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Abstract. Given a relation f ⊂ A × B, there exist two symmetric

relations (see [1], Chapter 2) f−1f ⊂ A2, ff−1 ⊂ B2. These relations

make it possible to formalize definitions and proofs of existence theo-

rems. For example, the equation h = gf , where h and g (or h and

f) are given maps, admits a solution f (g, respectively.) if and only if

hh−1 ⊂ gg−1(h−1h ⊃ f−1f). Well-known ,,homomorphism theorems”

get more general interpretation. Namely, any map can be represented

up to bijection as a composition of surjection and injection, and any

morphism of diagrams can be represented up to isomorphism as a com-

position of epimorphism and monomorphism.

In this paper we further develop the scheme from [2] and consider it as

an application in category of vector spaces and linear maps.

1. Introduction and Preliminaries

We use the symbol ,,⇒” instead of the conditional sentence ,,if ..., then

...” or instead of ,,from ... it follows ...”, and we use the symbol ,,⇔”

instead of ,, ... if and only if ...”.

Suppose A and B be two sets. We say that any subset of the direct

product A × B (also an empty set and the set A × B itself) is called a
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relation between sets A and B and is denoted by

f ⊂ A × B.

If (a, b) ∈ f , then we say that elements a ∈ A and b ∈ B are connected

by relation f or simply f -connected.

The inverse relation f−1 ⊂ B × A is defined by

(a, b) ∈ f ⇔ (b, a) ∈ f−1.

It is clear that (f−1)−1 = f .

Given a relation f ⊂ A×B, let us define for element a ∈ A the image

f(a) in B and for element b ∈ B the original f−1(b) in A by

(a, b) ∈ f ⇔ b ∈ f(a) ⇔ a ∈ f−1(b),

and also define for subset U ⊂ A the image f(U) =
⋃

a∈U

f(a) and for

subset V ⊂ B the original f−1(V ) =
⋃

b∈V

f−1(b).

A relation f can be defined in the product A × A = A2. Then it is

possible that f = f−1. In this case the relation f is called symmetric.

For example, the diagonal of the set A2, denoted

1A =
{

(a1, a2) ∈ A2|a1 = a2

}

,

is a symmetric relation.

For any two relations f ⊂ A × B and g ⊂ B × C there exists the

composition h ⊂ A × C (denoted by h = gf and read: h is composition

of relations f and g) such that

(a, c) ∈ h ⇔ f(a) ∩ g−1(c) 6= ∅.

It follows that elements a ∈ A and c ∈ C are h-connected if and only if

the element a is f -connected to some element b ∈ B and the elements b

and c are g-connected.

The composition of relations has the following properties.

1) For any three relations f1 ⊂ A1×A2, f2 ⊂ A2×A3 and f3 ⊂ A3×A4

(associativity of compositions)

(f3f2)f1 = f3(f2f1)

is valid in the set A1×A4. From this follows, that the composition f3f2f1

is understood uniquely.

2) The rule of inversion of composition:

h = gf ⇔ h−1 = (gf)−1 = f−1g−1.
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3) Given a relation f ⊂ A × B, there exist two symmetric relations

f−1f ⊂ A2, ff−1 ⊂ B2

such that

(a1, a2) ∈ f−1f ⇔ f(a1) ∩ f(a2) 6= ∅,

(b1, b2) ∈ ff−1 ⇔ f−1(b1) ∩ f−1(b2) 6= ∅.

Proposition 1.1. Suppose a relation f ⊂ A × B satisfies one of inclu-

sions

(1) ff−1 ⊂ 1B, (2) f−1f ⊃ 1A,

(3) f−1f ⊂ 1A, (4) ff−1 ⊃ 1B.

If inclusion (1) holds (inclusion (2), respectively), then for any element

a ∈ A the image f(a) contains at most (at least) one element from set B.

If inclusion (3) holds (inclusion (4), respectively), then for any element

b ∈ B the original f−1(b) contains at most (at least) one element from

A.

Proof. First, we have

(1) ⇒ ∀b1, b2 ∈ f(a), (b1, b2) ∈ ff−1 ⊂ 1B ⇒ b1 = b2;

from (1) it follows that for any element a ∈ A the image f(a) is empty

or contains only one element from B. Second,

(2) ⇒ ∀a ∈ A, (a, a) ∈ 1A ⊂ f−1f ⇒ f(a) 6= ∅;

from (2) it follows that for any element a ∈ A the image f(a) is non-

empty, i.e., contains at least one element from B. The inclusions (3) and

(4) for relation f coincide with inclusions (1) and (2) for inverse relation

f−1, respectively. �

These inclusions are the basis for the following definitions.

Definition 1.1. The relation f ⊂ A × B is said to be

– a function from set A to set B, if inclusion (1) holds;

– a map from set A to set B, if inclusions (1) and (2) hold;

– an injection from set A to set B, if inclusions (1), (2) and (3) hold;

– a surjection from set A onto set B, if inclusions (1), (2) and (4) hold;

– a bijection between sets A and B, if inclusions (1), (2), (3) and (4)

hold;

– a multi-valued map from set A to set B, if inclusion (2) holds.
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There are also other names: for example, a bijection is also called an

one-to-one correspondence between sets A and B, an injection is called

an one-to-one map from A to B and a surjection is also called a map

from A onto B.

We say that the relation f ⊂ A × B is left-invertible, if f−1f = 1A,

see inclusions (2) and (3), or right-invertible, if ff−1 = 1B, see inclusions

(1) and (4). Thus, an injection is a left-invertible map and a surjection

is a right-invertible map. A bijection is both left-invertible and right-

invertible.

It follows that an equality of relations is reducible by injection from

left and by surjection from right, i.e.,

if g is injection, then gf1 = gf2 ⇒ g−1gf1 = g−1gf2 ⇒ f1 = f2;

if f is surjection, then g1f = g2f ⇒ g1ff−1 = g2ff−1 ⇒ g1 = g2.

A map from one set to another is the most important relation since

any function can be expanded to a map and any multi-valued map can be

restricted to a map, i.e.,

if g is a function, then there always exists the map f such that f ⊃ g;

if g is a multi-valued map, then there always exists the map f such that

f ⊂ g.

Inclusions (1)–(4) allow to prove some statements without using ele-

ments. Let us prove, that for any map f the following equalities hold

(we use them below in the proof of Theorem 2.1):

ff−1f = f, f−1ff−1 = f−1.

By definition, the map f satisfies the inclusions (1) and (2). Then we

have

(1) ⇒ ff−1f = (ff−1)f ⊂ f,

(2) ⇒ ff−1f = f(f−1f) ⊃ f.

Hence, it follows that ff−1f = f . From (ff−1f)−1 = f−1ff−1 = f−1 we

obtain the second equality.

For a map f the relation f−1f ⊂ A2 is an equivalence relation on a set

A since f−1f satisfies

(i) reflexivity: f−1f ⊃ 1A,

(ii) symmetry: (f−1f)−1 = f−1f ,

(iii) transitivity: (f−1f)2 = f−1ff−1f = f−1f .

Thus we have a partition of A into equivalence classes.
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2. Existence Theorems

Throughout this paper we use the following notation: f : A → B or

A
f
−→ B denotes a map f from a set A to a set B, while the arrows

� // and � � // are used for an injection and a surjection, respec-

tively.

Suppose the map h is a composition of the maps f and g, i.e. h = gf ,

then a triangular diagram

A
h //

f ��@
@@

@@
@@

C

B

g

??~~~~~~~

is called commutative.

If one of the maps f and g is missing how we can find the absent

map such that the diagram is commutative? Namely, how to solve the

equation h = gf with respect to f , if the maps g and h are given, or with

respect to g, if f and h are given. The inclusions

(5) hh−1 ⊂ gg−1 (6) h−1h ⊃ f−1f

give us an answer to this question.

Theorem 2.1. a) Suppose the maps g and h are given. Let the inclusion

(5) hold. Then there exists a map f such that h = gf . Moreover, the

map f is obtained by restriction of the multi-valued map g−1h.

b) Suppose the maps f and h are given. Let the inclusion (6) hold.

Then there exists a map g such that h = gf . Moreover, the map g is

obtained by extension of the function hf−1.

Proof. a) First, consider the relation g−1h. From (5) it follows that

(g−1h)−1g−1h = h−1gg−1h ⊃ h−1hh−1h = h−1h ⊃ 1A.

It means that g−1h satisfies inclusion (2). Hence, the relation g−1h is a

multi-valued map which we may restrict to a map f . Then we have

f ⊂ g−1h ⇒ gf ⊂ gg−1h ⊂ h

(since the map g satisfies inclusion (1)) and, on the other hand,

f−1 ⊂ h−1g ⇒ h ⊂ hf−1f ⊂ hh−1gf ⊂ gg−1gf ⊂ gf

(since the condition (5) holds and the map f satisfies inclusion (2)).

Finally, from the inclusions h ⊃ gf and h ⊂ gf we obtain the equality

h = gf .
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b) Consider the relation hf−1. From (6) it follows that

hf−1(hf−1)−1 = hf−1fh−1 ⊂ hh−1hh−1 = hh−1 ⊂ 1C .

It means that hf−1 satisfies inclusion (1). Therefore, the relation hf−1

is a function which is possible to extend to a map g. Then we have

g ⊃ hf−1 ⇒ gf ⊃ hf−1f ⊃ h

(since the map f satisfies inclusion (2)) and, on the other hand,

g−1 ⊃ fh−1 ⇒ h ⊃ gg−1h ⊃ gfh−1h ⊃ gff−1f ⊃ gf

(since the condition (6) holds and the map g satisfies inclusion (1)).

Similarly, from the inclusions h ⊃ gf and h ⊂ gf we obtain the equality

h = gf . �

Remark. Notice, that we don’t use elements in proof of Theorem 2.1.

But if we use elements, then in the case a) the inclusion (5) is equivalent

to the inclusion h(A) ⊂ g(B). We construct the map f : A → B so

that for element a ∈ A the image f(a) ∈ B has to satisfy the condition

g(f(a)) ∈ h(A). Because of h(A) ⊂ g(B) it is possible that the condition

g(f(a)) ∈ h(A) holds for each element a ∈ A. In the case b) the set A has

two equivalence relations f−1f and h−1h. Thus we have two partitions of

A into equivalence classes. From (6) it follows that the first partition is a

refinement of the second one. For b ∈ f(A) we have g(b) = hf−1(b) since

hf−1 is a function. For b ∈ B outside f(A) we choose g(b) arbitrary.

However, it is preferable to use the inclusions (1)–(6) instead of using

elements of the sets. As they say, these inclusions formalize proofs.

Consecuence 1. Suppose the inclusion (5) holds and the map g is an

injection. Then the relation g−1h is a map: g−1h(g−1h)−1 = g−1hh−1g ⊂

g−1g = 1B (besides (2) inclusion (1) also holds for this relation), and the

map f is defined uniquely by f = g−1h.

Consecuence 2. Suppose the inclusion (6) holds and the map f is a sur-

jection. Then the relation hf−1 is a map: (hf−1)−1hf−1 = fh−1hf−1 ⊃

ff−1 = 1B (besides (1) inclusion (2) also holds for this relation), and the

map g is defined uniquely by g = hf−1.

Consecuence 3. If g is a surjection, gg−1 = 1C, then inclusion (5) is

valid automatically and there always exists the map f such that h = gf .

Consecuence 4. If f is an injection, f−1f = 1A, then inclusion (6) is

valid automatically and there always exists the map g such that h = gf .
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Consecuence 5. For a composition h = gf with h injective it follows

that f is also injective:

h−1h ⊂ 1A ⇒ f−1f ⊂ f−1g−1gf = h−1h ⊂ 1A.

Similarly, if h is a surjection, then g is a surjection too:

hh−1 ⊃ 1C ⇒ gg−1 ⊃ gff−1g−1 = hh−1 ⊃ 1C.

In particular, if gf = 1A, then the map f is always injection and the map

g is always surjection. In this case f is called a section of the surjection

g, while g is called a retraction of the injection f .

Definition 2.1. If in the composition h = gf the map f is a surjection

and g is an injection, the commutative diagram

A
h //

��
@@

@@

f ��@
@@

@

C

B

>
~~~~ g

??~~~~

is said to represent a canonical representation of the map h.

Theorem 2.2. For any map h : A → C the canonical representation is

defined up to natural bijection. It means if h has two canonical represen-

tations h = g1f1 and h = g2f2, see diagram below, then there exists the

unique bijection β : B1 → B2 such that the entire diagram

A

pp
00

00
00

00

f2

��0
00

00
00

0

h //

��
AA

AA
f1

  A
AA

A

C

B1

=
}}}}

g1

>>}}}}

β

���
�
�

B2

N
��������

g2

GG��������

is commutative, i.e., f2 = βf1 and g1 = g2β.

Proof. Since h = g1f1 = g2f2 we have

hh−1 = g1f1f
−1
1 g−1

1 = g2f2f
−1
2 g−1

2 ⇔ g1g
−1
1 = g2g

−1
2

(since f1 and f2 are surjections) and

h−1h = f−1
1 g−1

1 g1f1 = f−1
2 g−1

2 g2f2 ⇔ f−1
1 f1 = f−1

2 f2

(since g1 and g2 are injections). The first relation means that for triangle

B1B2C the inclusion (5) holds, i.e., g1g
−1
1 ⊂ g2g

−1
2 . Analogously, the

second relation means that for triangle AB1B2 the inclusion (6) holds,

i.e., f−1
2 f2 ⊃ f−1

1 f1. Hence, from Theorem 2.1 it follows that the maps
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β1 : B1 → B2 and β2 : B1 → B2 are defined in triangles B1B2C and

AB1B2, respectively. Thus we have

g1 = g2β1, f2 = β2f1, h = g2β1f1 = g2β2f1.

If we now reduce the last equality by surjection f1 from right and by

injection g2 from left, then we obtain β1 = β2 = β. From Consequences

1 and 5 it follows that β is uniquely defined bijection. �

The next two theorems are generalizations of Theorem 2.

Theorem 2.3. Suppose we have a prism diagram with faces I, II and

III:

A

α

��

h //

��
BB

BB

f   B
BB

B

C

γ

��

B

<
|||| g

>>||||

β

���
�
�
�
�
�
�

IIIII

I

A′
h′

//

��
AA

AA

f ′

  A
AA

A

C ′

B′

=
}}}} g′

>>}}}}

where the face I is a commutative square, i.e., γh = h′α. The maps h

and h′ have canonical representations h = gf and h′ = g′f ′, respectively.

Then there exists the unique map β such that the faces II and III are

commutative.

Proof. First, let us consider the commutative triangle AA′C ′ on the face

I, where arrow AC ′ is a composition γh. The inclusion (5) is valid for

this triangle, i.e.,

γh(γh)−1 ⊂ h′h′−1

⇔ γhh−1γ−1 ⊂ h′h′−1

⇔ γgff−1g−1γ−1 ⊂ g′f ′f ′−1g′−1

⇔ γgg−1γ−1 ⊂ g′g′−1

⇔ γg(γg)−1 ⊂ g′g′−1

(since f and f ′ are surjections, ff−1 = 1B, f ′f ′−1 = 1B′). Moreover, this

inclusion is also inclusion (5) for triangle BB ′C ′, where arrow BC ′ is a

composition γg. Hence, there exists the unique map β1 such that

γg = g′β1

(see Theorem 2.1 and Consequence 1).
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Second, let us consider the commutative triangle ACC ′ on the face I,

where arrow AC ′ is a composition h′α. The inclusion (6) is valid for this

triangle, i.e.,

(h′α)−1h′α ⊃ h−1h

⇔ α−1h′−1h′α ⊃ h−1h

⇔ α−1f ′−1g′−1g′f ′α ⊃ f−1g−1gf

⇔ α−1f ′−1f ′α ⊃ f−1f

⇔ (f ′α)−1f ′α ⊃ f−1f

(since g and g′ are injections, g−1g = 1B, g′−1g′ = 1B′). Moreover, this

inclusion is also inclusion (6) for triangle ABB ′, where arrow AB′ is a

composition f ′α. Hence, there exists the unique map β2 such that

f ′α = β2f

(see Theorem 2.1 and Consequence 2).

Now we write f on the right of the both sides of equality γg = g ′β1 and

g′ on the left of the both sides of equality f ′α = β2f . From γgf = g′f ′α

(or γh = h′α) it follows that

g′β1f = g′β2f.

By using reduction we obtain β1 = β2 = β (since f is a surjection and g′

– an injection). �

Definition 2.2. If in the prism diagram from Theorem 3 the faces I, II

and III are commutative, a triple (α, β, γ) is said to define the morphism

of two diagrams ABC and A′B′C ′. A morphism is a monomorphism

(epimorphism) of diagrams, if α, β and γ are injections (surjections,

respectively). A morphism, which is both epi- and monomorphism, is

called an isomorphism of diagrams. A canonical representation of mor-

phism of diagrams ABC and A′B′C ′ is it presentation in composition of

epimorphism and monomorphism.

Theorem 2.4. The canonical representation of morphism of diagrams

ABC and A′B′C ′ exists up to isomorphism. It means that there exists a
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commutative diagram UV W such that the entire diagram

A

α

��

h //

f !!B
BB

BB
B

� �WWWWWWWWWWWWW

++WWWWWWWWWWWWW

C

β

��

� �WWWWWWWWWWWW

++WWWWWWWWWWWW

B
g

==||||||

� �WWWWWWWWWWWWW

++WWWWWWWWWWWWW
γ

��

U
h′′

//

f ′′

��@
@@

@@
@

'ggggggggggggg

ssggggggggggggg

W

'gggggggggggg

ssgggggggggggg

A′

h′

//

f ′   B
BB

BB
B C′ V

g′′

>>}}}}}}

'gggggggggggg

ssgggggggggggg

B′

g′

>>||||||

is commutative and the diagram UV W is defined up to isomorphism.

Proof. The sets U , V and W are obtained up to isomorphism by canoni-

cal representation of the maps α, β and γ, respectively, see Theorem 2.2.

Applying Theorem 2.3 for each prism diagram AUA′BV B′, BV B′CWC ′

and AUA′CWC ′ separately we obtain maps f ′′, g′′ and h′′. It is easily

proved that h′′ = g′′f ′′ and the triangle UV W is defined up to isomor-

phism. �

Theorem 2.5. For any commutative square ACC ′A′ there exists a de-

composition on blocks:

A
� � //

__
��

B
� //

__
��

C

_
��

U
� � //

_
��

V
� //

_
��

W

_
��

A′
� � // B′

� // C ′

where the northwest block ABV U consists of surjections, while the south-

east block V WC ′B′ consists of injections. This decomposition is defined

up to isomorphism.

Proof. This diagram is a particular case of diagram from Theorem 2.4, if

triangles ABC, A′B′C ′ and UV W define the canonical distributions of

the maps h, h′ and h′′, respectively. �

Let us apply the map h : A → A repeatedly to the set A. Let h =

g1f1 be a canonical representation of h. Then we may construct a map

h1 = f1g1, which has a canonical representation h1 = g2f2. Thus, the

canonical representation of the second iteration is

h2 = g1f1g1f1 = g1h1f1 = g1g2f2f1.
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Continuing in the same way, we see that the result of iterations m times

is

hm = g1g2...gmfm...f2f1,

where fm...f2f1 and g1g2...gm are compositions of surjections and injec-

tions, respectively.

Theorem 2.6. Let h be a map from set A to itself:

h : A → A.

Let us form the sequence of maps

h, h1, h2, ..., hk−1, hk, ...,

where h1 = f1g1 : B1 → B1 is defined after canonical representation

h = g1f1, and hk = fkgk : Bk → Bk after canonical representation

hk−1 = gkfk, k = 2, 3, ... If A is a finite set, then there exist the minimal

integers m and n, such that

hm+n = hm ⇔ (hm)n = 1Bm

A
h //

��
BB

f1
  B

B
A

h //
��
DD

f1 !!D
D

A
h //

��
DDD

f1 !!D
DD

...
h // A

h // ... h // A

B1

h1

//

:
zz

g1
==zz

��
CC

f2
!!C

C
B1

h1

//

9
yyy

g1
<<yyy

��
EEE

f2 ""E
EE

...
h1

// B1

h1

//

9
yyy g1

<<yyy

...
h1

// B1

<
|| g1

>>||

B2

h2

//

��F
F

f3
##F

F

;
{{ g2

=={{

...
h2

// B2

h2

//

;
{{ g2

=={{

...
h2

// B2

;
{{ g2

=={{

...

��G
GG

fm

##GG
G

...

9
yy g3

<<yy
...

9
yy g3

<<yy

Bm

8
xx gm

;;xx

hm

//

(hm)n

::
...

hm

// Bm

8
xx gm

;;xx

It means, that after n steps the iteration hm repeats if and only if hm :

Bm → Bm is a bijection and (hm)n is identical map.

Proof. Let us show using mathematical induction, that the iteration hm

admits the canonical representation

hm = g1g2...gmfm...f2f1.

Suppose it is true for hm−1. Then from gkfk = fk−1gk−1, k = 2, 3, ..., m,

it follows that

hm = hm−1h = g1g2...gm−1fm−1...f2f1(g1f1) =

= g1g2...gm−1fm−1...f2(f1g1)f1 = g1g2...gm−1fm−1...f2(g2f2)f1 =

= g1g2...gm−1fm−1...(f2g2)f2f1 = g1g2...gm−1fm−1...(g3f3)f2f1 = ... =

= g1g2...gmfm...f2f1.
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The iteration hm+n admits the canonical representation

hm+n = g1g2...gm(hm)nfm...f2f1.

The equality hm+n = hm means that

g1g2...gm(hm)nfm...f2f1 = g1g2...gmfm...f2f1.

If we reduce both sides of the last equality by surjections f1, f2, ..., fm

from right and by injections g1, g2, ..., gm from left, we obtain (hm)n =

1Bm
.

Such integers m and n exist, since the number of elements in the sets

A, B1, B2, ... not increase. �

3. Canonical representation of matrix

Let us show, that a linear map between two finite-dimensional vector

spaces has a canonical representation to composition of epimorphism and

monomorphism, and this representation is defined up to isomorphism. It

means, that the diagram from Theorem 2.2 remains the same for vector

spaces and linear maps.

Let A and C be vector spaces of dimensions n and m, respectively.

Then the linear map h : A → C is defined by m×n-matrix H. If h is an

epimorphism (monomorphism), then the rows (columns, respectively) of

H are linearly independent. If h is an isomorphism, then the matrix H

is nonsingular.

Theorem 3.1. Suppose p is the rank of matrix H. Then the matrix H

can be represented as a product H = GF , where F is a surjective p × n-

matrix and G is an injective m × p-matrix. Therefore, for any other

product of surjective p× n-matrix F ′ and injective m× p-matrix G′ such

that H = G′F ′, there exists a non-degenerated p × p-matrix Q such that

G′ = GQ−1, F ′ = QF and H = (GQ−1)(QF ).

Proof. Without loss of generality it can be assumed that the matrix H

is a block matrix

H =





U | Y

−−− | − − −

X | V



 ,

where block U is a rank minor. The blocks U , X, Y and V are matrices

of orders p×p, (m−p)×p, p×(n−p) and (m−p)×(n−p), respectively,

with respect to the order of m × n-matrix H. The southeast block V

may be expressed by the blocks X, U and Y :

V = XU−1Y.
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Indeed, the columns





Y

−−−

V



 may be written as linear combinations

of the columns





U

−−−

X



. In other words, there exist p× (n−p)-matrix

Z, such that




Y

−−−

V



 =





U

−−−

X



 (Z)

or Y = UZ and V = XZ. Since U is nonsingular, we have Z = U−1Y

and V = XU−1Y . By the way, the rows
(

X | V
)

may be written as

linear combinations of the rows
(

U | Y
)

:

(

X | V
)

=
(

XU−1
) (

U | Y
)

.

Thus, we have

H =





U

−−−

X



 ·
(

Ep | U−1Y
)

=





Ep

−−−

XU−1



 ·
(

U | Y
)

,

where Ep is a unit matrix of order p. In both expressions of H the right

matrices are surjective and the left matrices are injective.

Let us consider the diagram from Theorem 2.2. Now the arrows h, f , g,

f ′, g′ and β are expressed by the matrices H, F, G, F ′ = QF, G′ = GQ−1

and Q, respectively:

A

F ′

��0
00

00
00

00
00

00
00

H //

F

  A
AA

AA
AA

C

B1

G
>>}}}}}}}

Q

��
B2

G′

GG���������������

where Q is non-degenerated matrix. Thus, from H = GF we obtain

any other decomposition H = (GQ−1)(QF ) with respect to arbitrary

non-degenerated matrix Q. �

The following table shows the especial role of matrices XU−1 and

U−1Y :
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Rows Columns

Imh∗ ⊂ A∗ Kerh ⊂ A

(

Ep

∣

∣

∣
U−1Y

)





−U−1Y

−−−

Em−p





Kerh∗ ⊂ C∗ Imh ⊂ C

(

−XU−1
∣

∣

∣
En−p

)





Ep

−−−

XU−1





The basis of kernel Kerh and image Imh of a linear map h : A → C

are represented by the columns of right hand side matrices. It is clear

that the matrices from the second column annihilate the matrices from

the first column. It means that the image Imh∗ and kernel Kerh∗ of the

dual map h∗ : C∗ → A∗ are represented by the rows of the left hand side

matrices, respectively.

4. Exponential of matrix

For any square matrix H of order n (as an element of Lie algebra

gl(n, R) of a Lie group GL(n, R)) there exists the exponential

etH =
∞

∑

k=0

(tH)k

k!
,

which is a one-parameter subgroup of GL(n, R). Moreover, in space R
n

there exists a linear vector field X (dynamic system) generated by the

matrix H. The flow of the vector field X is defined by the exponential

law (see [3])

U ′ = HU ⇒ Ut = etHU

and is denoted by at : U 7→ Ut. It means, that an arbitrary point U ∈ R
n

moves along its own trajectory Ut with initial velocity U ′.

The canonical representation of the matrix H (see Theorem 3.1) allows

to find the exponential etH and the flow at (see the next example).

Example. Let

h =

(

1 2 3 4 5

2 1 1 3 2

)
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be a map from set A = {1, 2, 3, 4, 5} to itself. Let us represent the map

h as a square matrix H = (hij) by

hij =

{

1, if j = h(i),

0, if j 6= h(i),
i, j = 1, ..., 5.

Corresponding to the scheme from Theorem 2.6 the equality of iterations

h4 = h2 can be written

h4 = g1g2h
2
2f2f1,

H4 = G1G2H
2
2F2F1,













0 1 0 0 0

1 0 0 0 0

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0













4

=













0 1 0

1 0 0

1 0 0

0 0 1

0 1 0













·





0 1

1 0

1 0



·

(

0 1

1 0

)2

·

(

1 0 0

0 1 0

)

·





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0



 .

Each matrix from the last equality corresponds to a linear map: endo-

morphism H : R
5 → R

5, two epimorphisms F1 : R
5 → R

3, F2 : R
3 → R

2,

automorphism H2 : R
2 → R

2 and two monomorphisms G2 : R
2 → R

3,

G1 : R
3 → R

5 (in this paper, matrices and corresponding linear maps are

denoted by the same symbol). After two iterations we have

KerH ⊂ KerH2 = KerH3, ImH ⊃ ImH2 = ImH3.

Let {xi} be the coordinates of space R
5 according to the usual basis

{ei}, i = 1, ..., 5. Then the kernel KerH is a two-dimensional coordi-

nate plane x1 = x2 = x3 = 0, the kernel KerH2 is a three-dimensional

coordinate space x1 = x2 = 0, the image ImH is a three-dimensional

hyperplane spanned by vectors {e2 + e3, e1 + e5, e4} and ImH2 is a two-

dimensional plane spanned by vectors {e2 + e3, e1 + e4 + e5}.The second

iteration of the automorphism H2 is the identical map of the plane ImH2.

Thus, from Theorem 2.6 it follows that

H4 = H2 ⇔ H2
2 = E2,

where E2 is a unit matrix of order 2.

This result is useful in the next situation. Let us consider the matrix

H as an element of Lie algebra gl(5, R). Then the exponential etH is a

one-parameter subgroup of Lie group GL(5, R). Since H4 = H2 we have

etH = E5 − H2 + (H − H3)t + H2 cosh t + H3 sinh t.
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The linear vector field corresponding to the matrix H is

X = x1
( ∂

∂x2
+

∂

∂x3

)

+ x2
( ∂

∂x1
+

∂

∂x5

)

+ x3 ∂

∂x4
.

Note that all vectors in X are parallel to ImH. The field X has a canon-

ical parameter

s =
x1 − x4

x2 − x3

and four invariants

I1 = x1−x5, I2 = x2−x3, I3 =
1

2
ln

∣

∣(x1)2−(x2)2
∣

∣, I4 = s−
1

2
ln

∣

∣

∣

x1 + x2

x1 − x2

∣

∣

∣
.

The exponential law U ′ = HU ⇒ Ut = etHU defines a flow at : U 7→ Ut

(see etH),

Ut = U − U ′′ + (U ′ − U ′′′)t + U ′′ cosh t + U ′′′ sinh t,

generated by vector field X. In particular, the points, represented by

basis vectors, move along trajectories

(e1)t = −e4 − e5 + (e1 + e4 + e5) cosh t + (e2 + e3) sinh t,

(e2)t = −e3 − e4t + (e2 + e3) cosh t + (e1 + e4 + e5) sinh t,

(e3)t = e3 + e4t,

(e4)t = e4,

(e5)t = e5.

It means that under the action of at the points U ∈KerH are fixed (see

(e4)t and (e5)t), the points U ∈ KerH2\KerH move along the straight

lines (see (e3)t) and the points U ∈ R
2\KerH2 participate in a hyperbolic

rotation in the plane ImH2 (see (e1)t and (e2)t). Note that the hyperbolic

rotation in the plane ImH2 can be described using the basis vectors:

(e1 + e4 + e5)t = (e1 + e4 + e5) cosh t + (e2 + e3) sinh t,

(e2 + e3)t = (e2 + e3) cosh t + (e1 + e4 + e5) sinh t.

The coordinate transformation (x1, x2, x3, x4, x5) 7→ (s, I1, I2, I3, I4) trans-

forms the basis {ei} into another invariant basis: a coframe (ds, dI1, dI2, dI3, dI4)
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and a frame

∂

∂s
= X,

∂

∂I1
= −

∂

∂x5
,

∂

∂I2
= −

∂

∂x3
− s

∂

∂x4
,

∂

∂I3
= x1

( ∂

∂x1
+

∂

∂x5

)

+ x2
( ∂

∂x2
+

∂

∂x3
+

∂

∂x4

)

,

∂

∂I4

= −x1
( ∂

∂x2
+

∂

∂x3

)

− x2
( ∂

∂x1
+

∂

∂x4
+

∂

∂x5

)

.

This transformation follows from Jacobi matrix and its inverse:















1
I2

− s
I2

s
I2

− 1
I2

0

1 0 0 0 −1

0 1 −1 0 0
x1

(x1)2−(x2)2
− x2

(x1)2−(x2)2
0 0 0

1
I2

+ x2

(x1)2−(x2)2
− s

I2
− x1

(x1)2−(x2)2
s
I2

− 1
I2

0















−1

=

=













x2 0 0 x1 −x2

x1 0 0 x2 −x1

x1 0 −1 x2 −x1

x3 0 −s x2 −x2

x2 −1 0 x1 −x2













.

The operators
( ∂

∂s
,

∂

∂I1

,
∂

∂I2

,
∂

∂I3

,
∂

∂I4

)

commute with vector field X.

Hence, these operators are infinitesimal symmetries of X. From
∂

∂s
= X

it follows that the flow generated by X becomes a group of translations

s 7→ s+ t. In the coordinates (s, I1, I2, I3, I4) the trajectories are the lines

s and the classification of these trajectories makes no sense.

We have done the following seven steps:

a) took a map h from set A (consists of 5 elements) to itself;

b) represented the map h as 5 × 5-matrix H with the rank 3;

c) considered the matrix H as an element of Lie algebra gl(5, R);

d) found the one-parameter subgroup etH of Lie group GL(5, R);

e) in space R
5 the exponential etH defines a flow at generated by corre-

sponding vector field X;

f) the classification of the trajectories depends on kernels KerH and

KerH2;
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g) in curvilinear coordinates such as the invariant coordinates (s, I1, I2, I3, I4)

the flow simplifies, but the classification makes no sense.

The steps b)–g) can be applied to any square matrix with an arbitrary

rank.
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