E

m
−−−→ E

δ

y
yδ

E ⊗ E −−−→
m

E

(12)

commutes, which satisfies the associativity condition

E ⊗ E ⊗ E
1⊗m
−−−→ E ⊗ E

m⊗1

y
ym

E ⊗ E −−−→
m

E

(13)

on E.

Note: If (E, δ) is a D-algebra, then kerδ ⊂ E is an R-algebra.

Definition 3.3. A D-Lie-algebra (E, δ) is a D-module with a bracket

[ · , · ] : E × E −→ E

which is

(1) A-linear in both arguments, skew-symmetric and satisfies the Jacobi

identity, i.e.

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0 ,

and,

(2) the bracket operation is δ-invariant, i.e.

δ[X, Y ] = [δX, Y ] + [X, δY ] .

Note: If (E, δ) is a D-Lie algebra, then the solution space ker δ is a Lie

algebra over R in the usual sense, with respect to the restriction of the

bracket to ker δ.

A natural construction to consider in the category LODE is homomor-

phisms of modules.

Proposition 3.3. Given D-modules (E1, δ1) and (E2, δ2),

then (HomA(E1, E2), δ ) with

δ : HomA(E1, E2) −→ HomA(E1, E2)
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defined by

δ : F 7→ δ2 ◦ F − F ◦ δ1 ,

for F ∈ HomA(E1, E2), is an object in the category LODE.

Proof. Given a ∈ A, F ∈ HomA(E1, E2) and e ∈ E1 we see that

δF (ae) = (δ2 ◦ F − F ◦ δ1)(a · e)

= δ2(a · F (e)) − F (δA(a) · e + a · δ1(e))

= δA(a) · F (e) + aδ2(F (e)) − δA(a) · F (e) − a · F (δ1(e))

= a · (δ2 ◦ F − F ◦ δ1)(e) = a · δF (e) .

(14)

So, δF is an A-homomorphism. Second, we have that

δ(aF ) = δ2 ◦ (a · F ) − a · F ◦ δ1

= δAa · F + a · δ2 ◦ F − a · F ◦ δ1

= δAa · F + a · δF .

(15)

Thus (HomA(E1, E2) , δ ) is an object in LODE . �

We introduce the notation

E#

for taking the kernel of δ in E, i. e. E#
1 = ker δ1 ⊂ E1, and E#

2 = ker δ2 ⊂

E2. Note that a δ-invariant homomorphism F ∈ (HomA(E1, E2) )# is a

morphism in the category, with

δ2 ◦ F = F ◦ δ1 . (16)

How can we interpret morphisms? If (E1, δ1) and (E2, δ2) correspond to

ODE systems (17) and (18) respectively,

h′ + A1 h = 0 (17)

u′ + A2 u = 0 , (18)

then the vector spaces E#
1 ⊂ E1 and E#

2 ⊂ E2 are isomorphic to the

solution spaces of the systems (17) and (18) respectively. By requirement

F ( ker δ1 ) ⊂ ker δ2 , (19)

so a morphism F ∈ (HomA(E1, E2) )# maps solutions of system (17) into

solutions of system (18). Thus solutions of the induced homomorphism

equation

(HomA(E1 , E2 ) , δ ) (20)

give precisely linear maps that transfer solutions of equation E1 to so-

lutions of E2. If system (17) is an n × n system and (18) is an m × m

system, then the homomorphism equation is an (nm) × (nm) system.
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Definition 3.4. Given a D-module (E, δ) in LODE, the ODE corre-

sponding to the induced D-module of endomorphisms

(EndA(E) , δ ) (21)

will be denoted the Lie equation, or symmetry equation of (E, δ).

Proposition 3.4. (EndA(E), δ) is

(i) an associative D-algebra with respect to composition of endomor-

phisms, and,

(ii) a D-Lie algebra with respect to commutators of endomorphisms.

Proof. In (i) multiplication of endomorphisms φ, ψ is defined by

m(φ⊗ ψ) = φ ◦ ψ . (22)

Thus

m (δ(φ⊗ ψ)) = m (δφ⊗ ψ + φ⊗ δψ)

= δφ ◦ ψ + φ ◦ δψ

= (δ ◦ φ− φ ◦ δ) ◦ ψ + φ ◦ (δ ◦ ψ − ψ ◦ δ)

= δ ◦ φ ◦ ψ − φ ◦ ψ ◦ δ = δ(m(φ⊗ ψ)) ,

(23)

and whence δ ◦m = m ◦ δ. In (ii) the bracket operation is defined by

[φ , ψ ] = m(φ⊗ ψ − ψ ⊗ φ) , (24)

so it follows from the previous computation that the bracket operation

and δ satisfy

δ[φ , ψ ] = [ δφ , ψ ] + [φ , δψ ] .

�

Proposition 3.5. For any D-module (E, δ) in the category LODE, the

dual module

(E∗ = HomA(E,A) , δ )

is also an object in LODE. The equation (E∗, δ) is the adjoint of equation

(E, δ).

Proof. Assume (E, δ) is of rank n with a basis {e1, . . . , en} over A, and

that δe = Ae on matrix form. Taking the dual basis {e∗1, . . . , e
∗
n} as basis

in E∗ and applying the definition of the induced δ on basis elements

e∗i ∈ E∗ yields

( δe∗i )(ej) = (δ ◦ e∗i )(ej) − (e∗i ◦ δ)(ej)

= δ(δj
i ) − e∗i (

n∑

s=1

ajses) = 0 −

n∑

s=1

ajsδ
s
i = −aji

(25)
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where δj
i denotes the Kronecker delta. Whence

δ e∗ = −AT e∗ (26)

on matrix form and the corresponding system of ODEs is

h′ − Ah = 0 , (27)

which is the adjoint system. �

Proposition 3.6. Given a δ-invariant representation of a group G into

a D-module (E, δ), i.e. a group representation

r : G→ EndA(E)

such that δ ◦ r(g) = r(g) ◦ δ for any g ∈ G. Then the set of G-invariant

elements in E,

ΣG(E) = {e ∈ E | r(g)(e) = e, ∀g ∈ G} ,

is a sub-D-module of E with respect to restriction of δ, i.e. (ΣG(E), δ) ∈

Ob(LODE).

Proof. ΣG(E) is obviously a sub-module of E, and we need only prove

that δ(ΣG(E)) ⊂ ΣG(E). Let e ∈ ΣG(E). Then

δ(e) = δ(r(g)(e)) = r(g)(δ(e))

for any g ∈ G, thus δe ∈ ΣG(E). �

There are some well-known constructions that are of this type. Both

symmetric and anti-symmetric tensors, Sn(E) and
∧n(E) arise as invari-

ant sub-modules of E⊗n with respect to representations of the symmetric

group G = Sn. Regarding representations of Sn we have the following

general result. Let E be a finite rank module over A. A homomorphism

τ : E⊗2 → E⊗2 (28)

with the condition τ 2 = 1 determines a homomorphism

τi = Ii−1 ⊗ τ ⊗ In−i−1 : E⊗n → E⊗n (29)

for n ≤ 2, with τ acting only on the ith and (i+ 1)th copy of E in E⊗n.

Theorem 3.2. τ1, . . . , τn−1 generate a representation of Sn into E⊗n iff

τ satisfies the so called Yang - Baxter equation :

(τ ⊗ 1)(1 ⊗ τ)(τ ⊗ 1) = (1 ⊗ τ)(τ ⊗ 1)(1 ⊗ τ) (30)

on E⊗3.
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The symmetric power Sn(E) = Σn
τ (E⊗n) consists of elements in E⊗n

invariant with respect to the action of Sn given by the twist-solution of

the Yang-Baxter equation,

τ(f ⊗ g) = g ⊗ f .

Note that for the twist τ

δ( τ(f ⊗ g) ) = δ( g ⊗ f) = δg ⊗ f + g ⊗ δf

= τ( δf ⊗ g + f ⊗ δg ) = τ(δ(f ⊗ g)) ,

so this τ generates a δ-invariant representation of S2 into E⊗n.

Similarly,
∧n(E) = Στ

n(E⊗n) ⊂ E⊗n where τ is minus twist,

τ(f ⊗ g) = −g ⊗ f.

Proposition 3.7. The symmetrization of the kth tensor product of E,

Sk(E) ⊂ E⊗k, is again an object in LODE together with the restriction

of δ on E⊗k to

δ : Sk(E) −→ Sk(E) .

The restriction of δ acts on decomposable elements of Sk(E) by

δ(θ1 · . . . · θk) = δ(θ1) · . . . · θk + . . .+ θ1 · . . . · δ(θk) , (31)

where θi ∈ E, and · is the symmetric product.

Proposition 3.8. Any exterior power ∧k(E) ⊂ E⊗k of a D-module

(E, δ) is an object in LODE with δ being the restriction of δ on E⊗k

to

δ : ∧k(E) −→ ∧k(E) .

The restriction of δ acts on decomposable k-forms by

δ(ω1 ∧ . . . ∧ ωk) = δ(ω1) ∧ . . . ∧ ωk + . . .+ ω1 ∧ . . . ∧ δ(ωk) , (32)

where ωi ∈ E.

In Section 7 we will see examples of non-trivial representations of S2 for

second order equations.

Theorem 3.3 below is a key tool allowing us to move between studying

the D-module and the solution space of the corresponding differential

equation.

Theorem 3.3. For any (E, δ) ∈ Ob (LODE)

E ∼= E# ⊗R A (33)

by an D-module isomorphism

φ : E# ⊗R A → E (34)
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defined by φ : vi ⊗ 1 7→ vi for any basis { v1, . . . , vn } of E#.

Proof. First note that we may rephrase the statement, it is equivalent to

the following:

For (E, δ) ∈ Ob (LODE) any basis of E# over R is a basis of E over A.

Let E be as above, rank n, with δ-matrix A. Every element of E# is on

the form h =
∑n

i=1 hi(x)ei where h solves (5). From the theory of ODEs

we know that there exist a fundamental set of solutions of the system

(5). Let h1 = [ h11(x), . . . , h1n(x) ]T , . . . , hn = [ hn1(x), . . . , hnn(x) ]T be

such a set. Then

{ γ1 =
∑

i

h1i(x)ei , . . . , γn =
∑

i

hni(x)ei }

is a basis of E# over R. The matrix H = (hij(x)) is the Wronskian of

the system (5), hence its determinant is non-zero everywhere, and

γ = He

constitutes a basis of E over A. Any basis of E# over R is on the form

as the set {γi} above, hence a basis of E over A.

�

Corollary 3.2. Given (E1, δ1), (E2, δ2) in Ob (LODE), then,

(i) (E1 ⊗A E2)
# = E#

1 ⊗R E
#
2 , and,

(ii) (HomA(E1, E2))
# = HomR(E#

1 , E
#
2 ).

Proof. This follows directly by combining the theorem above with the

definitions of the induced δ-s on E1⊗E2 and HomA(E1, E2) respectively.

�

4. Primitive element bases

For a given equation that we wish to study, we need to be able to iden-

tify and work with the corresponding D-module. Considering a system

resolved into single equation, a convenient way to describe the corre-

sponding module is to introduce the notion of a primitive element in

E.

Definition 4.1. Let (E, δ) ∈ Ob(LODE), with rankA(E) = n. An

element e ∈ E with the property that

B = {e1 = e, e2 = δe, e3 = δ2e, . . . , en = δn−1e} (35)

is a basis of E over A is called a primitive element of E, and B a primitive

element basis of E.
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In a primitive element basis as B above the action of δ is completely

described by n functions ai(x) ∈ A where

δn e =
n∑

i=1

ai(x) δ
i−1 e . (36)

In this basis the matrix form of the action of δ becomes

δe = Ae, (37)

where

δ




e

δe

.

.

.

δn−1e




=




0 1 0 0 . 0

0 0 1 0 . 0

. . . . . .

. . . . 1 0

0 . . . 0 1

a1 a2 . . an−1 an







e

δe

.

.

.

δn−1e




The advantage of this approach is that the corresponding equation system

h′ + Ath = 0 (38)

with h = [ h1(x), . . . , hn(x) ]T , may then be resolved into a single equation

y(n) + (any)
(n−1) − (an−1y)

(n−2) + . . .+ (−1)n+1a1y = 0 . (39)

That is, hn = y(x) and hk = Hk(y) for k = 1, ..., n− 1 where

Hk(y) = (−1)n−k( y(n−k) +

n−k∑

l=1

(−1)l+1(an+1−ly)
(n−k−l) ) . (40)

Written as an operator, with ∂ = d
dx

, Hk is

Hk = (−1)n−k ( ∂(n−k) +

n−k∑

l=1

(−1)l+1∂(n−k−l)an+1−l ) . (41)

We may sum up as follows.

Proposition 4.1. Given an equation on the form (39), then the corre-

sponding D-module (E, δ) ∈ Ob(LODE) has a primitive element basis

{ e, δe, δ2e, . . . , δn−1e }

with δ : E → E determined by the coefficients ai in the equation through

the relation

δne =

n∑

i=1

ai(x) δ
i−1 e .
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The kernel of δ is

E# = { hy =

n∑

i=1

Hk(y) δ
i−1e | y solves (39) } , (42)

with the operators Hk on the form (41).

Remark: A natural concern is whether, starting with an equation on

the form

y(n) + fn(x) y(n−1) + fn−1(x) y
(n−2) + . . .+ f1(x) y = 0 , (43)

it is a problem to write it on the form (39), in order to be able to write

down the structure of the corresponding D-module (E, δ).

This is not a problem. To express the coefficients ai(x) in terms of the

fi-s and their derivatives we need only start with the highest coefficient

an = fn, and nest our way down to a1. At each stage ai is given in

terms of derivatives of the functions fi, fi+1, . . . , fn, and the formulas are

recovered by performing the derivations in the expression (39) and collect

terms of the same degree of derivatives of y and compare with the form

(43). The equations are on the form

fn = an ,

fn−1 = a′n − an−1 ,

fn−2 =

(
n− 1

1

)
a′′n − a′n−1 + an−2 ,

...

f1 = = a(n−2)
n − a

(n−3)
n−1 + . . .+ (−1)n−1a1 .

Knowing E#, i.e. knowing solutions of the corresponding equation,

means that we can produce solutions of equations corresponding to such

D-modules as

E⊗n , Sk(E) , ∧l(E) ,

since (E⊗n)# = (E#)⊗n, Sk(E)# = Sk(E#) and
∧l(E)# =

∧l(E#)

are completely described when E# is described. We may use primitive el-

ement bases to precisely describe solutions of symmetric powers of second

order equations. Let (E, δ) correspond to an equation

y′′ + (a2y)
′ − a1y = 0 (44)

with primitive element basis {e1, e2}. Let {e∗1, e
∗
2} denote the dual basis

of (E∗, δ). This basis generates a basis of the module Sk(E∗)

{ αl = (e∗1)
k−l+1 · (e∗2)

l−1 , l = 1, . . . , k + 1 } . (45)
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To find the equation Sk(E∗) for some k simply apply δ to a general

element

θ =
k+1∑

l=1

gl(x) αl (46)

in Sk(E∗). Recall that δe∗1 = −a1e
∗
1, and δe∗2 = −e∗1 − a2e

∗
1. Thus

δ : αl 7→ −a1(k − l + 1)αl+1 − a2(l − 1)αl − (l − 1)αl−1 . (47)

Setting

δθ = 0

and collecting basis terms αs yields a system of k + 1 equations,

g′s − a1(k − s+ 2)gs−1 − a2(s− 1)gs − s gs+1 = , (48)

for s = 1, . . . , k + 1. This system resolves into a single equation in

g1 = y(x). We may conclude the following about Sk(E∗)#.

Proposition 4.2. Let (E, δ) be the D-module corresponding to an ar-

bitrary second order equation (44). For each k ≥ 1 the kernel Sk(E∗)#

consists of elements

θy = yα1 + y′α2 +
k+1∑

l=3

gl(y)αl , (49)

where

gl =
1

l − 1

[
g′l−1 − a2(l − 2)gl−1 − a1(k − l + 3)gl−2

]
(50)

for l = 2, .., k+1 and g1 = y solves the Sk(E∗) equation, i.e. the equation

in y we obtain from setting

δθy = 0

for θy on the form (49), with gl-s expressed in derivatives of y.

A list of symmetric powers of second order equations is easily produced,

and particular hierarchies of this sort will be investigated in Section 10.2.

We may immediately deduce the following result concerning solutions of

such an hierarchy of equations.

Theorem 4.1. Given a set of fundamental solutions {u, v} of a second

order equation corresponding to a D-module (M, δ). Then

{ uk, uk−1v, . . . , uvk−1, vk } = { ui vk−i }k
i=0

is a fundamental set of solutions of the equation corresponding to the

D-module (Sk(M), δ) for any k ≥ 2.
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Proof. We may freely choose (E, δ) such that (M, δ) = (E∗, δ) as in

Proposition 4.2. Given the solutions {u, v} we know that {θu, θv} span

(E∗)#, thus

{ θk
u , θ

k−1
u · θv , . . . , θu · θk−1

v , θk
v }

span Sk(E∗)# over R. Also, Sk(E∗)#, is closed with respect to the sym-

metric product, and we need only collect the α1 = (e∗1)
k term in products

θk−i
u · θi

v to state that

θk−i
u · θi

v = θuk−ivi , (51)

hence, { ui vk−i }k
i=0 span the solution space of Sk(E∗). �

Note: The kth symmetric power of an equation may be defined as the

equation whose fundamental solutions are spanned by precisely degree k

monomials in fundamental solutions of the base equation. Theorem 4.1

connects this to the D-module picture.

5. Differential operator view on D-modules.

There is a third way to approach D-modules corresponding to linear

ODEs, introducing differential operators, practical for calculations with

symmetries. Let K be the ring of linear differential operators over R. An

operator

P = ∂k + ck(x)∂
k−1 + . . .+ c1(x) (52)

where ∂ = d
dx

defines a D-module (EP , δ) ∈ Ob(LODE) with

EP
def
= K/(K ◦ P ) , (53)

and

δ : EP −→ EP defined by δ : [X] 7→ [∂ ◦X] . (54)

Obviously this operation is well defined with respect to choice of repre-

sentative X ∈ K modulo (K ◦ P ), and it is a derivation over ∂. For P as

above

{ e1 = e = [1], e2 = δe = [∂], . . . , ek = δk−1e = [∂k−1] } (55)

is a primitive element basis of EP over A. In EP

[∂k] ≡ −c1e− . . . − ckδ
k−1e , (56)

thus

ker δ ∼= kerP t

To return to the situation in Section 4, considering an equation

L(y) = ( ∂k + ck(x)∂
k−1 + . . .+ c1(x) )(y) = 0 (57)
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we get the corresponding D-module (E, δ) from taking

E = ELt (58)

so that

ker δ ∼= kerL . (59)

6. Geometric image of ODEs in Jet space

Consider a vector bundle B
β
→ R of rank m with its A = C∞(R)-

module of sections C∞(β) = {s ∈ C∞(R, E) | β ◦ s = IR}. The corre-

sponding bundle Jk(β)
πk→ R of k-jets of sections of β is of rank m(k+ 1)

over R, and is equipped with the Cartan distribution. A system of linear

k-th order ordinary differential equations is a linear subbundle

E
α
→ R ⊂ Jk(β)

πk→ R (60)

of codimension m such that the Cartan distribution on Jk(β) when re-

stricted to E , and denoted CE

(i) is 1-dimensional, and

(ii) projects isomorphically to R

We denote the A-module of sections in the bundle α by C∞(α). We have

a linear connection in the bundle α,

∇ : D(R) −→ Der(C∞(α)) (61)

where Der(C∞(α)) denotes derivations of C∞(α) over d
dx

, i. e. R-linear

maps

D : C∞(α) → C∞(α)

such that

D(fs) = f ′ · s + f ·D(s) ,

for any f ∈ A, s ∈ C∞(α). ∇ is defined by the requirement that it

lifts d
dx

on the base R to a generator X ∈ D(E) of CE on E . Consider

s = s(x) ∈ C∞(α) ) as a curve in E . Then, geometrically, ∇ d
dx

on acts on

s by

A−t ◦ s ◦ At = s+ ∇ d
dx

(s) · t+ o(t) (62)

where At is the flow generated by d
dx

on R, and At is the flow generated

by X on E . Thus, constant sections of ∇, i.e. sections s such that

∇Y (s) = 0 , ∀ Y ∈ D(R)

are precisely the integral curves of CE on E .
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The pair (C∞(α), δ = ∇( d
dx

)) is a D-module over (A, δA), and we have

the correspondence.

(C∞(α) , ∇ d
dx

) ⇔ (E, δ) ∈ Ob(LODE)

A kth order linear equation

y(k) + fky
(k−1) + . . . + f1y = 0 (63)

has corresponding linear bundle

E
α
→ R ⊂ Jk(R)

πk→ R

where

E = { pk = −fkpk−1 − . . . − f1p0 } ⊂ Jk(R)

with coordinates (x, p0, . . . , pk−1), taking standard coordinates (x, p0, . . . pk)

on Jk(R).

Denote F (x, p0, ... , pk−1) = −fkpk−1 − . . . − f1p0. The vector field

D = ∂x + p1∂p0
+ . . . pk−1∂pk−2

+ F ∂pk−1

is a generator of the Cartan distribution on E , and its integral curves are

on the form

φ(x) = ( x, y(x), y′(x) , . . . , y(k−1)(x) )

where y = y(x) is a solution of equation(63). Here δ = ∇ d
dx

, where ∇

lifts d
dx

on the base to D in the bundle E
α
→ R.

7. Classic Geometries and ODEs

7.1. Euclidean structures.

Definition 7.1. By a harmonic oscillator we mean a D-module

(E, δ) ∈ Ob (LODE) equipped with an δ-invariant positive symmetric 2-

form g ∈ (S2(E∗) )
#
.

Theorem 7.1.

(1) For any linear ODE there exists a quadratic 1st integral.

(2) Any two Harmonic Oscillators (E, δ, g) and (E ′, δ′, g′) of the same

dimension are equivalent in the sense that there exists an isomorphism

A : E −→ E ′

such that

(i) A ◦ δ = δ′ ◦ A and

(ii) g′(Ax,Ay) = g(x, y)
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Proof. (1) An ODE of degree n specifies a module E of dimension n as in

Theorem 3.3 , hence there exists a δ-invariant basis {γi} of E as described

in the proof of the theorem. Then g = (γ∗1)
2 + . . .+(γ∗n)2 ∈ S2(E#) and

it is obviously positive definite. g(h, h) = c is our quadratic first integral,

for h ∈ E#.

(2) Let {γi} and {γ′i} be bases of E# and (E ′)# respectively as in Theo-

rem 3.3. In these bases g and g′ are given by orthogonally diagonalisable

R-matrices G and G′. Let {η∗i } and {η′∗i } be bases of (E∗)# and (E ′∗)#

such that G and G′ are diagonal. Then the map A is given by

A : ηi 7→

(
g(ηi, ηi)

g′(η′i, η
′
i)
.

)1/2

η′i .

Since {ηi} and {η′i} are bases of E and E ′ over A, expand A as an A-

homomorphism E → E ′. �

Before moving to more specific results on Euclidean structures we in-

clude the following property of δ-invariant symmetric bilinear forms.

Proposition 7.1. Given a D-module (E, δ) in the category LODE. For

any g ∈ S2(E∗), and arbitrary X, Y ∈ E the following are equivalent

δg = 0 ⇔ g(δX, Y ) + g(X, δY ) = g(X, Y )′ . (64)

Proof. Given g =
∑n

i,j=1 gije
∗
i · e∗j in S2(E∗) and arbitrary X, Y ∈ E.

Then

δg(X, Y ) =
[∑

g′ije
∗
i · e

∗
j +

∑
gij(δe

∗
i · e

∗
j + e∗i · δe

∗
j)

]
(X, Y )

=
∑ (

g′ije
∗
i (X) · e∗j(Y ) + gij [δ(e∗i (X))e∗j(Y ) + e∗i (X) · δ(e∗j(Y ))]

)

−
∑

gij[e
∗
i (δX) e∗j(Y ) + e∗i (X) e∗j(δY )]

= g(X, Y )′ − g(δX, Y ) − g(X, δY ) .

(65)

�

7.1.1. Euclidean equations of second order. We will take a closer look

at 2nd order equations and Euclidean structures. Consider a general

equation of second order

y′′ + (a2(x) y)
′ − a1(x)y = 0 (66)

corresponding to a D-module (E, δ) with primitive element basis {e1 = e, e2 = δe}

where δ is described by

δ2e = a1e + a2δe .
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We want to study the induced module (S2(E∗), δ) and look for positive

δ-invariant symmetric forms. Taking the dual basis {e∗1, e
∗
2} of E∗ we

recall that the induced δ in the dual module is given by

δe∗ =

[
0 −a1

−1 −a2

]
e∗ . (67)

Constructing a basis {(e∗1)
2, e∗1 · e

∗
2, (e∗2)

2} of S2(E∗) by taking symmetric

products in the basis elements of E∗ and calculating the induced δ gives

us a full description of (S2(E∗), δ).

δ :




(e∗1)
2

e∗1 · e
∗
2

(e∗2)
2


 7→




0 −2a1 0

−1 −a2 −a1

0 −2 −2a2







(e∗1)
2

e∗1 · e
∗
2

(e∗2)
2


 . (68)

Thus the system of equations (S2(E∗), δ) is

s′1 − s2 = 0 (69)

s′2 − 2a1s1 − a2s2 − 2s3 = 0 (70)

s′3 − a1s2 − 2a2s3 = 0 (71)

for

g = s1(x) (e∗1)
2 + s2(x) e

∗
1 · e

∗
2 + s3(x) (e∗2)

2 ∈ S2(E∗) .

So, obviously, we may attack the problem directly, and see that the

system (69) - (71) can be resolved into a single governing equation

s′′′ + (−3a2)s
′′ + (2a2

2 − a′2 − 4a1)s
′ + (4a1a2 − 2a′1)s = 0 (72)

by setting s1 = s(x). Equation (69) implies that

s2 = s′1 = s′ ,

and

s3 =
1

2
(s′′ − a2s

′ − 2a1s)

by (70). Then (71) becomes (72), which we will denote the 2nd symmetric

power of the equation (E∗, δ). We may conclude that any element g in

the kernel S2(E∗)# ⊂ S2(E∗) is on the form

g = s (e∗1)
2 + s′ (e∗1 · e

∗
2) +

1

2
(s′′ − a2s

′ − 2a1s) (e∗2)
2 , (73)

where s = s(x) is a solution of (72).

There is a second approach to the quest of finding δ-invariant symmet-

ric bilinear forms of an equation; we may use Proposition 7.1 to deduce

properties of positive, symmetric bilinear forms on a general second or-

der equation (66). Let {e∗1, e
∗
2} be the dual basis of the primitive element
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basis {e, δe} of (E, δ) as before. Consider g =
∑2

i,j=1 gije
∗
i · e

∗
j in S2(E∗).

We will require throughout that g is positive.

Step 1 We may start with the assumption that g is normalized on the

primitive element, i. e.

g(e, e) = g11(x) = 1 .

We have the requirement that g is positive, so if g(e, e) = α2(x) > 0,

α2 6= 1, we may perform a change of primitive element basis

ẽ =
1

α
e . (74)

Then δẽ = − α′

α2 e+
1
α
δe. Writing the transformation in matrix form yields

[
ẽ

δẽ

]
=

[
1
α

0

− α′

α2
1
α

] [
e

δe

]
. (75)

The determinant of the transformation matrix is 1
α2(x)

6= 0, thus this is a

change of basis. On the level of equations a transformation that changes

the primitive element by a non-zero factor as above corresponds to a

change of variable transformation of (66):

y =
1

α
u .

Thus we may assume that g is normalized in e, up to a change of variable

in the original ODE.

Step 2 For g(e, e) = 1 applying Proposition 7.1 immediately deter-

mines g(e, δe) by

g(e, δe) + g(δe, e) = 2g(e, δe) = g(e, e)′ = 0 ,

hence, g(e, δe) = 0.

Step 3 By positivity of g we have that g(δe, δe) = ω2(x) for some non-

zero ω(x). Using Proposition 7.1 again we get a requirement on g(δe, δe)

by

g(δe, δe) + g(e, δ2e) = g(e, δe)′ = 0 .

But

g(e, δ2e) = g(e, a1e+ a2δe) = a1g(e, e) + a2g(e, δe) = a1

thus we get the requirement ω2 = −a1.

Step 4 The last relation we are able to get from applying the propo-

sition determines a relation between ω and a2. First we have

g(δe, δ2e) + g(δ2e, δe) = 2g(δe, δ2e) = 2g(δe, a1e + a2δe) = 2a2g(δe, δe)
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and due to Proposition 7.1,

2 a2 g(δe, δe) = 2 a2 ω
2 = g(δe, δe)′ = 2ω′ω ,

that is, a2 = ω′

ω
. We may sum this up as follows. In matrix form, i. e.

g = e∗TGe∗, g is given by

G =

[
1 0

0 ω2

]
.

Proposition 7.2. An equation

y′′ +

(
ω′

ω
y

)′

+ ω2y = 0 (76)

with ω 6= 0 has a quadratic first integral

q = [ω2 +

(
ω′

ω

)2

]y2 + 2

[
ω′

ω

]
yy′ + [y′]2 . (77)

Proof. The calculations above determine that equation (76) has an asso-

ciated positive, symmetric bilinear form g = (e∗1)
2 + ω2(e∗2)

2 ∈ S2(E∗)#

on its solution space E#. That is, for any h ∈ E#, g(h, h) = c, constant.

But any element h ∈ E# is on the form

h = (−y′ − a2y)e + yδe, (78)

where y is a solution of (76). Thus, setting q = g(h, h) gives the desired

quadratic first integral. �

There is another question to be considered here, namely, how to trans-

form one equation with “potential” ω into another with “potential” ω̃?

Theorem 7.1 in the beginning of this section shows the existence of a

transformation between any two harmonic oscillators preserving the δ-

invariant Euclidean structure. But the construction in the proof depends

on knowing solutions of our two equations, and deals only with existence.

The following result for second order equations determines a transforma-

tion independent of knowing any solutions of the equations.

Theorem 7.2. Let (Eω, δ) be the D-module corresponding to the equation

y′′ +

(
ω′

ω
y

)′

+ ω2y = 0 . (79)

The transformation of primitive element bases

Tθ :

[
e

δe

]
7→

[
ẽ

δẽ

]
=

[
cos θ 1

ω
sin θ

−(ω + θ′) sin θ (ω+θ′)
ω

cos θ

] [
e

δe

]
(80)
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yields an equation (Eeω, δ)

y′′ +

(
ω̃′

ω̃
y

)′

+ ω̃2y = 0 ,

where ω̃ = ω+ θ′. The associated Euclidean structure is, in matrix form,

G̃ =

[
1 0

0 ω̃2

]

and is non-degenerated for ω̃ = ω + θ′ 6= 0.

Proof. The transformation can be divided into three steps. First one

transforms {e, δe} into a basis orthonormal with respect to g.
[
v1

v2

]
=

[
1 0

0 1
ω

] [
e

δe

]

The orthonormal basis is then “rotated” by an “angle” θ = θ(x)
[
w1

w2

]
=

[
cos θ(x) sin θ(x)

− sin θ(x) cos θ(x)

] [
v1

v2

]

Now, taking w1 as new primitive element we find,by applying δ that

δw1 = (θ′ + ω)w2

The total transformation is

Tθ =

[
1 0

0 ω + θ′

] [
cos θ sin θ

− sin θ cos θ

] [
1 0

0 1
ω

]
=

[
cos θ 1

ω
sin θ

−(ω + θ′) sin θ (ω+θ′)
ω

cos θ

]

and has determinant (ω+θ′)
ω

, which is non-zero for (ω + θ′) 6= 0. Thus, if

you wish to transform an equation Eω to another Eeω, you need a θ(x)

such that θ′ = ω̃ − ω.

�

Example 7.1. The equation

u′′ = 0 (81)

has the first quadratic integral

u2 − 2xuu′ + [x2 + 1](u′)2 (82)

It is obtained by a change of variable y = uω−1/2 from the equation

y′′ + (
ω′

ω
y)′ + ω2y = 0 (83)

with

ω =
1

x2 + 1
. (84)
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7.1.2. 3rd order Euclidean equations. Consider a third order equation

y′′′ + (a3y)
′′ − (a2y)

′ + a1y = 0 (85)

with corresponding D-module (E, δ) and primitive element basis

{ e, δe, δ2e },

with δ3e = a1e + a2δe + a3δ2e. Using Proposition 7.1 repeatedly we can

derive requirements for a symmetric bilinear form g ∈ S2(E∗) to be δ-

invariant. Additional requirements determine the coefficients ai in terms

of α, β, as in the step by step calculations leading to Proposition 7.2.

Assuming that g is normalized in e, written in matrix form, g has to be

on the form

G =




1 0 −α2

0 α2 α′α

−α2 α′α β2


 (86)

where α = α(x) 6= 0 and β = β(x) 6= 0.

Theorem 7.3.

y′′′ + (a3y)
′′ − (a2y)

′ + a1y = 0 (87)

has a δ-invariant symmetric bilinear form given by G as in (86) for

a1 = −(α2)′ − α2λ
′

λ
,

a2 =
α′′

α
+
α′

α

λ′

λ
−
β2

α2
,

a3 =
α′

α
−
λ′

λ
,

(88)

where

λ = g(v, v)−1/2 = (β2 − α4 − (α′)2)−1/2

for

v = α2e+
α′

α
δe + δ2e ,

which is orthogonal to both e and δe.

7.2. Symplectic structures. We may equally study equations with

symplectic structure on the solution space.

Definition 7.2. A symplectic equation is a D-module (E, δ) ∈ Ob(LODE)

of even rank 2n equipped with a non-degenerated δ-invariant ω ∈
∧2(E∗)#.

Thus, if we seek a symplectic structure on the solution space of an

equation (E, δ) we should investigate the second exterior power of E∗.
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7.2.1. Equations of second order. Consider a second order equation

y′′ + (a2y)
′ − a1y = 0 (89)

corresponding to the D-module (E, δ), with the usual primitive element

basis {e1 = e, e2 = δe}, δ2e = a1e+ a2δe. A general element in ∧2(E∗) is

on the form

ω = α(x) e∗1 ∧ e
∗
2 (90)

for some α ∈ A. Applying δ to ω yields

δω = α′e∗1 ∧ e
∗
2 + α [ (−a1e

∗
2) ∧ e

∗
2 + e∗1 ∧ (−e∗1 − a2e

∗
2) ]

= (α′ − a2α)e∗1 ∧ e
∗
2 ,

(91)

so (
∧2(E∗) , δ ) corresponds to the equation

α′ − a2α = 0 . (92)

The 2-form is non-degenerated if and only if α 6= 0. We may interpret

this as a requirement on the coefficient a2, and sum up as follows.

Theorem 7.4. For α(x) 6= 0, any a1(x) in A, the equation

y′′ + (
α′

α
y)′ − a1y = 0 (93)

is a symplectic equation with the δ-invariant 2-form

ω = α(x) e∗1 ∧ e
∗
2 (94)

determining the symplectic structure on E#.

Recall that an element hy ∈ E# corresponding to a solution y of (93)

is on the form hy = (−y′ − α′

α
y)e1 + ye2. Given two solutions y1, y2,

ωα(hy1
, hy2

) = α

[
(−y′1 −

α′

α
y1)y2 − (−y′2 −

α′

α
y2)y1

]

= α ( y′1y2 − y1y
′
2 ) .

(95)

7.3. Complex and Hermitian structure. There is a natural way to

introduce a complex structure on a D-module (E, δ).

Definition 7.3. Let (E, δ) be a D-module in LODE. A complex struc-

ture on the corresponding equation is a δ-invariant A-endomorphism

J ∈ EndA(E)# such that

J2 = −IdE

We may immediately deduce the following.
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Proposition 7.3. Denote Ã = C ⊗R A. We may identify the it with

smooth complex valued functions in one real variable, C∞(R,C). Given

(E, δ) with a complex structure J ∈ EndA(E)#.

(1) E is an Ã-module, which we may denote Ẽ, by the following

definition:

[u(x) + i · v(x)] e
def
= u(x) · e + v(x) · J(e) (96)

for u(x), v(x) ∈ A and e ∈ E. (2) If J is δ-invariant, i. e. δ J = 0,

or, equivalently,

δ ◦ J = J ◦ δ .

Then

J# = J |E# : E# → E# (97)

is a complex structure on the vector space E#.

As a digression we may stop to note that J is actually a symme-

try of our base equation E that satisfies the extra condition J 2 = −1.

Symmetries and the corresponding symmetry equations will be discussed

extensively in section 8.

Proposition 7.4. Given a second order equation with complex structure

J , (E, δ, J), its solution space E# is isomorphic to C as vector space,

and as a field.

Proof. We know that any basis of E# is generated by two linearly inde-

pendent solutions u1, u2 of the equation corresponding to (E, δ). Written

in the primitive element basis of E the basis elements are on the form

hu = (−u′ − a2u)e + uδe. Choose u = u1. We know that J(E#) ⊂ E#,

thus the linear independent set {hu, J(hu)} is a basis of E#. Now,

φ : E# → C

defined by

hu 7→ 1 and J(hu) 7→ i

and requiring R-linearity, is an isomorphism of vector spaces. Defining

multiplication in E# accordingly by

h2
u = hu ,

hu · J(hu) = J(hu) , and

J(hu)
2 = −hu ,

(98)

yields that φ is also a multiplicative homomorphism, i.e.

φ(h1 · h2) = φ(h1) · φ(h2) ,
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and thus

E# ∼= C

as fields by φ. �

Definition 7.4. Given a D-module (E, δ) with a complex structure given

by J ∈ EndA(E)#, a Hermitian structure on E is a non-degenerate δ-

invariant 2-form H ∈ (E∗)⊗2 which satisfies the conditions

H(x, y) = H(y, x)

and

H(Jx, y) = −H(x, Jy) = iH(x, y)

for all x, y ∈ E.

Any Hermitian form corresponds to a pair g, ω of Euclidean and sym-

plectic forms satisfying the relation

H = g + iω .

In the next subsection we will see examples of equations with complex

structure and compatible Euclidean and symplectic structures, hence

Hermitian structure.

7.4. Second order equations with complex and Hermitian struc-

tures. Investigating when a second order equation

y′′ + (a2y)
′ − a1y = 0 (99)

has complex structure yields the following. Denote the corresponding

D-module (E, δ), with primitive element basis {e1 = e, e2 = δe}. We

may identify EndA(E) with E∗ ⊗ E and write an endomorphism

J = F1(x)e
∗
1 ⊗ e1 + F2(x)e

∗
1 ⊗ e2 + F3(x)e

∗
2 ⊗ e1 + F4(x)e

∗
2 ⊗ e2 , (100)

or, in matrix form, J = e∗TMT
J e,

MJ =

[
F1 F3

F2 F4

]
. (101)

Then

M2
J =

[
F 2

1 + F2 F3 F3 (F1 + F4)

F2 (F1 + F4) F 2
4 + F2 F3

]
. (102)

Requiring M2
J = −I gives us four equations on the coefficients Fi, and

one immediate requirement is that F 2
1 = F 2

4 . Splitting the problem into
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two cases we get the following classes of endomorphisms.

Class (A), characterized by F1 = F4 :

J =

[
0 α

− 1
α

0

]
(103)

where α = α(x) 6= 0.

Adding the requirement that δJ = 0 gives four new equations, and for

Fi-s as above they are reduced to

a1(x) = −α2 (104)

and

a2(x) =
α′

α
. (105)

Class (B), characterized by F1 = −F4 :

J =

[
α β

−1+α2

β
−α

]
, (106)

where α = α(x) is any function, and β = β(x) 6= 0. The requirement

δJ = 0 with Fi-s as above is reduced to

a1(x) = −
β (β − α′)

1 + α2
, (107)

and

a2(x) =
β ′

β
+

2α (β − α′)

1 + α2
. (108)

Theorem 7.5. There are two classes of second order equations that pos-

sess complex structure.

(A) For α(x) 6= 0,

y′′ + (
α′

α
y)′ + α2y = 0 ,

with complex structure J determined by (103).

(B) For β(x) 6= 0 and any α(x),

y′′ +

[
(
β ′

β
+

2α (β − α′)

1 + α2
)y

]′

+ [
β (β − α′)

1 + α2
]y = 0 ,

with complex structure J determined by (106).

Corollary 7.1. The complex structures of class (A) and (B) as above

are symmetries of the respective equations.
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(i) For equation

y′′ + (
α′

α
y)′ + α2y = 0 (109)

of class (A), α 6= 0, the complex structure J acts on solutions

y(x) as follows

OJ : y 7→
(α y)′

α2
= (

1

α
) y′ + (

α′

α2
) y . (110)

(ii) For equation

y′′ +

[
(
β ′

β
+

2α (β − α′)

1 + α2
)y

]′

+ [
β (β − α′)

1 + α2
]y = 0 (111)

of class (B), β 6= 0, any α, the complex structure J acts on solu-

tions y(x) as follows

OJ : y 7→
αβ(β − α′) + β ′(1 + α2)

β
y +

(1 + α2)

β
y′ . (112)

The class (A) equations are precisely on the form as equations with Eu-

clidean structure in Proposition 7.2. A compatible symplectic structure

is given by the defining 2-form

ω(x, y) = g(Jx, y) , (113)

where g is Euclidean and J is the complex structure. The triple corre-

sponds to a Hermitian structure

H = g + iω .

Theorem 7.6. The equation

y′′ + (
α′

α
y)′ + α2y = 0 (114)

where α = α(x) 6= 0 has Euclidean, complex, symplectic and Hermitian

structures.

g = (e∗1)
2 + α2 (e∗2)

2 , (115)

J = −
1

α
e∗1 ⊗ e2 + α e∗2 ⊗ e1 , (116)

ω = − α e∗1 ∧ e
∗
2 , (117)

H = g + iω , (118)

in matrix form,

g =

[
1 0

0 α2

]
,
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J =

[
0 α

− 1
α

0

]
,

ω =

[
0 α

−α 0

]
.

Example 7.2. The equation

y′′ + y = 0 (119)

is on the form as in Theorem 7.6 for α2 = 1. We may take α = −1 and

get the standard complex structure with matrix

J =

[
0 −1

1 0

]
.

Choosing α = 1 only alters the sign of J . The solution space is spanned

by u = cos(x), v = sin(x), which in turn determines the basis

hcos(x) = sin(x)e + cos(x)δe

J(hcos(x)) = − cos(x)e+ sin(x)δe = hsin(x)

(120)

of E# over R, and of E over A.

7.5. Sn representations from Yang-Baxter solutions, examples.

Proposition 3.6 states that if we have a δ-invariant group action into a

D-module, then the invariant elements of this action constitute a D-sub-

module, which in turn corresponds to a new ODE. In Theorem 3.2 we

saw that, given a D-module (E, δ), any solution τ : E⊗E → E⊗E of the

Yang-Baxter equation with the property τ 2 = 1 gives a representation of

Sn into E⊗n for all n ≥ 2. Recall that τ being plus and minus twist gave

us sub-modules Sn(E) and
∧n(E) of E⊗n. The twist operation may be

used to construct other solutions of the Yang-Baxter equation.

Proposition 7.5. Given a splitting of a D-module E = E0 ⊕ E1, we

may introduce the following map on E⊗2 given by a combination of

+ and − twisting:

τ :





f0 ⊗ gi 7→ gi ⊗ f0, i = 0, 1

fi ⊗ g0 7→ g0 ⊗ fi, i = 0, 1

f1 ⊗ g1 7→ −g1 ⊗ f1

This τ is a solution if the Yang - Baxter equation (30), and thus induces

a representation of the symmetric group Sn into E⊗n.
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Given a D-module (E, δ) corresponding to the second order equation

y′′ + (a2y)
′ − a1y = 0 (121)

with primitive element basis {e1, e2}, we may try to find a splitting of E

by means of an operator A : E → E with the property

A2 = 1,

such that E splits into two one-dimensional modules

E = E0 ⊕ E1 = ker(A− 1) ⊕ ker(A + 1) .

Ensuring that the splitting preserves the D-module structure we require

that

δA = 0 . (122)

We get two classes of non-trivial splittings.

Class (1) consists of equations

y′′ + (
α′

α
y)′ − α2y = 0 (123)

with α 6= 0. This equation splits non-trivially into

E = E0 ⊕ E1 = ker(A− 1) ⊕ ker(A+ 1)

for

A = αe∗2 ⊗ e1 +
1

α
e∗1 ⊗ e2,

with E0 =< η0 = αe1+e2 >A and E1 =< η1 = −αe1 + e2 >A. Restricting

δ to E0 and E1 yields

δη0 = (α′

α
+ α)η0 , and (124)

δη1 = (α′

α
− α)η1 . (125)

This means that E# = { uη0 + vη1 = α(u− v)e1 + (u+ v)e2 }

where u and v solve equations

(E0, δ) : u′ +(
α′

α
+ α)u = 0 (126)

(E1, δ) : v′ +(
α′

α
− α)v = 0 (127)

respectively, i.e. sums of solutions y = u+v give all solutions of equation

E.

But we also have an action into E⊗E of the symmetric group S2 given

by τ as in Proposition 7.5. Invariants of this action Σ2
τ (E) = ker(τ−1) ⊂

E ⊗ E is generated over A by

γ1 = η0 ⊗ η0 , γ2 = η0 ⊗ η1 + η1 ⊗ η0 .
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Investigating derivatives we get that

δγ1 =
(
2α′

α
+ 2α

)
γ1 (128)

δγ2 =
(
2α′

α

)
γ2 (129)

thus,

Σ2
τ (E) = M1 ⊕M2 ⊂ E ⊗ E,

where (M1, δ) corresponds to the equation

u′ + (2α + 2
α′

α
)u = 0,

and (M2, δ) corresponds to the equation

u′ + (2
α′

α
)u = 0.

On the other hand, we may take −τ to generate an action of S2, and

Σ2
−τ (E) = ker(τ + 1) ⊂ E ⊗ E is generated over A by

γ3 = η1 ⊗ η1 , γ4 = η0 ⊗ η1 − η1 ⊗ η0.

Taking derivatives we get that

δγ3 = (2α′

α
− 2α) γ3 (130)

δγ4 = (2α′

α
) γ4 (131)

thus,

Σ2
−τ (E) = M3 ⊕M4

where (M3, δ) corresponds to the equation

u′ + (2α− 2
α′

α
)u = 0

and (M4, δ) corresponds to the equation

u′ + (4α)u = 0.

We may sum up as follows:

E ⊗ E = Σ2
τ (E) ⊕ Σ2

−τ (E) = M1 ⊕M2 ⊕M3 ⊕M4,

and

(E ⊗ E)# = {m1γ1 +m2γ2 +m3γ3 +m4γ4 },

where mi solves equation Mi.

Class (2) consists of equations

y′′ +

[
(
β ′

β
+ 2

α(β − α′)

(α2 − 1)
) y

]′

−
β(β − α′)

(α2 − 1)
y = 0 (132)
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with β 6= 0, α 6= −1, 1. It splits with respect to the operator

A = αe∗1 ⊗ e1 + βe∗2 ⊗ e1 +
(1 − α2)

β
e∗1 ⊗ e2 − αe∗2 ⊗ e2

into a direct sum E = E0⊕E1 = ker(A−1)⊕E1 as for class (1)-equations,

with E0 =< η0 = βe1+(1−α)e2 >A, and E1 =< η0 = βe1−(1+α)e2 >A.

The corresponding equations are

E0 : u′ +
(

β′

β
+ (β−α′)

(α+1)

)
u = 0, (133)

E1 : v′ +
(

β′

β
+ (β−α′)

(α−1)

)
v = 0. (134)

Thus

E# = { uη0 + vη1 = β(u+ v)e1 + [(u− v) − α(u+ v)]e2 }

so solutions of equation E are y = (u− v) − α(u + v) for solutions u, v

of E0, E1. Repeating the study of the representation of S2 into E ⊗E as

for Class (1) equations yields that

Σ2
τ (E) = M1 ⊕M2 ⊂ E ⊗ E

and

Σ2
−τ (E) = M3 ⊕M4 ⊂ E ⊗ E,

with

E ⊗ E = Σ2
τ (E) ⊕ Σ2

−τ (E) = M1 ⊕M2 ⊕M3 ⊕M4.

The modules Mi correspond to the following equations

M1 : m′
1 +2

(
(β−α′)
(α+1)

+ β′

β

)
m1 = 0 (135)

M2 : m′
2 +2

(
α(β−α′)
(α2−1)

+ β′

β

)
m2 = 0 (136)

M3 : m′
3 +2

(
(β−α′)
(α−1)

+ β′

β

)
m3 = 0 (137)

M4 : m′
4 −8β

(
α(β−α′)
(α2−1)

+ β′

β

)
m4 = 0 (138)

8. Symmetries and representations

In this section we study symmetries of equations, in particular through

symmetry operators. Section 8.2 contains results for linear operator sym-

metries, most of which is discussed in detail in [11]. The most important

addition to these results is the description on how this embeds into the

category LODE, through Proposition 8.3 and Theorem 8.2.

Symmetry operators are convenient tools for calculations with sym-

metries in D-modules, and are important to ensure full applicability of

solving strategies developed in Sections 9 and 10.
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8.1. Symmetry algebras and representations. In the category LODE

a symmetry of an equation (E, δ) is an endomorphism of E which is δ-

invariant, that is an element

X ∈ EndA(E)# (139)

Such an X is simply a map of the module E into itself such that it maps

solutions to solutions,

X : E → E such that X(E#) ⊂ E# (140)

We thus arrive at a natural way to introduce symmetry algebras of equa-

tions in our picture, in terms of representation theory.

Definition 8.1. A Lie algebra g is a Lie algebra of linear symmetries of

an equation (E, δ) ∈ Ob(LODE) if there is a representation

ρ : g −→ EndA(E)

such that

ρ(g) ◦ δ = δ ◦ ρ(g) , ∀g ∈ g ,

i.e. ρ maps g into δ-invariant endomorphisms of E,

ρ(g) ⊂ EndA(E)# .

Proposition 8.1. If g is a symmetry algebra of (E, δ) with associated

representation ρ, then

ρ : g → EndR(E#)

is a representation into the R-vector space E#.

We just need to recall that taking the kernel of δ commutes with the

algebraic constructions in our category, EndA(E)# = EndR(E#), ref.

Proposition 3.2.

The consequences of combining Proposition 3.2 and Theorem 3.3 are

immediate, this enables us to make use of results from the rich theory of

representations of Lie algebras into vector spaces. In particular decom-

position theorems from the theory concerning semisimple Lie algebras.

8.2. Symmetry operators. Most of the results in this section concern-

ing theory of linear differential operators are found in [11].

Proposition 8.3 and Theorem 8.2 enables the incorporation of these re-

sults in the D-module perspective. In particular, Proposition 8.3 and

Theorem 8.2 explain precisely how a symmetry operator induces a δ-

invariant endomorphism of the relevant D-module, using the formula-

tions of Section 5, and determining its action on actual solutions of the
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equation. Let K still denote the ring of linear differential operators over

R.

Definition 8.2. A symmetry operator of an equation

L(y) = y(k) + ck(x)y
(k−1) + . . .+ c1(x)y = 0 (141)

is a linear operator

∆ = b0(x) + b1(x)∂ + . . .+ bk−1(x)∂
k−1 ∈ K

with the property that there exists ∇ ∈ K such that

L ◦ ∆ = ∇ ◦ L . (142)

Note that ∆(kerL) ⊂ kerL, i. e. it maps solutions to solutions. Re-

mark: Recall the discussion in Section 6 on the jet space approach to

ODEs. Studying an equation (141) we make the following connection.

Associated to an operator ∆ = b0(x) + b1(x)∂ + . . .+ bk−1(x)∂
k−1 is the

function

f∆ = b0p0 + b1p1 + . . .+ bk−1pk−1 ∈ C∞(E)

where E
α
→ R is the linear subbundle in Jk(R) corresponding to (141).

The function f solves the Lie equation for (141) and generates a shuffling

symmetry of the Cartan distribution CE on E ⊂ JkR if and only if ∆ is

a symmetry in the above sense. See [3] for a more detailed discussion on

symmetries of Cartan distributions and their generating functions. We

denote the set of symmetries ∆ by Sym(L).

Consider more generally

Σ(L) = {P ∈ K | ∃ Q ∈ K such that L ◦ P = Q ◦ L } . (143)

Proposition 8.2. Σ(L) is

(1) an associative R-algebra with respect to composition of operators,

and

L ◦ (P1 ◦ P2) = (Q1 ◦Q2) ◦ L.

(2) a Lie algebra with respect to commutators of operators, and

L ◦ [P1, P2] = [Q1, Q2] ◦ L.

Lemma 8.1. For any P ∈ K of order l, L as in (141) there are uniquely

determined operators CP and RP in K, of order ≤ l− k and ≤ k respec-

tively such that

P = CP ◦ L +RP . (144)
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This is proved by induction and order arguments, as done in [11]. An

analogous argument shows that there are unique operators cP and rP

such that

P = L ◦ cP + rP . (145)

Theorem 8.1. For P ∈ Σ(L) the remainder RP from right division by

L as in Lemma 8.1 is an element of Sym(L). The map

R : Σ(L) → Sym(L) with R(P ) = RP

induces

(1) associative R-algebra structure on Sym(L) by

m(∆1,∆2) = R∆1◦∆2

(2) Lie algebra structure

[ · , · ]L : Sym(L) × Sym(L) → Sym(L)

by [∆1,∆2]L = R[∆1,∆2]

Proof. Let ∆ ∈ Sym(L) with associated operator ∇ s.t. L ◦ ∆ = ∇ ◦ L.

Decompose ∆ = C∆ ◦ L + R∆ according to Lemma 8.1, and likewise

∇ = L ◦ c∇ + r∇ by left division by L. Then the symmetry property

implies

L ◦ (c∇ − C∆) ◦ L = L ◦R∆ − r∇ ◦ L .

If c∇ − C∆ 6= 0 the left hand side is an operator of order > 2k, which

is impossible since the operator on the right hand side is of maximum

order 2k, whence c∇ = C∆ and L ◦ R∆ = r∇ ◦ L, which proves that

R∆ ∈ Sym(L). Statements (1) and (2) follow directly. �

In the category LODE we viewed symmetries of an equation E as δ-

invariant endomorphisms of E. We will make the link between symme-

tries viewed as endomorphisms and symmetry operators in the following

way.

Proposition 8.3. Let E = ELt be the factor D-module corresponding to

an equation

L(y) = 0.

A symmetry operator ∆ ∈ K of the equation induces a δ-invariant endo-

morphism ∆ of E

∆ : E → E (146)

defined by

[X] 7→ [X ◦ ∇t] , (147)

where ∇ ∈ K such that L ◦ ∆ = ∇ ◦ L.
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Proof. Note primarily that right composition by ∇t is well defined with

respect to choice of representative modulo Lt :

(X + A ◦ Lt) ◦ ∇t = X ◦ ∇t + A ◦ (∇ ◦ L)t =

= X ◦ ∇t + A ◦ (L ◦ ∆)t = X ◦ ∇t + (A ◦ ∆t) ◦ Lt .

Moreover, ∆ is an A homomorphism, and obviously commutes with δ:

( ∆ ◦ δ )[X] = [ ∂ ◦X ◦ ∇t ] = ( δ ◦ ∆ )[X]

Thus, ∆ ∈ EndA(E)#. �

Theorem 8.2. Given a symmetry operator ∆ of the equation L(y) = 0

the corresponding δ-invariant endomorphism ∆ : E → E acts as follows

when restricted to ker δ = E# ⊂ E:

∆ : [Xy] 7→ [X∆(y)] ,

where [Xy] ∈ E# is generated by a solution y of L(y) = 0.

Proof. We start by noting that for a representative X of a class [X] ∈

ker δ there is an associated operator A such that

∂ ◦ X = A ◦ Lt . (148)

Recall from Section 4 on primitive element bases that a solution y of

L(y) = 0, generates an element [Xy] ∈ E# on the form

[Xy] = Hk(y)e+Hk−1(y)δe+ . . .+H2(y)δ
k−2e+ y δk−1e ,

that is, with a representative

Xy = Hk(y) +Hk−1(y)∂ + . . .+H2(y)∂
k−2 + y ∂k−1 ∈ K ,

with primitive element e = [1], δe = [∂] etc. For choice of representative

Xy the left hand side in (148) is of degree k with highest degree coefficient

equal to y, whence the operator A is of degree zero, and equal to y, that

is ∂ ◦Xy = yLt. Further we know that

Xy ◦ ∇
t = Xu +B ◦ Lt (149)

for some solution u of L(y) = 0, and some operator B. Again, applying

δ to this representative yields

∂ ◦ (Xu +B ◦ Lt) = (u+ ∂ ◦B) ◦ Lt .

But ∂ ◦ (Xy ◦ ∇
t) = (∂ ◦Xy) ◦ ∇

t = (yLt) ◦ ∇t = y∆t ◦ Lt, whence

u+ ∂ ◦B = y∆t ,
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i.e. u + B ◦ ∂ = ∆ ◦ y. Collecting terms of degree zero yields precisely

that

u = ∆(y) .

�

Remark: Certainly we wish to be able to calculate the action of ∆

directly for a known symmetry ∆, whence ∇t should be directly retrieved

from ∆. If we look to the condition (142) of ∆ being a symmetry of the

equation L(y) = 0, we see the following: Recall that L = ∂k + ck∂
k−1 +

. . .+ c1. Let

∆ = A1 + A2∂ + . . . + Ak∂
k−1

∇ = B1 +B2∂ + . . . +Bk∂
k−1

On the one hand we get

L ◦ ∆ = [Ak]∂
2k−1 +

k−1∑

l=1

[Ak−l + αk−l(A, c)]∂
2k−l−1 +

k∑

l=1

φk−l(A, c)∂
k−l

where αk−l depends on the coefficient functions ci(x) of L, and Aj-s and

their derivatives for j > k − l. The functions φk−l depend on Ai-s and

ci-s. Likewise,

∇ ◦ L = [Bk]∂
2k−1 +

k−1∑

l=1

[Bk−l + βk−l(B, c)]∂
2k−l−1 +

k∑

l=1

ψk−l(B, c)∂
k−l

where, similarly βk−l depends on the coefficient functions ci(x) of L, and

Bj-s and their derivatives for j > k − l. The functions ψk−l depend on

Bi-s and ci-s. Thus, by setting L ◦ ∆ = ∇ ◦ L and collecting terms of

the same order in ∂ we arrive at 2k equations. The first k equations

determine the Bi-s in terms of Aj-s and ci-s:

(i) Bk =Ak

(ii) Bk−1 =Ak−1 + αk−1(Ak, c) − βk(Bk, c)

...

(l + 1) Bk−l =Ak−l + αk−l(Ak−l+1, . . . , Ak, c) − βk−l(Bk−l+1, . . . , Bk, c)

...

(k) B1 =A1 + α1(A2, . . . , Ak, c) − β1(B2, . . . , Bk, c)

Starting with equation (i) and successively substituting into the following

equations we find the Bi-s in terms of the coefficients Ai of ∆, and the
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coefficients ci of L. Thus ∇, and subsequently ∆ is derived directly from

∆. The last k equations are the differential equations

(k + 1) ψk−1(B, c) = φk−1(A, c)

...

(2k) ψ0(B, c) = φ0(A, c)

that determine conditions on Aj-s for ∆ to be a symmetry, Lie equations

for L.

8.3. Skew- and self- adjoint equations. Note that the map

φ : Sym(L) −→ Sym(Lt)

∆ 7→ ∇t (150)

is an isomorphism. Whenever L is skew- or self-adjoint, i.e Lt = ±L, we

note that

φ : Σ(L) −→ Σ(L) (151)

and likewise

φ : Sym(L) −→ Sym(L) (152)

gives us an involution on symmetries, φ2 = Id. Whence the Σ(L) and

the symmetry space decompose into

Σ(L) = Σ0(L) ⊕ Σ1(L) ,

Sym(L) = Sym0(L) ⊕ Sym1(L) ,

where

Σ0(L) = {∆ |L ◦ ∆ = ∆t ◦ L} , (153)

Σ1(L) = {∆ |L ◦ ∆ = −∆t ◦ L} , (154)

and Syma(L) = Σa(L) ∩ Sym(L).

Theorem 8.3. Let L be skew- or self-adjoint. Then

Sym(L) = Sym0(L) ⊕ Sym1(L)

is a Z2-graded Lie algebra, i.e.

[Syma(L) , Symb(L) ] ⊂ Syma+b(L)

a, b ∈ Z2.
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8.4. Symmetries of second order equations. We will investigate in

detail the symmetry equation of a second order equations, using both

the operator approach and direct calculation in the module of endomor-

phisms of the equation, and thus illustrate both methods. Consider the

equation

L(y) = y′′ + (a2y)
′ − a1y = 0 (155)

Note that the corresponding module (E, δ) has primitive element basis

{e1 = e, e2 = δe} with δ2e = a1e + a2δe. The module of endomorphisms

(EndA(E), δ) may be identified with (E∗ ⊗ E, δ), and we may write a

general endomorphism

F = F1(x)e
∗
1 ⊗ e1 + F2(x)e

∗
1 ⊗ e2 + F3(x)e

∗
2 ⊗ e1 + F4(x)e

∗
2 ⊗ e2 . (156)

Thus

δF = 0

if and only if the coefficient functions Fi satisfy the system

(i) F ′
1 +a1F2 −F3 = 0

(ii) F ′
2 +F1 +a2F2 −F4 = 0

(iii) F ′
3 −a1F1 −a2F3 +a1F4 = 0

(iv) F ′
4 −a1F2 +F3 = 0

(157)

Adding (i) and (iv) yields

F ′
4 = −F ′

1

Integrating, we get that

F4 = −F1 + c

for some constant c ∈ R. Denoting

F2 = p(x) (158)

equation (ii) implies that

F1 =
1

2
(c− p′ − a2p) , (159)

and thus,

F4 =
1

2
(c+ p′ + a2p) . (160)

Finally, from (i) we get that

F3 =
1

2
(−p′′ − (a2 p)

′ + 2a1p) (161)

and (iii) becomes

p′′′ + (2a′2 − a2
2 − 4a1)p

′ + (a′′2 − a2a
′
2 − 2a′1)p = 0 (162)



188 C. V. JENSEN

This may be summed up as follows. In matrix form, F is given by

MF =

[
1
2
(c− p′ − a2p) a1p−

1
2
((a2 p)

′ + p′′)

p 1
2
(c+ p′ + a2p)

]
(163)

where p = p(x) solves equation (162) and c ∈ R. Note that this tells us

that, as a D-module,

EndA(E) ∼= E0 ⊕ E1

where (E0, δ0) and (E1, δ1) are the D-modules corresponding to equations

s′ = 0

and

p′′′ + (2a′2 − a2
2 − 4a1)p

′ + (a′′2 − a2a
′
2 − 2a′1)p = 0

respectively. (E0, δ0) contributes with the trivial part of our invariant F ,

the constant c. This part c
2
(e∗1 ⊗ e1 + e∗2 ⊗ e2) only acts by multiplying

an element in E by c
2
.

Calculating the symmetry equation using the operator approach yields

the following. Our equation is given by

L = ∂2 + ∂a2 − a1 .

Recall that a first order linear operator

P = P1 + P2∂

is a symmetry of the equation Ly = 0 if there is an operator

Q = Q1 +Q2∂

such that

L ◦ P = Q ◦ L . (164)

Setting L ◦ P = Q ◦ L and collecting terms of the same order gives four

equations, of which the two first determine the functions Q1 and Q2 in

terms of P1 and P2, as promised in Section 8.2 :

Q2 = P2 , (165)

Q1 = P1 − a2Q2 + 2P ′
2 + a2P2 , (166)

thus

Q1 = P1 + 2P ′
2 (167)

The two last equations are

P ′′
2 + (a2P2)

′ + a1P2 + 2P ′
1 + a2P1 − a2Q1 − a1Q2 − 2a′2Q2 = 0 (168)

P ′′
1 + (a2P1)

′ + a1P1 − a′′2Q2 − a′1Q2 − a′2Q1 − a1Q1 = 0 .(169)
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They become

P ′′
2 − (a2P2)

′ + 2P ′
1 = 0 , (170)

P ′′
1 + a2P

′
1 − 2a1P

′
2 − 2a′2P

′
2 − (a′1 + a′′2) = 0 , (171)

of which the first may be integrated to give us

P1 =
1

2
(a2P2 − P ′

2) + c (172)

for c ∈ R. Setting P2 = p(x) we arrive at the following. Any symmetry

operator of equation (155) is on the form

P = c +
1

2
(a2p− p′) + p ∂ (173)

where p = p(x) solves

p′′′ + (2a′2 − a2
2 − 4a1)p

′ + (a′′2 − a2a
′
2 − 2a′1)p = 0 . (174)

This equation is precisely equation (162), which we arrived at when con-

sidering endomorphisms of our equation.

Again,

Sym(L) ∼= Symtr ⊕ Symeq

where Symtr is the trivial part, i.e P = c ∈ R, a solution of the equation

s′ = 0.

There is another property to note from the non-trivial symmetry equa-

tion (162). It is the symmetric 2-power, S2(E0), of the equation

L0 = ∂2 +W (x) , (175)

where

W (x) =
1

2
a′2 −

1

4
a2

2 − a1 . (176)

From Theorem 4.1 we know that if {u, v} is a set of fundamental solution

{u, v} of the equation

L0(u) = 0 , (177)

then {u2, uv, v2} are fundamental solutions of

S2(L0)(p) = 0 . (178)

Thus, we may produce symmetries from solutions of

u′′ + (
1

2
a′2 −

1

4
a2

2 − a1 )u = 0 (179)

by operators Pu2 , Puv and Pv2 .
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9. Solvable symmetry algebras and quadratures

It is a general opinion that to solve an ODE by quadratures with

the use of symmetries one needs a solvable algebra of symmetries of

dimension equal to the order of the equation. In [3] it is shown that

knowing a solvable k-dimensional transversal Lie algebra of symmetries

of a kth order ODE (in general non-linear) one can find the general

solution by quadratures. In this geometric approach the method consists

of finding a complete set of first integrals of the Cartan distribution of the

equation by integrating closed 1-forms and solving functional equations,

where the solvability of the algebra is crucial to recover the appropriate

1-forms.

Our approach here is somewhat different, and we shall see that whether

we are able to solve an ODE directly by quadratures is not dependent

on the order of the equation or the dimension of its symmetry algebra,

but rather on eigenvalues of symmetries viewed as endomorphisms of the

corresponding D-module. Thus it may happen that a single symmetry

is sufficient to solve an equation, conditions for this are stated in in

Theorem 9.1.

In Theorem 9.7 a sufficient condition for an equation with a solvable

symmetry algebra to be solved directly by quadratures is given, with no

requirement on the dimension of the algebra.

9.1. Decomposition of equations by eigenspaces of symmetries.

We begin this section with a result that should be kept in mind whenever

working with symmetries of equations. It is not limited to any particular

type of symmetry algebra, and even states that a single symmetry may

be enough to solve an equation by quadratures, regardless of order of the

equation, the only factor being eigenspaces of the action of the symmetry.

Given an equation (E, δ) with a symmetry X ∈ EndA(E)#, for λ ∈ R

denote

Eλ = { h ∈ E | X(h) = λh }, (180)

For a non-empty Eλ we call λ a eigenvalue of X.

Proposition 9.1. Eλ is a sub-D-module of E.

Proof. Eλ is obviously a sub-module of E. For h ∈ E,

X(δh) = δ(X(h)) = δ(λh) = λ · δh

since X commutes with δ, thus δ(Eλ) ⊂ Eλ, and Eλ is a D-module. . �

The rank of the module Eλ over A we will call the multiplicity of λ.
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Theorem 9.1. Let (E, δ) be a D-module of rank n, and X a symmetry

of E. If X has n distinct eigenvalues λ1, . . . , λn, all of multiplicity 1,

then

E = Eλ1
⊕ . . .⊕ Eλn

, (181)

and E is solvable by quadratures.

Proof. The Eλi
are all non-empty by definition, and are sub-D-modules

of E. Since the eigenvalues are distinct, the Ei-s don’t intersect, and

they span the whole of E, since there are n. Each Eλi
corresponds to

a first order equation which is identified by applying δ to an arbitrary

element wi ∈ Eλi
. If δwi = αiwi, then the corresponding equation is

u′i + αiui = 0

and elements ei = uiwi, where the ui solve the Eλi
-equations span the

solution space E# ⊂ E. �

The Theorem describes a situation where we get a maximal decompo-

sition of the module E by pure algebraic calculations, due to the fact that

multiplicities equal 1 for all eigenvalues. We may encounter situations

where we have eigen-module decomposition of E with multiplicities of

eigenvalues larger than 1.

Theorem 9.2. Let (E, δ) be a D-module of rank n, and X a symmetry

of E. If X has k distinct eigenvalues λ1, . . . , λk, of multiplicities mi

respectively, with
∑k

i=1mi = n, then

E = Eλ1
⊕ . . .⊕ Eλk

. (182)

Proof. The Eλi
are non-empty, non-intersecting sub-D-modules of E.

The sum of their ranks over A equals the rank of E, thus they span

the whole of E and their direct sum equals E. �

Note: Knowing a decomposition of E as in Theorem 9.2 corresponds

to knowing a set of equations of lower order whose solution spaces span

the solution space of the original equation. Assume that we know a

decomposition of E into modules Eλj
, i.e. we know a set of “eigenvectors”

{wj
1, . . . , w

j
mj
} in E that span Eλj

. To identify the equation corresponding

to (Eλi
, δ), simply apply δ to the wj

i . If

δ wj = Aj(x)w
j

for some matrix Aj(x), then the corresponding ODE is the mj × mj

system

f ′ + AT
j f = 0 (183)
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If f j

i
, i = 1, . . . , mj are solutions of the respective (Eλj

, δ) systems, then

E# is spanned by

E# = SpanR{ f
j

i
· wjT , i = 1, .., mj , j = 1, .., k } ⊂ E .

9.2. Solving and decomposition procedures for solvable alge-

bras. We turn to study D-modules (E, δ) with a solvable symmetry

algebra. Following the nature of solvable Lie algebras, we shall describe

a procedure whose aim is to identify a chain Ei ⊂ Ei−1 of sub D-modules

in E of codimension 1 at each step so as to solve the total equation by

combined algebraic operations and quadratures. We begin by recalling

the Lie Theorem for representations of solvable Lie algebras.

Theorem 9.3. (Lie) Let g be a solvable Lie algebra over a base field

F , char(F ) = 0 and F algebraically closed. Given a representation

g → EndF (V ), V 6= 0 a finite dimensional vector space over F , there

exists a non-zero v ∈ V such that it is a common eigenvector for the

whole action of g. I. e.

ρ(g)(v) = λ(g)v , ∀g ∈ g

for a weight λ ∈ g∗.

As seen earlier, structures on the vector space level V = E# can be

lifted to the D-module E, due to Theorem 3.3. To apply Lie’s Theorem

in full generality we need the base field, F , to be algebraically closed,

so if needed we may assume that we work with C-valued smooth real

functions, i.e with AC = C∞(R,C) = C ⊗R A, δAC
being the usual

derivative in x. The analogue of the Lie Theorem for D-modules then

reads as follows.

Theorem 9.4. (D-Lie) Let g be a solvable algebra under the conditions

in Theorem 9.3, and a symmetry algebra of (E, δ), a D-module over

(AC , δAC
). Then there exists β ∈ E and λ ∈ g∗ ⊗ C such that

ρ(g)(β) = λ(g)β , ∀g ∈ g .

Proof. Applying Lie’s Theorem to the representation

ρ : g → EndC(V ),

with V = E#, ensures that there exists an element v ∈ V which is

a common eigenvector of the dual representation, with a corresponding

λ ∈ g∗ ⊗ C. Any multiple β = f(x)v ∈ E, f(x) ∈ AC satisfies g(β) =

λ(g)β, the action of g being linear in functions. �
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Definition 9.1. Given a symmetry algebra g of an equation (E, δ) with a

corresponding representation ρ : g → EndAC
(E). An element λ ∈ g∗ ⊗C

such that the associated sub-module

Eλ = { β ∈ E | ρ(g)(β) = λ(g)β ∀g ∈ g } ⊂ E (184)

is non-empty, is called a weight of the representation. The rank of Eλ

over AC is called the multiplicity of λ, and Eλ the associated eigen-sub

module.

Proposition 9.2. For a weight λ of a representation of a symmetry

algebra g of an equation (E, δ), Eλ is a sub-D-module of E.

Proof. The proof is almost identical to the proof of Proposition 9.1. Eλ

is obviously a sub-module, and δ(Eλ) ⊂ Eλ since

ρ(g)(δh) = δ(ρ(g)(h)) = δ(λ(g)h) = λ(g) · δh

for any g ∈ g, h ∈ Eλ. Thus Eλ is a D-module. �

The next step will be to recognize that the existence of a common eigen-

vector of the dual representation of g into E∗ ensures that there exists a

sub-module E1 ⊂ E of codimension 1.

Corollary 9.1. There exists α ∈ E∗ and λ ∈ g∗ ⊗ C such that

ρ∗(g)(α) = λ(g) · α ∀g ∈ g .

If the multiplicity of λ, i. e. rankAC
E∗

λ, is 1, then

E ′ = kerα ⊂ E (185)

is a codimension 1 sub-D-module of E, which is stable under the repre-

sentation of g.

Proof. The existence of α follows directly from Theorem 9.4. kerα =

Ann(E∗
λ) is a sub-module in E, due to the AC-linearity of α : E → AC .

Also,

< α, ρ(g)h >=< ρ∗(g)α, h >= λ(g) < α, h > , (186)

so ρ(g)(kerα) ⊂ kerα for all g ∈ g. E∗
λ is of rank 1, so α spans E∗

λ, with

δ(α) = f(x)α

for some f(x) ∈ AC . By definition

δα = α ◦ δ − δ ◦ α

so, combining the two yields

α(δh) = (δα)(h) + δ(α(h)) = (f(x) + δ )(α(h)).
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Whence, h ∈ kerα implies that δ(h) ∈ kerα, thus kerα is a D-module.

�

Theorem 9.5. Given a D-module (E, δ) with a sub-D-module

E ′ ⊂ E

of codimension 1 for which we know a full set of solutions. Then we can

solve the whole of E by quadratures.

Proof. Let h1, . . . hn−1 ∈ E# be a basis of E ′. Pick any element hn ∈

E \E ′, δhn =
∑n

i=1 fi(x)hi. For a general element s =
∑n

i=1 si(x)hi ∈ E

we get

δs =

n∑

i=1

(s′i + fisn)hi .

Thus δs = 0 if and only if

s′1 + f1sn = 0

s′2 + f2sn = 0
...

s′n + fnsn = 0

i. e. s′i = −fiv where v solves the last equation, v′ + fnv = 0, and

{s, h1, . . . , hn−1} ⊂ E# is a basis of the whole module E over A. �

So, if we have a procedure for stepwise identifying sub-modules of

codimension 1, starting with E1 ⊂ E, we can solve the equation by

quadratures.

Theorem 9.6. Let (E, δ) be a D-module with a solvable Lie algebra of

symmetries. Then there exists a filtration of E by sub-D-modules

0 ⊂ En ⊂ . . . ⊂ E2 ⊂ E1 ⊂ E ,

where Ei+1 ⊂ Ei is of codimension 1 at each step.

Proof. Applying Lie’s Theorem for vector spaces to the dual representa-

tion

ρ∗ : g → EndC(V ∗)

ensures that there exists an element v∗ ∈ V ∗, V ∗ = (E∗)#, which is

a common eigenvector of the dual representation, with a corresponding

λ ∈ g∗ ⊗ C. It is clear that

V1 = ker v∗ ⊂ V
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is a sub-space of codimension 1 of V . Denote by E1 the sub-module of

E generated by kerv∗ ⊂ V ∗ over AC ,

E1 = {
∑

fi(x)vi | fi ∈ AC , vi ∈ ker v∗ } .

The module E1 is in fact a D-module, since δ(E1) ⊂ E1, by

δ(
∑

fivi) =
∑

(f ′
ivi + fiδvi) =

∑
f ′

ivi ∈ E1 ,

for a general element
∑
fivi in E1.

Moreover, E1, as well as ker v∗, is stable under the action of g:

< v∗, ρ(g)(w) > = < ρ∗(g)v∗, w > = λ(g) < v∗, w > ,

so w ∈ ker v∗ ⊂ V implies that ρ(g)(w) ∈ ker v∗, for any g ∈ g. The

AC-linearity of v∗ gives the same result for E1, thus the representation of

g restricts to E1. Repeating the procedure n = rank(E) times, starting

with E1, proves that the desired filtration exists. �

Note to Theorem 9.6: Theorem 9.6 merely says something about

the existence of such a filtration, it uses the underlying vector space

V ∗, which is of course, in general unavailable to us, since knowing it

corresponds to having solved the equation in the first place. In practice

we will always work with the representation into the module E. The main

obstruction in this algorithm to reduce the problem to quadratures, is

to get codimensions 1 for the desired sub-D-modules with pure algebraic

tools.

Theorem 9.7. Let (E, δ) be a D-module of rank n with a solvable sym-

metry algebra g. If there are n distinct weights λ1, . . . , λn of multiplicity

1 of the dual representation of g into E∗, then a filtration

0 ⊂ En ⊂ . . . ⊂ E2 ⊂ E1 ⊂ E , codim(Ei ⊂ Ei−1) = 1 ,

can be found directly, whence E can be solved directly by quadratures.

Proof. Given a filtration of sub-D-modules as above, Theorem 9.5 ex-

plains how to stepwise solve E by quadratures, starting with the first

order equation En. To find the filtration, start with an arbitrary eigen-

value λ1 of the dual representation, find E∗
λ1

= {α ∈ E∗ | ρ∗(g)(α) =

λ1(g)(α) }, and take E1 to be the annihilator of E∗
λ1

in E,

E1 = Ann(E∗
λ1

) = { e ∈ E |α(e) = 0 , ∀α ∈ E∗
λ1
} .

The D-module E1 is of codimension 1 in E. An arbitrary remaining λi

will produce a sub-D-module E∗
λi

with E∗
λi
∩ E∗

λ1
= 0. We may choose

λ2, and take

E2 = Ann(E∗
λ2

) ⊂ E1 ⊂ E ,
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which is again necessarily of codimension 1 in E1. Repeat for the remain-

ing eigenvalues, and get the whole filtration. �

10. Equations with semisimple symmetry algebras

Semisimple algebras are popular in representation theory, as there is

a general theory on how to decompose representations of semisimple Lie

algebras into irreducible representations, and up to isomorphisms more

or less everything is known about irreducible representations for the clas-

sical (semi)simple Lie algebras. By using Theorem 3.3 we are now ready

to transfer results on representations of Lie algebras into vector spaces,

to D-modules and ODEs. We find that for a number of equations with

semisimple symmetry algebras we obtain solvability by algebraic meth-

ods. An algorithm to decompose and solve equations is provided.

10.1. General results for semisimple symmetry algebras. Some

results from representation theory of Lie algebras into vector spaces de-

pend on having an algebraically closed base field, as seen in the section

on solvable algebras. This problem occurs whenever we encounter eigen-

value calculations; to be able to say something about roots of character-

istic polynomials in general, we need algebraic closure of the coefficient

field. And this is certainly a crucial part of studying representations of

semisimple algebras, where calculating roots and weights is more or less

the whole trick. Thus, we may, as in Section 9, choose to work with

modules over complex valued functions, AC = C∞(R,C) = C⊗RA, with

δAC
being the usual derivative in real variable x.

Let g be a semisimple algebra (over C whenever algebraic closure of

the base field is necessary), and R(g) the associated Grothendieck ring

of isomorphism classes of finite dimensional vector space representations

of g.

Definition 10.1. Denote by D(g) the ring of isomorphism classes of D-

modules with a semisimple symmetry algebra g. We shall refer to D(g)

as the symmetry ring of g.

Let ω1, . . . , ωn be a set of fundamental weights for g, and let Γ1, . . . ,Γn

denote the corresponding isomorphism classes inR(g) with highest weights

ω1, . . . , ωn. Recall the following result from the theory of representations

of semisimple Lie-algebras, see e.g. [4].

Theorem 10.1. The representation ring R(g) is a polynomial ring in

the variables Γ1, . . . ,Γn.



SOLVING AND DECOMPOSING LINEAR ODES 197

Combining Theorems 10.1 and 3.3 we immediately get the following.

Theorem 10.2. For a semisimple Lie algebra g the symmetry ring D(g)

is a polynomial ring in classes of D-modules E1, . . . , En such that for

each i = 1, . . . n E#
i is isomorphic to Γi as a g-space.

We will call D-modules E1, . . . , En generators of D(g).

Corollary 10.1. Let (E, δ) be a D-module with a semisimple algebra of

symmetries g. Then E is isomorphic, as a g-module, to a polynomial

P (Ei) in generators E1, . . . , En of D(g).

An equation that corresponds to an irreducible representation Γi, as-

sociated to a highest weight ωi of g as above we will call a model equation

for this symmetry algebra.

10.2. sl2 equations. Representations of the Lie algebra sl2(R) has a

special place in the view of symmetric powers of second order equations,

given that all irreducible representations of sl2(R) are isomorphic to sym-

metric powers of the standard two dimensional representation.

10.3. Schrödinger equations. Equations on the following type we will

denote as being of Schrödinger type, with potential W (x).

y′′ +W (x)y = 0 (187)

It is self adjoint, hence the corresponding module E is isomorphic to E∗.

Conditions for

∆ = a1 + a2∂

to be a symmetry operator of (187) are by direct calculation found to be

that a2 solves

z′′′ + 4Wz′ + 2W ′z = 0 (188)

and that a1 =
−a′

2

2
. Thus symmetries are given by generating functions

that solve (188), i.e.

∆a = −
a′

2
+ a∂ , a ∈ Sol(188)

In Section 8.4 we studied the symmetry equation of general second order

equations in detail. Recall that the non-trivial symmetries of an equation

Ly = 0 were generated by solutions of the equation S2(L0) where

L0 = ∂2 + (
1

2
a′2 −

1

4
a2

2 − a1 )
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For a Schrödinger equation (187) a2 = 0, a1 = −W (x), so

L0 = ∂2 − a1 = ∂2 +W = L (189)

Theorem 10.3. For a Schrödinger equation

L(y) = y′′ +Wy = 0 (190)

the symmetry equation is its second symmetric power, i. e.

Sym(L) = {∆a = −
a′

2
+ a∂ | a solves S2(L)(z) = 0 }

where

S2(L) = ∂3 + 4W∂ + 2W ′ (191)

Moreover,

Sym(L) ∼= sl2 (192)

as Lie algebras, where the Lie bracket operation in Sym(L) is the com-

mutator of symmetry operators.

Proof. The calculations in Section 8.4 and discussions above prove that

Sym(L) ∼= S2(E)# ∼= Sol(188). Sym(L) is a Lie algebra with respect

to commutators of operators, as discussed in Section 8.2, on symmetry

operators. To prove that it is isomorphic to sl2(R) one may calculate

symbolically with a set of fundamental solutions of (188), using differen-

tial relations, and get the desired result. However, the proposition that

follows enables us to prove this in yet another way. �

Proposition 10.1. The commutator of symmetry operators in Theorem

10.3 corresponds to the following Lie bracket 〈·, ·〉 on the solution space

of the symmetry equation (188), given by

[∆a,∆b] = ∆〈a,b〉 (193)

which yields simply

〈a, b〉 = ab′ − a′b

for a, b ∈ Sol(188). Denote the equivalent Lie bracket on S2(E)#

[ · , · ] : S2(E)# × S2(E)# → S2(E)# (194)

where

[ θa , θb ] = θ〈a,b〉 (195)

for elements θa, θb ∈ S2(E)# generated by solutions a, b of (188). The so-

lution space of (188) is isomorphic to sl2(R) with respect to this bracket.
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Proof. Calculating the commutator [∆a,∆b] directly gives precisely the

formula 〈a, b〉 = ab′ − a′b. Theorem 4.1 asserts that solutions a, b of the

S2(E)-equation are linear combinations of solutions u2, uv, v2 where u, v

are linear independent solutions of the Schrödinger equation. Whence,

we may calculate all brackets of elements from a basis {u2, uv, v2} of the

solution space of the symmetry equation (188), and will find that as a

Lie algebra it is isomorphic to sl2(R). �

Corollary 10.2. The Lie bracket [ · , · ] on S2(E)# in Proposition 10.1

extends by A-linearity to a bracket

[ · , · ] : S2(E) × S2(E) → S2(E) (196)

with respect to which (S2(E), δ) is a D-Lie-algebra.

Proof. Theorem 3.3 states that S2(E)# spans S2(E) over A, thus the

bracket extends in a well-defined way by A-linearity to S2(E), with the

Lie-bracket properties intact. We need only check that [ · , · ] commutes

with δ in accordance with Definition 3.3. Let X = f1θ1, Y = f2θ2, with

fi ∈ A, θi ∈ S2(E)#. Then

δ[X, Y ] = δ[ f1θ1, f2θ2 ] = δ( f1f2 [ θ1, θ2 ])

= (f1f2)
′ [ θ1, θ2 ] + f1f2 δ[ θ1, θ2 ]

= (f ′
1f2 + f1f

′
2) [ θ1, θ2 ] = [ f ′

1θ1, f2θ2 ] + [ f1θ1, f
′
2θ2 ]

= [ δ(f1θ1), f2θ2 ] + [ f1θ1, δ(f2θ2) ]

= [ δX, Y ] + [X, δY ]

whence S2(E) is a D-Lie algebra. �

10.4. Symmetric powers of a Schrödinger equation. We shall see

that the Schrödinger equations have special properties. From our ba-

sic equation we can derive a whole hierarchy of new equations Sk(E).

Throughout this section we will work with Sk(E∗), choosing to work

with the dual module E∗ merely simplifies calculations, and generates

exactly the same equations as the module E.

In Section 4 symmetric powers of second order equations were discussed

in some detail. Let (E, δ) be the D-module corresponding to

y′′ +Wy = 0 (197)

with basis {e∗1, e
∗
2} dual to the primitive element basis of E. As before,

denote the induced basis of Sk(E∗)

{ αl = (e∗1)
k−l+1 · (e∗2)

l−1 , l = 1, . . . , k + 1 } (198)
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For Schrödinger equations with a1 = −W (x), a2 = 0 we get that

δ : αl 7→ (k − l + 1)W αl+1 − (l − 1)αl−1 (199)

for l = 1, . . . , k + 1. For a general element

θ =
k+1∑

l=1

gl(x) αl (200)

in Sk(E∗), the requirement δθ = 0 results in the system of k+1 equations

g′s + (k − s+ 2)Wgs−1 − s gs+1 = 0 (201)

s = 1, . . . , k+1. Thus, for Schrödinger equations Proposition 4.2 has the

following form.

Proposition 10.2. For each k the kernel Sk(E∗)# consists of elements

θy = yα1 + y′α2 +
k+1∑

l=3

gl(y)αl , y ∈ Sol(k) (202)

where

gl =
1

l − 1
[ (k − l + 3)W · gl−2 + g′l−1 ] (203)

for l = 2, .., k + 1, where g1 = y solves the Sk(E∗) equation, i.e. the

equation in y we get from setting

δθy = 0

for θy on the form (202), with gl-s expressed in derivatives of y.

Fix (k) below to denote the equation Sk(E∗). They are of the form

y′′ +Wy = 0

y′′′ + 4Wy′ + 2W ′y = 0

y(4) + 10Wy′′ + 10W ′y′ + (9W 2 + 3W ′′)y = 0

y(5) + 20Wy′′′ + 30W ′y′′ + [64W 2 + 18W ′′]y′ + [64WW ′ + 4W ′′′]y = 0

and so on. Focusing on the hierarchy of symmetric powers of Schrödinger

equations we shall now see that the bracket operation on S2(E∗) extends

to the whole hierarchy. The bracket in Corollary 10.2 can be obtained in

a different way.

Proposition 10.3. Let (E, δ) be the D-module corresponding to the

Schrödinger equation (197). The equation corresponding to its second

exterior power, (
∧2(E∗), δ), is

u′ = 0 .
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that is, Ω = e1 ∧ e2 is δ-invariant. Here {e1, e2} is the standard prim-

itive element basis of E. Moreover, Ω determines a δ-invariant skew-

symmetric, A-linear bracket operation on E∗ defined by

[ θ1 , θ2 ] = 〈 θ1 ∧ θ2 , Ω 〉

for θ1, θ2 ∈ E∗.

Proof. The skew-symmetric form Ω = e1 ∧ e2 ∈
∧2(E), is in the kernel

of δ:

δΩ = e2 ∧ e2 + e1 ∧ (a1e1 + a2e2) = a2e1 ∧ e2 = 0

since a1 = −W, a2 = 0. The bracket is thus δ-invariant and obviously

skew-symmetric and A-linear, due to the properties of Ω. �

Proposition 10.4. Given a D-module (E, δ) corresponding to an equa-

tion of Schrödinger type as in Theorem 10.3, there is a unique skew-

symmetric bracket

[ · , · ] : Sm(E∗) × Sn(E∗) → Sm+n−2(E∗)

for all m,n ≥ 1 which is

(i) A-linear.

(ii) [ f · g , h ] = f · [ g , h ] + g · [ f , h ] ∀f, g, h ∈ S ·(E∗)

(iii) For n = m = 1 the bracket coincides with the bracket in Proposi-

tion 10.3.

Proof. Given the bracket operation in Proposition 10.3 the properties

(i)− (ii) determine its extension to symmetric powers Sm(E∗)×Sn(E∗).

�

We immediately observe that Ω being δ-invariant implies that so is the

extended bracket [ · , · ]. Thus, it restricts to kernels of δ-s as follows.

Proposition 10.5. The bracket operation in Proposition 10.4 restricts

to kernels (Sk(E∗))# = Sk(V ), where V = (E∗)#. The bracket

[ · , · ] : Sm(V ) × Sn(V ) −→ Sm+n−2(V )

has the properties

(i) R-linearity

(ii) [ f · g , h ] = f · [ g , h ] + g · [ f , h ] , ∀f, g, h ∈ S ·(V )

This is obviously equivalent to a bracket on the solution spaces of the

symmetric power equations,

[ · , · ] : Sol(m) × Sol(n) → Sol(m+ n− 2)
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with

[ θy , θz ] = θ[y,z]

for solutions y, z of Sm(E∗) and Sn(E∗) equations respectively. This

means that solutions of the S2(E∗) equation (188) produce symmetries

of all equations Sk(E∗), and not only E∗.

Theorem 10.4. Any solution a ∈ Sol(S2(E∗)) produces a symmetry

Om
θa

def
= [ θa , · ] : Sm(E∗) −→ Sm(E∗)

The corresponding symmetry operator is

O = Om
a : Sol(m) −→ Sol(m) (204)

with the correspondence

Om
θa

(βy) = βOm
a (y)

The precise expression is

Om
a =

1

2
(−ma′ + 2a∂ ) (205)

for any m ≥ 1, a ∈ Sol(S2(E∗)). Due to Theorem 3.3 we know that two

linearly independent solutions

u, v ∈ Sol(E∗ ) ⇒ basis { θu, θv } ⊂ V of E∗ over A (206)

Hence, for any k ≥ 1,

{ θuk−lvl = θk−l
u · θl

v } ⊂ Sk(V ) , 0 ≤ l ≤ k (207)

is the basis of Sk(E∗) over A corresponding to the fundamental set of

solutions

uk−lvl ∈ Sol(k) , 0 ≤ l ≤ k

It is now easy to calculate the action of the symmetries

Ok
1 = Ok

u2 , Ok
2 = Ok

uv , Ok
3 = Ok

v2 (208)

on basis elements θuk−lvl just in terms of brackets of the generating func-

tions.

Theorem 10.5. For any k ≥ 1 the symmetries of Sk(E∗)

X+ = −
1

2c
Ok

3 , X− =
1

2c
Ok

1 and H =
1

c
Ok

2

where c = 〈u, v〉 ∈ R constitute a basis of the sl2(R)-algebra of symme-

tries ∼= Sol(ii) with commutators

[X+, X−] = H , [H,X+] = 2X+ , [H,X−] = −2X−
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Hence, Sk(E∗) decomposes into rank 1 sub-D-modules corresponding to

different eigenvalues of H

Sk(E∗) = 〈θuk〉A ⊕ 〈θuk−1v〉A ⊕ . . . ⊕ 〈θvk〉A

−k,−k + 2, . . . , k − 2, k

Proof. The commutator relations are calculated directly in terms of the

brackets

[v2, u2] = −4cuv , [uv, v2] = 2cv2 , [uv, u2] = −2cu2

and knowing the form of the operators Ok
i from (205). Furthermore,

H(θuk−lvl) = (2l − k)θuk−lvl

for 0 ≤ l ≤ k. Certainly

X+ : Eigλ(H) → Eigλ+2(H)

X− : Eigλ(H) → Eigλ−2(H)

where Eigλ(H) denotes the eigen-submodule of H corresponding to the

eigenvalue λ. It is generated over A by the eigenspace in Sk(V ) of H. �

Theorem 10.6. A D-module (E, δ) with a representation of symmetries

sl2(R) → EndA(E)

is decomposable into a direct sum of D-modules

E =

m⊕

i=1

Ei

where each Ei is an irreducible subrepresentation of E. Moreover, each

Ei is isomorphic to Sni(Mi) as a D-module and as an sl2(R)-module, for

a rank 2 D-module Mi.

Proof. The representation of symmetries into E restricts to a representa-

tion of sl2(R) in the R-vector space V = E# ⊂ E, hence it decomposes

into a direct sum of representations

V = ⊕m
i=1Vi

where the Vi are subspaces of V such that restricted to Vi the represen-

tation is irreducible. But any irreducible representation of sl2(R) into

a vector space of dimension ni (< ∞) is isomorphic to the (ni − 1)th

symmetric power of the standard two dimensional representation, i.e.

each Vi
∼= Sni−1(Wi), where dimR(Wi) = 2 for all i. Recall that the

symmetries commute with δ in E, hence Ei = A · Vi, the A-module gen-

erated of Vi over A. Due to Theorem 3.3 the vector space isomorphism
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Vi
∼= Sni−1(Wi) lifts to an isomorphism of D-modules Ei

∼= Sni(Mi),

where Sni(Mi) is generated of Sni(Wi) over A.

�

Corollary 10.3. Let (E, δ) be a D-module with an sl2(R) algebra of

symmetries as in Theorem 10.6. If the irreducible sl2(R)-modules Ei in

its decomposition are of distinct ranks, then the equation corresponding

to E can be solved by algebraic operations and quadrature.

Corollary 10.4. Let (E, δ) be a D-module with an sl2(R) algebra of sym-

metries as in Theorem 10.6. If there are irreducible sl2(R)-modules Ei

of ranks m1, . . . , mk > 1 in its decomposition, then the obstruction to

solve the equation corresponding to E by algebraic operations and quad-

rature is k first order systems of ODEs, with size m1 ×m1, . . . , mk ×mk

respectively.

See Subsection 10.5 for a detailed account on how to decompose and

solve sl2(R)-equations.

Example 10.1. A Schrödinger equation

y′′ +W (x)y = 0

is a model equation of sl2(R).

10.5. Algorithm to solve sl2(R)-equations. The calculations preced-

ing Theorem 10.6 tell us how we should approach sl2(R)-modules in order

to find its complete reduction, identify sub-D-modules Mi as in Theorem

10.6, and eventually solve the original equation. Theorem 4.1 tells us

that

Solutions of Mi ⇒ Solutions of S li(Mi) ⇒ Solutions of E

An outline of the algorithm is as follows. Step 1 Given an sl2(R)-D-

module (E, δ) as in Theorem 10.6, find a basis {X+, X−, H} of its sl2(R)-

algebra of symmetries that satisfies the commutator relations in Theorem

10.5. Calculate the eigen-sub-modules Eλi
in E corresponding to weights

{λ1, . . . , λk} of the diagonal element H. This yields a decomposition

E = ⊕k
i=1Eλi

such that

X+ : Eλi
→ Eλi+2

and

X− : Eλi
→ Eλi−2

The rank of Eλi
over A is the multiplicity of the weight λi, which we

denote mi. Given a decomposition of E as in 10.6, then the values of the
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weights are precisely integers λj = 2j − ni , 0 ≤ j ≤ ni, i = 1, . . . , m.

Step 2 Identify all λi-s of multiplicity mi = 1. For each weight λi

of multiplicity 1 any non-zero w ∈ Eλi
with X+(w) = 0 generates an

irreducible sl2(R)-module in E

〈Xni
− (w)〉 ⊕ . . .⊕ 〈X−(w)〉 ⊕ 〈w〉, (209)

where ni is the smallest integer such that Xni
− (w) = 0. Moreover, this

is a sub-D-module in E, and it is isomorphic to Sni(Mi), for a rank 2

“Schrödinger” module Mi as a D-module and a sl2(R)-module. Recall

from Theorem 10.5 the structure of symmetric powers of a Schrödinger

equations:

Sni(Mi) = 〈θuni 〉A ⊕ 〈θuni−1v〉A ⊕ . . . ⊕ 〈θvni 〉A ,

for a fundamental set of solutions u, v of the Schrödinger equation corre-

sponding to Mi.

To identify Mi take the fraction of the last coefficients in w and X−(w)

respectively. It is a fraction

α =
v

u
(210)

of fundamental solutions of the Mi-equation. Denote the potential of that

equation by W (x). Differentiating and using the differential relations

u′′ +W (x)u = 0 , v′′ +W (x)v = 0 (211)

yields the following expression for W

W = γ2 + γ′ (212)

where

γ =
ln(α)′′ − (lnα′)2

2 lnα′
(213)

For w = f(x)θvk , δw = f ′(x)w, so from δw/w we get η = (ln f)′. Inte-

grating, we get

f = e
R

ηdx, (214)

and the last coefficient of w/f is vk, from which we deduce v. Then,

u = v/α. Step 3 “Remove” the irreducible sl2(R)-modules in Step 2

from the module E, i.e. work in their complement in E. For each weight

λ denote the complement in Eλ of these sub-modules by Ẽλ. If there are

weights of “remaining” multiplicity 1, i.e. rank(Ẽλ) = 1, repeat Step 2

for those weights. Identify the weight with highest integer value, denote

it λ, and its remaining multiplicity m > 1. We still have that a non-zero

w ∈ Ẽλ with X+(w) = 0 generates an irreducible sl2(R)-module in E,
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but we are no longer guaranteed that this is also a sub-D-module. If w

in addition satisfies the condition

δw = f(x)w , (215)

then it generates a sub-D-module in E as in Step 2. Given a basis

{w1, . . . , wm} of Ẽλ , applying δ yields

w = Aiw (216)

for some matrix Ai with coefficients in A. Solving the corresponding first

order system

h′ + AT
i h = 0 (217)

is the obstruction to identify the sub-D-modules that are irreducible

sl2(R)-modules, as obtained in Step 2 above. Repeat for highest value

weights successively to get the decomposition of E.

10.6. Schrödinger equations with shared symmetries. Returning

to a base equation with potential W (x)

y′′ +W (x)y = 0 (218)

we may discuss, as is done in [11], which potentials share a symmetry

∆z = − z′

2
+ z∂, z being a solution of the symmetry equation (188). Let

W0(x) be a potential of an equation with symmetry ∆z, fixed z. Then

Wo is a particular solution of the symmetry equation viewed as a first

order equation for W (x):

z′′′ + 4Wz′ + 2W ′z = 0 (219)

Integrating the separable homogeneous equation yields that equations

with potentials on the form

W (x) = W0(x) +
c

z2
, c ∈ R (220)

share the symmetry ∆z. Recall also that a fundamental set of solutions

{u, v} of the base equation (218) with potential W0(x) generate a fun-

damental set of solutions {u2, uv, v2} of the symmetry equation (219),

hence all equations with potentials

W (x) = W0(x) +
c

( c1u2 + c2uv + c3v2 )2
(221)

where c, ci ∈ R such that the denominator in the fraction is non-zero, are

integrable (by quadratures).
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Example 10.2. Let W0 = 0, {u = a1 + a2x , v = b1 + b2x}. Then

equations with potentials

W =
c

(c1u2 + c2uv + c3v2)2

are integrable in quadratures, symmetries ∆u2 ,∆uv and ∆v2 .

Example 10.3. Let W0 = ω2, with {u = cos(ωx) , v = sin(ωx)}. Then

equations with potentials

W = ω2 +
c

(c1 cos2(ωx) + c2 cos(ωx) sin(ωx) + c3 sin2(ωx))2

are integrable in quadratures, symmetries

∆cos2(ωx),∆cos(ωx) sin(ωx) and ∆sin2(ωx)

or, equivalently

∆1,∆cos(2ωx) and ∆sin(2ωx)

This is a way to generate new integrable base Schrödinger equations

from simpler ones, with shared symmetries, which we may in turn take

symmetric products and direct sums of and arrive at new solvable higher

order equations.

10.7. Model equations for sl3. Recall that Schrödinger equations are

precisely the equations of order two that have the standard δ-invariant

“volume form” Ω = e1∧e2 ∈ ∧2(E)#, which in turn corresponds nicely to

the fact that sl2(R) is connected to the preservation of a volume form on

a two dimensional space. We may expect that the geometric properties

of the classic Lie algebras are reflected in the associated model equations.

A search for model equations for sl3 should thus point us towards third

order equations with a δ-invariant standard volume form. A third order

equation

y′′′ + f1(x)y
′′ + f2(x)y

′ + f3(x)y = 0

with associated D-module (E, δ) has invariant volume forms on the form

g(x)Ω ∈ ∧3(E) for any g(x) ∈ A that solves

g′ + f1(x)g = 0

Hence any third order equation on the form

y′′′ + f(x)y′ + g(x)y = 0

has an invariant standard volume form Ω = e1 ∧ e2 ∧ e3 ∈ ∧3(E). A

sub-example of the above third order equations is a general skew-adjoint
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equation

y′′′ − f(x)y′ −
1

2
f ′(x)y = 0 . (222)

For L = ∂3 − f(x)∂ − 1
2
f ′(x) Sym(L) decomposes into

Sym(L) = Sym0 ⊕ Sym1

thus we may split calculation of symmetries to consider Sym0 and Sym1

separately. The symmetry equations separate into

p′′′ − fp−
f ′

2
p = 0 (223)

s(5) − 5fs′′′ −
15

2
f ′s′′ + (4f 2 −

9

2
f ′′)s′ + (4ff ′ − f ′′′)s = 0 (224)

in the sense that

Sym0(L) = {∆0
p = −p′ + p∂ | p solves (223) }, and (225)

Sym1(L) = {∆1
s = (

s′′

6
−

2fs

3
) −

s′

2
∂ + s ∂2 | s solves (224) }

(226)

We recall the graded structure of Sym(L) from Section 8.2, and note

that the commutators

[∆0
p,∆

0
q] = ∆0

{p,q}00
(227)

[∆1
s,∆

0
p] = ∆1

{s,p}01
(228)

[∆1
s,∆

1
w] = ∆0

{s,w}11
(229)

induce the following structure on the solution spaces of the symmetry

equations:

{p, q}00 = pq′ − p′q (230)

{s, p}01 = 2sp′ − s′p (231)

{s, w}11 =
1

6
(s′′′w − w′′′s) +

1

4
(s′w′′ − s′′w′) +

2

3
f(sw′ − s′w) (232)

where

{ · , · }ab : Sola × Solb → Sola+b .

The Sym0-equation (223) is equal to the original equation Ly = 0, which

is again the second symmetric power of the Schrödinger equation (233)

B(y) = y′′ −
1

4
fy = 0, (233)

whereas the Sym1-equation (224) is both the second symmetric power of

(223) and the fourth symmetric power of (233). This observation makes

calculations of the symmetry algebra easier, as we may do them in terms
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of powers of solutions to the basic Schrödinger equation (233). For any

set {u, v} of independent solutions of (233)

{u2, uv, v2} and {u4, u3v, u2v2, uv3, v4}

are independent solutions of (223) and (224) respectively, and generate a

full basis of Sym(L). Considering the commutators of functions asserts

that

Sym(L) ∼= sl3

and that the subalgebra Sym0(L) ⊂ Sym(L) is isomorphic to sl2(R).

Its action on Sym1 is precisely as described in Section 10.2 on sl2(R)-

equations, of S2(B) into S4(B). For g = sl3 the representation ring R(g)

is generated by V and
∧2(V ) ∼= V ∗, where V = F 3, F = R or C denotes

the standard (matrix) representation.

Theorem 10.7. Equation (222) with corresponding D-module (E, δ) is

a model equation for the standard representation of sl3. (E∗, δ) ∼=
(
∧2(E), δ) also correspond to equation (222).
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