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ABSTRACT. In the present paper, we construct complete lifts of co-
variant and contravariant tensor fields from the smooth manifold M to
its Weil bundle T4 M for the case of a Frobenius Weil algebra A. For a
Poisson manifold (M, w) we show that the complete lift w® of a Poisson
tensor w is again a Poisson tensor on TAM and that w® is a linear
combination of some ”"basic” Poisson structures on T2M induced by w.
Finally, we introduce the notion of a weakly symmetric Frobenius Weil
algebra A and we compute the modular class of (TAM,w®) for such
algebras.

1. PRELIMINARIES

A Weil algebra [5, 16] is an associative commutative algebra A with
unit over the field R of real numbers, which is of the form A =R & A,
where A is a finite-dimensional maximal ideal, consisting of nilpotent

elements. In what follows we denote n = dimg A.

By A" we denote the rth power of A. Let dy(A) = dimgA*/AFL,
The number d;(A) is usually called the width of A. The positive integer

¢ defined by A7 0, AT — 0 is called the height of A.
The chain of embedded ideals

ADKDE&QD---D,&‘IDO
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can be extended to the chain of ideals called the Jordan-Holder compo-
sition series [16]

ADf&:IlDba...DInDO,
where I,/I,,1 is a 1-dimensional algebra with the zero multiplication.
Here
A&k = Il+d1(A)+---+dk_1(A) for 2<k<q.
This is the particular case of the general ring construction, see [12]. Using

the Jordan-Hélder composition series one can choose the Jordan-Hdlder
basis

{ea} ={eo,ea}, a=0,1,...,n= dimji, a=1,...,n, (1.1)
in A such that eg =1 € R, ¢; € 1;, ¢5 € I5.1. In general, this basis
is not unique. For X = 2%, = 2" + 2%, € A we set )% = 2%, then
X =2+ )% Let 0% be the coordinates of unit of A, i.e., 1 = 0%,.

We denote by (75,) the structural tensor of A with respect to the basis
(1.1), ie., eqep = Y5e.. It satisfies 73, = 60 (the Kronecker’s delta) and

7213 = 0 for a > ¢. Since A is commutative and associative, it also satisfies
the conditions ¢, = 5, and

VesVor = VouVes- (1.2)
The conditions of differentiability of a function f : U € A — A

on a commutative associative algebra A (or, briefly, A-differentiability),
usually called Scheffers’ equations, are (see [19]):

0cf"g = VacDo f*, (1.3)
where 0, f° = 0f%/0x. Scheffers’ equations are equivalent to
00l = A0, . (1.4

For f: U C A™ — A, f: {X! = 2i%,} — f(X?) = f°(x%)e,, where
A™ = Ax---xAisthe A-module of m-tuples of elements of A, Scheffers’
conditions of A-differentiability are of the form [19]:

Oiaf’ = Vac0*Dig [ (1.5)

If a function f satisfies (1.5), its differential can be represented in the
form df = f;dX", where f; = §°0,,f is the partial derivative with respect
to X' € A. Thus,
of of
;= - = )0 ——.
4 0X? ox'e
The functions f;(X7),i=1,...,m, are also A-differentiable.

(1.6)
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The following theorem (see [16]) describes the local structure of an
A-differentiable map of the form F : U ¢ A™ — AF for a Weil algebra
A. The natural epimorphism 7{ : A™ — R™ determines the canonical

A™-foliation on A™. Recall that a smooth map f: M — N of a foliated
manifold (M, F) is called projectable or basic if f is constant along the
leaves of F.

Theorem 1.1 ([16]). 1) Let U C A™ be an open set. Then any
A-smooth map ® : U — AF is of the form

q i’
-/ -/ ]_ .Dp v °
X' =+ 3 S X, (1.7)

(where i = 1,....m, ¢ = 1,....k, p = (p1,...,Pm) 18 a multiindex

of length m and X? = (XN .. (X™)Pm ) for some basic smooth map

©" U — A which is projectable with respect to the canonical A™-

foliation.

Definition. The map ® : U — AF* given by the formulas (1.7) is
called the analytic prolongation of the projectable map ¢ : U — AF,

The analytic prolongation of a map ¢ will be denoted by p?.

Proposition 1.1 ([16]). The analytic prolongation has the following
properties:

1o (p+ )% = + o2

2°. (p- )" = oA

3% (P o)t = ph oyt

4°. (DPp/DaP)d = DPp® /DXP for ¢ : U C A" — A.

We denote by M f the category of smooth manifolds and by FM that
of fibered manifolds. To each Weil algebra A there corresponds a functor
TA : Mf — FM called the Weil functor which maps a smooth manifold
M to the fibered manifold wa : TAM — M called the Weil bundle (see [5,
16, 20]). A.P. Shirokov proved [15] that T4 M carries the structure of a
smooth manifold over A. Weil functors preserve products, i.e., TA(M x
N) = TAM xTAN. Moreover, under some additional conditions (locality
and regularity) each product preserving bundle functor F': Mf — FM
is equivalent to a Weil functor T4 for a Weil algebra A [5].

A Weil algebra A is said to be Frobenius (cf. [19, 2]) if there exists
a nondegenerate bilinear form ¢ : A x A — R, satisfying the following
condition of associativity:

XY, Z)=q(X,YZ) forany X,Y,Z € A. (1.8)
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Frobenius algebras play an important role in the theory of smooth man-
ifolds over algebras in constructing realizations of tensor operations [8].
With respect to the basis (1.1) the condition (1.8) is written as

QeVer = Veles- (1.9)

We will call g a Frobenius form. A Frobenius form is not unique (if exists).
For a Frobenius algebra A we define the Frobenius covector p: A — R
by p(X) := ¢q(X, 1). Its coordinates with respect to the basis (1.1) satisfy

PaYoe = be- (1.10)

Contracting (1.10) with §° and taking into consideration that 6¢ = §§
(the Kronecker’s delta) with respect to the basis (1.1), we obtain

Py = qued”. (1.11)
From (1.8) and (1.10) it easily follows that
¢(X,Y)=p(XY) foreach XY € A. (1.12)

We denote the set of all Frobenius covectors on A by A%,.

Example 1.1. The important example of a Frobenius Weil algebra is
the algebra of dual numbers D = R(g) = {z¢ + z16| 0, 71 € R,&? = 0}.
To this algebra there corresponds the tangent bundle functor: TRE M =
TM.

Example 1.2. Another example is the algebra D" = R(e") = {zo +
TE+ -+ 21" o, € Re™ = 0}, of plural numbers which is a
generalization of the previous one. To this algebra there corresponds the
functor of jet bundle of higher order.

If A and B are Frobenius algebras, then A ® B is also a Frobenius
algebra (see, e.g. [19]).

In what follows we assume all Weil algebras under consideration to be
Frobenius algebras.

2. THE STRUCTURE OF A FROBENIUS WEIL ALGEBRA

Let A be a Frobenius Weil algebra of height ¢ and let n = dim 1&. Let
us choose a Jordan-Hélder basis (1.1) in A.

o

Lemma 2.1. dimA9=1, i.e.,, A?=1,.

Proof. On the contrary, suppose that dimgA? > 2. Then at least

two last elements e, 1 and e, of a basis (1.1) belong to A? and, conse-
quently, for any a = 1,...,n there hold eze,,_; = eze,, = 0. Hence for
any ¢ = 0,...,n the matrix [|75,|| contains zeros everywhere in two last
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columns (with the numbers n — 1 and n) except for the first row. Then
for each covector (p.) the matrix ||qu|| = ||pe75, || also contains zeros ev-
erywhere in two last columns except the first row, and thus is degenerate

Contradlctlon By this reason, dlmRAq = 1, which implies Aq =1, or,
equivalently, Aq =R-e, U

Lemma 2.2. For each Frobenius covector p on A, its last component
Pn 18 NOt zero.

Proof. From the equalities 1 - e, = ege,, = €, and eze,, = 0 for each
a=1,...,n it follows, that for each ¢ = 0,...,n—1 and for each b there
holds

Yo = 0, Yon = 1, Van = 0.

Hence, for each ¢ = 0,...,n — 1 the last column of the matrix ||vS,||
contains only zeros and the last column of the matrix ||| is

T(1,0,...,0).
Therefore the last column of ||qu|| = ||pS, |l is
"(pn,0,...,0), (2.1)

hence p, # 0. [

Remark 2.1. One can prove both lemmas without using coordinates.
Indeed, denote

Amm A= {XecA|X A=0).

Let 0 # X € Ann A, then for each Y = 3% + Y we have XY — Xq°,
whence ¢(X,Y) = p(XY) = yp(X). From the degeneracy of ¢ it fol-
lows that p(X) # 0. Therefore Ann A N ker p = 0 which implies that
dim Ann A < 1. But, clearly, 0 # 1&‘1 C Ann 1&, hence dim EA‘I =
dim Ann A =1

Let us denote [|hapl| := |75 |-

Lemma 2.3. The Jordan-Hdélder basis (1.1) can be chosen in such a
way that the matriz ||hqy|| is nondegenerate.

Proof. Let us choose any Jordan-Hélder basis (1.1). If py = (0,...,0,1)
is a Frobenius covector, then the matrix ||hql is nondegenerate. Assume
the contrary and consider any p € Aj,.. Without loss of generality we
may assume that p, = 1 (otherwise consider pinp).
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1) We prove that the first component py of p may be taken to be zero.
Indeed, in the matrix ||gq|| only the element goo depends on py:

Do k... ok ]_

* % ... % 0
anbH:

* % ... % 0

1 0 ... 00

(* denotes the elements which do not depend on py.) The cofactor of
Goo = po contains only zeros in the last column, hence it is zero itself.
Thus, the determinant det ||gq| does not depend on py and we may
assume that py = 0.

2) By the assumption, p@y = (0,...,0,1) is not a Frobenius covector,
therefore there exists at least one ¢, 1 < ¢ < n — 1, such that p. # 0.
Consider another basis {e/} in A:

€y = €9 = €9—Po€n,; e =es—Patn, a=1,2,...,n—1, e =e,.

(2.2)
One can easily see that {e]} is also a Jordan-Hoélder basis. Since eqe,, = 0
for each @ > 1, the structural constants 'S, will have the following
form with respect to this basis: ¢, = ¢, for ¢ = 1,2,...,n — 1 and
Y =" 4+ v%pa, where the summation over d is taken from 1 to n — 1.
Thus, ||7'%,]] equals to ||gw|| and therefore is nondegenerate. [

In what follows we will suppose the Jordan-Holder basis to be chosen in
such a way that ||he]| is nondegenerate and we will call pgy = (0,...,0,1)
the standard Frobenius covector.

Remark 2.2. One can also give a noncoordinate proof of Lemma 2.3.
Let p € A* be defined by p(X) := a°.

1) We show that if p € A% then p := p — p(1)p also is a Frobenius
covector. Suppose the contrary. Then there exists X € A such that

P(XY) =0 for any Y € A. This means that 2°p(Y") +13°p(X)+p(XY) =
0. Let Z € A? be an element such that p(Z) = 1 (in terms of the Jordan-
Holder basis, Z = e,,) and let X = X —2%Z. Then for any Y € A one has
XY = XY —a2%°Z = 2%° + 2°Y +y°X + XY — 2°%°Z. One can easily
see that p(XY') = 0, which contradicts to the fact that p is a Frobenius
covector.

This means that we can deform any p € A}, in such a way that
R C kerp.
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2) Now, by Lemma 2.2 or Remark 2.1, one has A = kerp & A4. We

define a bilinear form A(X,Y’) on A to be the projection of XY onto A9
along ker p. This form is nondegenerate. Indeed, let X € A be such that
hX,Y) =0 for any Y € A. We write XY = U + Z, where U € kerp,
Z € A% Then 0 = h(X,Y) = Z, hence p(XY) = p(Z) = 0 which
contradicts to Lemma 2.2.

Thus, without loss of generality, we may assume the matrix ||hq| =
|y |l to be nondegenerate. This matrix has the following form:

00 --- 01
0
[haoll = | - B C (2.3)
0
10 --- 00

where B denotes the nonsingular square block. The inverse matrix is of
the same form:

0 0 0 1
0
p* =1 :| B |: (2.4)
0
10 - 00

This allows us to introduce another basis in A: we put €* = h®e,, then
ea = ha€’. Denote by 7‘“’ the structural constants of A with respect to
the basis {e%}, i.e. e%e® = y%e°. Clearly,

7Zb = hakhbehcs,’%?f (2'5)
and
’7,?5 = hakhbghcsﬁgb. (26)

Since 0% = 6§ with respect to the basis (1.1), we have h.s0° = 72855 =,
which is not zero only for ¢ = n and 77, = 1. Therefore 2 = 59§* =
h“khbey hcsés _ hakhbe’ykg hakhblh _ hakéb hab Thus

hab — 78b )

Moreover, it is clear from (2.4) that €" = ey, hence e%€" = &, which
implies that

Fon = ge, (2.7)

Cc c
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From the formula (1.2) it follows that V. h. = V5% = V570 =
7§8hcr - 72/%; - /Ygrhcs' ThUS,
Vorled = Vasher = Yarhes. (2.8)

The tensors ¢, and 7% are also related with the following formulas.
We have 78,1 = by, hahH5% (by (2.6)) = h**hy, 7, hence hy, 7 =
hscwf;ahkg = ’Ygahckhké (by (2.8)) = ’yﬁa. Thus,

’yﬁa = hbaiﬁb? (29)
whence
7= . (2.10)
Let p (p, # 0) be an arbitrary Frobenius covector on A and ||qqu| =
17¢,pel|- Let us find the explicit form of the inverse matrix [|¢®°||. Denote
17| = |I72°t¢||, where (t°) are to be defined later.
From (2.7) it follows that the last column of ||g®|| is
L0, ). (2.11)

The system of linear equations qux® = 6" on (2°) has the unique solution.
We define (#°) to be this solution:

qant” = Viypit” = ;. (2.12)

Equivalently, ¢ = (¢*) is defined by ¢(¢, - ) = p(o)( - ). Therefore, by (2.11),
the last column of the matrix |/¢.;q*|| coincides with the last column of
the unit matrix.
Let us show that this is true for any other column, i.e., that for each
c=0,1,...,n—1,
Qa7 = 0. (2.13)

We need to check that ppy%t59% = pyk~c ht s = §¢. Contracting
the left-hand side with h. and using (2.8) yields ppy%yC ht5heyg =
PRt Vg Visher = Prt* Vi Vas = PrtVisVaa = 05 Veq = Vaq = haa. Since
the contraction of §; with h.4 also gives h,q and h,q is nondegenerate, the
relation (2.13) holds true. Thus, the inverse matrix ||¢®°|| has the form
|720¢¢||, where t = (¢°) is defined by (2.12).

We also show that (p,) is defined uniquely by (¢¢). It is sufficient to
prove that det ||[75,°|| # 0. Contracting with h*? gives t*v¢,hd = b5t =
7°®. The last matrix is nondegenerate, hence the result follows. It follows
also that if det ||75,t°|] # 0 for some ¢t = (°) then the corresponding
covector p € A%,. Indeed, in this case |[g¢|| = ||¢*¢|| is nondegenerate,
hence ||g.q|| is also nondegenerate.
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The last row of ||ge|| has the form (p,,0,...,0). Its product with the
last column of ||¢%|| equals 1 by the definition of the inverse matrix and
also equals p,t° by (2.1). Therefore, p,t° = 1, in particular, t° # 0.

Thus, we proved the following

Proposition 2.1. For any Frobenius covector p (p, # 0) on A the
matriz ||q®|| is of the form q® = F%t¢, where the vector t = (t¢) and
covector p uniquely define each other by (2.12), moreover, t°p, = 1.

In particular, if p = p( is the standard Frobenius covector, i.e., p, =
67, then t¢ = §5. Indeed, in this case Y,p. = ¥ = hap, hence, hgt® = 62
by (2.12). Denote by ¢’ the column T(¢', ... t"1). From (2.3) we obtain
t" =0, Bt/ =0, t° = 1. Since det B # 0, each of t!, ..., " ! is equal to
7€r0.

One can represent the "multiplication table” of A with respect to the

basis (1.1) as follows. By A®, s = 1,2,...,¢ — 1, in the first column
and the first row we denote the ds(A) elements of (1. ) which lie in

_&s \ AsJrl (or, equlvalently, prOJect to the basis of AS /Aerl under the
natural epimorphism AS — AS+1). The product of two such elements
of (1.1), one of them lying in the z&k—column, another in the gf-row,
belongs to l&k”, thus we write A** in the intersection of AF-column

and A‘-row. The whole table now has the following block structure:

1 A A2 | | AP A2 | Al |
1 1 A A2 AF A2 | A2 | Ad
o o o o o o q—l o
A | A | A2 A3 Ak+1 A A |0
A2 | A? | A3 Al Ak+2 Al 0 | o
l&q—k &q—k ‘&q—k—&-l Aq—k+2 o Aq
A2 | A2 | A1 | A7 | g 0 0 | o
ATl | A1 | Ad 0 0 0 | o
e. | As 0 0 0 0 | o
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The secondary diagonal of this table contains blocks A? consisting

of real multiples of e,. Hence all the matrices |75, ¢ = 0,1,...,n —
1, contain zeros in these blocks and the matrix |77 || = ||has|| has the
following block structure:
1 A | AT || AT AL
1 0 0 0 0 0 1
A 0 * * “ B | o0
A2 | 0 * * Bogoa| O 0
A2 0 “ | Byas | | 0 0 0
At 0 Bl | 0 | .. o0 0 0
€n 1 0 0 o 0 0 0

Definition. We will say that the Frobenius Weil algebra A of height ¢
is weakly symmetric, if dy(A) = d,—(A) for each k =1,2,...,¢— 1.

For a weakly symmetric algebra all the blocks By, —x, k = 1,2,...,¢—1,
are squares. One can easily see that in this case

det ||qap|| = det ||pn - Yoy l| = pZ“ det By g1 ----- det By_11, (2.14)

therefore, all the blocks By 4, K = 1,2,...,¢ — 1, are nondegenerate.
From (2.14) it follows that for this algebra each p € A* such that p, # 0,
is a Frobenius covector.

Example 2.1. The simplest example of weakly symmetric Weil alge-
bra is the algebra of plural numbers R (™). For this algebra ¢ = n and the
Jordan-Holder basis is e, = €%, a =0, 1,...,n. Therefore ds(R(e")) =1
for each s = 1,...,n and all the blocks By ,_j consist of one element
each. Clearly,

0 0 0 1

0 0 1 0
17as ]l =

01 0 0
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Example 2.2. It is clear that every Frobenius Weil algebra A of
height ¢ = 2 is weakly symmetric. For the elements {e,}, a = 0,...,n,

of Jordan-Holder basis we have e;...,e,_1 € A, e, € A% Therefore,
€alh = Aapen, a,b=1,....n—1, and eqe,, =0, a =1,...,n. Hence, for
any Frobenius covector p = (p,) (pn # 0)

Po P1 P2 e Prn-1 Pn
Y4 A1 Dn AM2Dn - )\l,n—l Pn 0
anb H _ P2 21 Dn A2 Dn e )\Q,n—l Pn 0
Prn—1 )\n—l71 Pn )\n—1,2 Pn ... )\n—lm—l Pl 0
Dn 0 e e 0 0
and ||gep|| is nondegenerate if and only if A = ||\ is nondegenerate.

We will denote this Weil algebra by A(A,n).

Proposition 2.2. Let A and B be two weakly symmetric Frobenius
Weil algebras. Then A ® B is also weakly symmetric.

Proof. If {e,} and {f,} are Jordan-Hélder bases of A and B respec-
tively, then {e, ® f,} is the Jordan-Holder basis of A ®B. It follows that
the height of A ® B equals ¢; + g2, where ¢; and ¢ are the heights of
A and B, respectively. It can be easily seen that di(A ® B) = di(A) +
dip—1(A)d1(B)+- - -+di(A)dy_1(B)+di(B). Moreover, dg,+4,—k(A®B) =
dgy—k(A) + dg, 41 (A)dg—1(B) + - -+ + dg, 1 (A)dgy—11(B) + dg,—1(B),
which coincides with dy(A ® B). O

3. COMPLETE LIFTS OF TENSOR FIELDS

Let A be a Weil algebra of height ¢ and let n = dim 1& In what follows
we will assume that A is a Frobenius algebra. As before, we denote the
Frobenius covector by p = (p.) and the Frobenius form by ¢ = (qas)-

Let M be an m-dimensional smooth manifold. Then T4M is an m-
dimensional A-smooth manifold and for each € TAM the tangent
space T, TAM is an m-dimensional A-module. Thus, we can consider
A-tensors at any point x € TAM and A-smooth tensor fields on T4 M
(see [19]). In what follows, we assume all the manifolds and the maps
between manifolds to be of class C'*.
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We denote the algebra of smooth functions on M by C*°(M), the space
of covariant tensors on M by 7*(M) and the space of skew-symmetric
contravariant tensors (multivector fields) on M by V*(M). By |- | we
denote the degree of a tensor field, i.e., |{| = s if £ € T5(M) and |u| = s
if w e V*(M).

In this part of the paper we construct complete lifts of covariant and
contravariant tensor fields from M to the Weil bundle T4 M.

Let (z') = («',...,2™) be local coordinates on M. We will enumerate
the corresponding local coordinates on TAM by the double index ia:
('), i=1,...,m,a=0,...,n, where we identify 2%* = 2%,

Let £ € T*(M) be a tensor field of type (k,0) on M. In local coordi-
nates

6 = flllkdxn ® R ® dfblk
Let =i, 5, = (&,..4,)™ be analytic prolongations of the functions &;, .
We multiply these A-valued functions by e, ...e, , where {e,} is a

Jordan-Holder basis (1.1). Let =, i €4, ---€q, = =0 ey, where

k —i1a1...ixa
=b
Siar.ina, € R Denote

gilal---ikak = Eflal...ikakpb' (31)
We define the complete lift €€ of £ by
SC = gg = §i1a1---ikakdxilal Q- ® dmikak'

If {e,} is another basis in A and e, = 7%¢,, then, obviously, dz’® =
7% dz™. Thus, our definition does not depend on a choice of a basis in
A.

Proposition 3.1. £ is a well-defined tensor field of type (k,0) on
TAM. If o : N — M is a smooth map, then

(T*9)*(€9) = (97€)°.

Proof. Let N be another smooth manifold with local coordinates (y®)
and ¢ : N — M be a smooth map which has the form z* = ¢’(y®) with
respect to these coordinates. Denote 8 = ¢*¢, then

90&1...01;C = . —Slllk

8ya1 o ayak
Let O, 4, be analytic prolongations of the components 0, ,, and let
®’ be the analytic prolongations of the maps ¢’. Note that ®(Y*) =
O (Y e, = ¢"(y*®)e, is the local representation of the map T4y :
TAN — TAM, considered as an A-smooth map and the functions
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@' (y**) are the local representations of T, considered as a map be-
tween real smooth manifolds. From Proposition 1.1 it follows that
0" oD _
= Oyar T gyer ik
Since §* = §§ with respect to the Jordan-Holder basis, (1.6) implies that
o' 9P QD
oYyei — Qyeid gy

@al...ak

Thus
a(pilcl a(pzkc’“
@al---akebl . €bk = ayal 661 Ce Weck Uilmikebl e 6bk. (32)
But ey, e., = 'ygllcleal, Cey Ch o = 7;}:% €q,, therefore the right-hand side
of (3.2) takes the form
8902'161 ay a(pim ag =
g e gy Vipey Zir i €ar - - - Cay-
From Scheffers’ equations (1.5) it follows that
a(pilcl o a(pilal &pikck o Ggoik“k
ayal ryblcl - ayalbl’ e ayak /}/bkck - 6yakbk’

hence,

dpha Ppikar
P ayalbl oo ayakbk ‘:‘il---ikeal e 6ak'

@al,,,akebl ... 6

Then, by (3.1), we have
a¢i1a1 0g0i’€“’€
ayalbl e ayakbk
ie. (TRp)"(69) =07 = (¢)".

In particular, if ¢ is a local diffeomorphism (coordinate transforma-
tion) of M, i.e., 27" = /' (%), then
Dpitbt Pk
Sgher " Dginer Ei1br...30 by

Silal...ikak7 (33)

ealbl...akbk =

gilal...ikak -

This implies that &4, 4.q, 18 a well-defined tensor field of type (k,0) on
TAM. O

In order to construct the complete lifts of contravariant tensor fields
we need to take another basis in A: e® = q%ey, then e, = gupe’.

Let now u € V*(M) be a skew-symmetric contravariant tensor field
on M; with respect to the local coordinates,

w = i d

Oxit /\”./\Bx"k'
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Let Ui+ = (y"1+)A be the analytic prolongations of u®#* and let
Uhke® | o% = Ulflal“‘i’““’“eb, where Uzlal"'i’“a’“ € R. Denote

ullal...zkak = Uglal'“zkakgb' (34)

We define the complete lift u® of u by
0 0

C C ilal...ikak /\ . /\
Oxiral Oxikar

U =Up =1

One can easily check that this definition also does not depend on the
choice of a basis in A.

Proposition 3.2. u® is a well-defined skew-symmetric contravariant
tensor field of degree k on TAM . If o : M — N is a smooth map and u
is p-related to a tensor filed v on N, then u® is (T*p)-related with v°.

Proof. Let N be another smooth manifold with local coordinates (y®)
and ¢ : M — N be a smooth map which is given by y* = ¢%(x?) with
respect to the local coordinates. Let v € V*(IN) be another tensor field
and let v and v be p-related ([13, 14]). Then, in local coordinates we
have
0™t Op“k
dxit T Bai
Denote the analytic prolongations of v, .o, by Va,..a, and the analytic
prolongations of the maps ¢! by ®!. Then

1.0 1.0k

(5] Qg
Jaron _ 0P 0o i
0Xu T oXu ’
and
aicy aCk
oo by be _ dp i [7it -k b1 b,
elt...e o ey - o Ce,, et .. .e’k.
T Tk

brsr brsy

We have ebre, = ¢'*re, e. = q vf:credr =q Vg:cTQardTea’“ for each
r=1,...,k. Let us show that ¢**v%q.q = 7°.. Indeed, the contraction
of the left-hand side with gy gives ¢**v%qaaqo; = w}lcqad, which coincides

with 7% qpr by (1.9). Thus,

a(palcl a(pakck . )
o1...0 ,b b _ i1...05 b b,
Ver-akedt % = e €ey - - - D e, UM "he? et =
aicy agCk
_ b 690 b a(p il---ikeal et —
= ryalcl axil Ce ’yakck axzk Ce =
albl akbk
agp agp 1.0k eal o 6ak

Y

- Orirar ~ 7 Oyikak
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hence, by (3.4),

a(palbl a(pakbk
Orirar ~ 7 Jyikak

aiby...apbr

11Q1...1,Q
v 1012 ak

Therefore, u® is (T2 y)-related to v°.
In particular, if ¢ is a local diffeomorphism of M, i.e. 27" = 7' (2%),
then
Dot ikt
u

ke = 22
Oxitan Oxrikok

ilal...ikak

This means that w4, .4, 1 @ well-defined tensor field of type (0, k)
on TAM. Since u is skew-symmetric and the multiplication in A is
commutative, u¢ is also skew-symmetric. O]

Let
[ -] VE(M) x VE(M) — VR (M,

be the Schouten-Nijenhuis bracket on the multivector fields (a general-
ization of Lie bracket of vector fields [9, 10, 14, 18]).

Proposition 3.3. The complete lift is compatible with the Schouten-
Nigenhuis bracket, i.e.,

[u,v]¢ = [u®,v"]. (3.5)

Proof. First let us derive an auxiliary formula. Let f be a real-valued
function on M and F = F%, = F,e® be its analytic prolongation. Then
Fy = quF*. From the Scheffers’ conditions (1.4) it follows that d.F, =
Y21a090, F = 74%qap09q™ 0, F,.. Contracting with 6%, by (1.11), we obtain
0e(8°Fy) = 0°qup0972,q" 0, F, = pay2yq™ 090, F, = qeaq™ 090, F, = 690, F..
Thus,

0.(0"F,) = 690, F,. (3.6)

Let u € VI(M), v € V(M) be multivector fields. With respect to the
local coordinates,

1 ka..kgin Ti2...0g 9 Ujl---jh+

[U>U] 2eteth = (g _ 1)!h!€i2---igj1mjhu orr

+i5’?2--ﬁg‘+h ‘ ,Urjg...jhiuil...ig
g!(h _ 1)! 11...2gJ2---Jh axT 9
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where £/'7° = 5211 . 5f (see, e.g., [9]). By Theorem 1.1, the same for-

11...15

mula holds for the analytic prolongations:

1 ka..kgyn Tig...ig 4 Vig+1~~~ig+h+

[U? V] 2 h (g _ 1)!h!822...7,g7,g+1...29+h aXT

+ (—1)¢ ka..kgin Vg2 g th iUil...ig

gl(h — 1)1 *1tetat2totn oxr ’
(3.8)
Let us multiply both sides of (3.8) by e ...e%+" and then contract with
6™, In the left-hand side we get ([u, v])*292Fs+ras+n  Consider the first

summand in the right-hand side (without ¢):

© _11)!h! Pig..ig 02 eagWVig+1--~ig+heag+l L e%th —

(g _11)!h! iz a2 eag5b%vag+lig+l“'ag+hig+h by (1.6) =

’ _11)!h! [Jrizigpagaz 6@95b%{/a“9+”'9+1"'a9+hi9+h =

(g —11)!m e e afm (VYo Sy (3.6) =
(g _11)!h! Tzaigag...igagemw((Uc)ag+lig+1“'ag+hig+h).

Contracting with 0™ we get

1 ( C)Taigag...igag <(,Uc)ag+1ig+1mag+hig+h)'
(g — 1)!A! oxre
The commutativity of multiplication in A yields that
k2---kg+h o deQ...kg+hag+h
12...0g4p 1920209 pAgip "

In the same manner we deal with the second summand in (3.8) and then
obtain. Therefore

(fu, )0 es-Hassosen =

1 1?2a2...k9+;?ag+h ' (u0>mi2a2...igag 9 (UC)ag+1ig+1...ag+hig+h +
(g—1)!h! “i2a2...igagig+1ag+1..-igf hGgin ozra

_‘_ﬂ 1?2‘12“"]“94—?}“94—%1 ) ( C)raig+2ag+2...ig+hag+hi (uC)ilal...igag
g!(h—1)!%41a1..igagigioagia...igynagin oxre ’

which coincides with (3.5). O
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The construction of the vertical lift of multivector fields to the tangent
bundle (see [23]) also may be generalized to Weil bundles in the following
way. Let u = w50 A - N3 a (M). We define the vertical lift

u¥ € VF(TAM) of u by

0

A W

Vo Vo
U =uUp = U

(3.9)

Proposition 3.4. The vertical lift u¥ is a well-defined multivector
field on TAM.

Proof. Let 27 = 27 (2%) be a coordinate change on M, then

) alﬂll axzk

uzl...zk — o 110k
oxh Ox'tk

Thus it suffices to prove that

o Oz 0
Oxin Ot Ogisn’

(3.10)

Let us determine the corresponding change of coordinates z?'* = xi/“(x“’)
on TAM. By (1.7),

i l)pajZ O
X" =" + 2%, = o —|—Zp‘ Dxp (3.11)
Ip|=1
Hence, for TAM we have
xi’ — xi/(mi),
zVe = fre(g), a=1,...,n.
Let us show that
o i'a
a];ib =0 for b>a.

Indeed, the coefficients ;! %zp in (3.11) depend only on 2' = z°, while

the expression (X1)P1 ... (X myPm contains 2% only as a coefficient at e,

in X* Since 7 =0, for ¢ > s the coefficient at e; which appears

when we expand brackets in (X1)P1...(X™)P» does not depend on x™.
Moreover, it can depend on 2% only for the summand corresponding to
Ip| = 1 (because for |p| > 2 the expression z'%e; will be multiplied by

some element of A and thus after the expanding brackets the coefficient
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at ez does not depend on z%4). For the case |p| = 1 we obtain the only
dazt’

summand $5-2"%e; depending on z**. Therefore,
ox'd 9z
5 o forany a=1,...,n.

Hence, the Jacobi matrix of the coordinate transformation z%% =
2" %(z™) on TAM has the following block structure:

./
g1 0 | 0 -] 0|0
xr
dz?
* | Go o |- 0 0
xr
* *
)
. 9z’
* | e - * 89;1. 0
oz
* * * * 821.

where * denotes the blocks which are unessential for our consideration.
Now (3.10) is obvious. [

Proposition 3.5. For any u,v € V*(M) there holds
[u",v"] = 0. (3.12)
Proof. This follows easily from (3.7). Indeed,
(uv>i1a1...ikak — 07

if at least one of indices aq, ..., ai is not equal to n. But then
avjlbl...jgb[

axrn
Thus, all the summands in the right-hand side of (3.7) are zero. O

= 0.

4. POISSON STRUCTURES ON TAM

Recall that a Poisson bracket on a smooth manifold M is a bilinear
skew-symmetric mapping {, } : C®°(M) x C>®(M) — C*(M), satisfying
the Leibniz rule

{f,9h} ={f, 95+ g{f I}
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and the Jacobi identity
{{f. g} hy + g, 0}, f1 + {{h. f}, 9} = 0.

A Poisson manifold is a smooth manifold M endowed with a Poisson
bracket. The Poisson bracket on M uniquely defines a bivector field

0 0
w = w" o A 907 € V(M) (4.1)
such that
{f, 9} = i(w)(df N dg) (4.2)

for any f,g € C>®(M), where i(w) : Q™(M) — Q™ 2(M) is the inner
product; in local coordinates
({(W) )iy iy = wjkajkil...im_g-

This bivector field is usually called the Poisson bivector. It is known
(see, e.g., [7, 9, 18]) that the bracket (4.2) on C'*°(M) satisfies the Jacobi
identity if and only if

[w, w] = 0. (4.3)
In local coordinates this is written as
- Qwkt e QWY Owik
w’® +w"™® + w' =0
oxs oxs oxs

In what follows we will denote the Poisson manifold by (M, w).

To each function f € C*(M) there corresponds the Hamiltonian vec-
tor field Xy = X7 € V(M) defined by X;(g) := {f, g}. Locally, Hamil-
tonian vector fields on (M, w) have the form [14, 11, 18]

af .. 0
XY ={f, }w= ajiw”@ <f € C°°(M)). (4.4)

For a Poisson manifold (M, w), the Lichnerowicz-Poisson coboundary

operator

0 =0y, V(M) — VM),
is defined by ou := [w,u]. Because the Schouten-Nijenhuis bracket sat-
isfies the super-Jacobi identity (see [9, 14])

(_1)|uHU|[[U7 y]? U] + (_1)‘U“y|[[y7 U], U] + (_1)‘y||u|[[u? U]v y] = 07
one has 0 o 0 = 0. Thus the cohomology spaces
ker o : VF(M) — VEFL(M)
k o
Hip(M,w) = im o : V-1 (M) — VE(M)’

called the Lichnerowicz-Poisson cohomology spaces of Poisson manifold

(M, w) are defined. The problem of computing this cohomology is very
difficult (see, e.g., [3, 17, 22]).
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One can easily see that [w, f] = Xy for any f € C*(M), hence Hamil-
tonian vector fields form the space of 1-coboundaries of o [14].

Let (M, w) be a Poisson manifold and A be a Frobenius Weil algebra.
Consider the complete lift w® of w to TAM. By (3.5) and (4.3), w® is a
Poisson bivector on T4 M.

Proposition 4.1. The complete lift of multivector fields induces a
homomorphism of Lichnerowicz-Poisson cohomology

[u] € H} p(M,w) — [u°] € Hj p(T*M,w). (4.5)

Proof. From (3.5) it follows that

(Uwu)c = g0 u’,

which implies that (4.5) is a homomorphism. [J

Let us find how the complete lift w® does depend on the choice of
a Frobenius covector p on A. We denote by ¢ the corresponding vec-
tor defined by (2.12). Let w% be the components of the analytic pro-
longation W% = (w¥)A, ie., W4 = _ wYe,. In what follows we
will omit the sign of summation over s. Then W#etet = wile et =
wig*qeseea = wIq g ylpgee = WYL gqee”. Contracting
with 0", we obtain

= Wi q* Yy g0 = wI g G Yy e =

wza]b

WLt Yyl pe = Wt he9yG hhy At pe (by (2.5)) =
Wt Wy Al veepe (by (1.2)) = wit"ho9h s vi op e, =
(by (2.12)) =
Wt IhYG hae s, = WISy, Ve = wITh 5L, =

ij4r=~acAb
WY

Thus, for any Frobenius covector p, the complete lift w® is the linear
combination
w® = thwf (4.6)

where

ij=ac a
wk - Z w ]ryk /Ygs axm A aij‘ (47)

Let us show that each of w¢ is a multivector field and that

[wi, wi ] = [wi, wi] =0 (4.8)
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for any k,¢ = 0,...,n. To this end we will express each of w¢ in
terms of complete lifts w® corresponding to different Frobenius cov-
ectors. We will assume the basis (1.1) to be chosen in such a way
that poy = (0,...,0,1) is a Frobenius covector. Recall that the cor-
responding vector ¢ is (1,0,...,0). Since the determinant det ||v%,t°||
is a continuous function in ¢ and does not vanish at ¢ = ¢, this de-
terminant does not vanish in a neighborhood of this point. Therefore
one can find € > 0 such that this determinant is nonzero for each of
the vectors ¢ = (1,0...,0,¢,0,...,0) (¢ at the kth place), tx—) =

(1,0...,0,—¢,0,...,0) (—¢ at the kth place) and
t(kg (10 0,8,0,...,0,8,0,...,0)

(e at the kth and fth places), k,¢ = 1,...,n. Hence the corresponding
covectors pu) Pk are Frobenius covectors. For each vector ¢ under
consideration the complete lift w® is a Poisson bivector, which implies

[w, w] = [tFw tws] = 0. (4.9)

Substituting ¢ = t(o) into (4.6) and (4.9), we see that w§ € V*(T*M)

and [w§ ,wo] = 0. Now substitute t = ¢y and ¢t = t(,—), which gives
w§ + ew{ € VAHTAM), therefore w{ € V2(TAM) and

[w§ + ewf, w§ + ewl] = [w§ — ewf , w§ — ewf] = 0.
Expanding these equations yields 2e[w{, w§]+e*[w¢, wl] = —2e[wf, w§]+
e2lw¢, w¢] = 0, which implies [w§,w{] = [wS,wf] = 0. Finally, sub-

stituting ¢ = #(¢ into (4.9) one gets [wf, w{’] = 0. Thus, the following
theorem is valid.

Theorem 4.1. Let (M,w) be a Poisson manifold and TAM be its
Weil bundle for a Frobenius Weil algebra A. Then for each Frobenius
covector p on A the complete lift w® of Poisson bivector w to TAM s
of the form

= tkwk ,
where t = (t*) and w¢ are defined by (2.12) and (4.7) respectively. More-
over,

[wi s wi ] = [wi, wi] =0

for any k, 0 =0,...,n.
Remark 4.1. One can easily see that wS = w". Indeed, in this case

k = n in (4.7). But (2.4) implies that e = ey and that each of &,
a=0,1,...,n— 1, does not contain e; in its decomposition. Hence the
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only nonzero component of 7%¢
d =0 and 7%, = 0 for any other values of b and d. Consequently,

wy =w . —
" oxn  Oxin

is 7™ = 1. Then ~?, is 1 only for b = n,

Thus, Theorem 4.1 (as well as Proposition 3.5) implies that w" is also
a Poisson bivector on T4 M.

Example 4.1. Let A be the algebra of plural numbers R(e™). Choose
a Jordan-Holder basis eg = 1, ¢, = €%, a = 1,...,n in it. The explicit
form of the analytic prolongations W% = 3" _ w%e® can be found by
(1.7), for instance, -

i
wg = w",
ij p1 QW
wy = ,
Oxk
| 0w owv
wi = kgt k2 ote.

The corresponding bivectors w{ are (here w,ij means the square block

w1

0 O 0 0 w"
0 0 0 w9 w/
Wy = )
’ 0 0 .
0w’ wy w_y
w? ow? o w? wY
0 O 0 0 0 0
0 O 0 0
0
0 O 0 0 0 w
Wy, = 0 0 0 0 w” w7i] ) k= 17
0 O :
0 0 ... 0 wY wij e e wilj_k_l
i i
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0 0 0 O
0 0 0
wi=1 3
00 ... ... 0
00 ... 0 wv

In particular, for the case A = R(g), which corresponds to the tangent
bundle T'M and the standard Frobenius covector p = (0, 1), the complete
lift w is

w® = w 0 /\i+lyk8w” 0 /\i
oxt Oyl 27 Oxk Oyt Oyl
This Poisson bivector was studied by many authors, see, e.g., [1, 4, 11].

Example 4.2. Consider the algebra A(A,n). We will denote the
elements of the inverse matrix A~! by \%.
By (1.7), denote

g Ow' y Ow' D*w¥
w(ll] — xka_7 wg — xkn + )\abxkaxfb .
Then, for this algebra (4.7) implies that
0 0 0 e 0 w
0 AL qpid N2 ALeeLygii gl
. 0 A2L 4t A22 gt D At L w;’j
wo - )
0 )\n—l,l wij )\n—172 wij . )\n—l,n—l wij w;ﬂ_l
w" wij w;j e wff_l w¥
0 0 0 0
wé =\ . . ' ,b=1,...,n—1,w" at the bth place
0 0 0
0 ... w7 ... 0 > Apw?
a=1
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0 0 0
G =

0O ... ... 0

0 ... 0 w¥

5. MODULAR CLASSES OF POISSON STRUCTURES ON TAM

In the final part of the present paper we compute the modular classes
of Poisson structures w¢ for the case of weakly symmetric Frobenius Weil
algebras.

Recall that if p is a volume form on the oriented manifold M then the
divergence div, X of a vector field X is defined by

Lxp = (div,X)p
and one has
div,(fX) = fdiv,X + Xf,  feC®(M).

Therefore for a Poisson manifold (M, w) with the volume form p the
operator

A, feC®(M) — div,X; € C*(M)

is defined, where Xy is a Hamiltonian vector field of f. Easy computa-
tions show that A, is a derivation on C*°(M) and, hence, a vector field
on M [21]. This vector field is called the modular vector field of oriented
Poisson manifold (M, w, ).

The modular vector field satisfies oA, = 0 [6]. If we replace p with
any other volume form ap, where a € C°°(M) is a positive function, then
the modular vector field changes to A,, = A, + H_j0g 4 [21]. As far as
Hamiltonian vector fields are 1-coboundaries of o, this implies that the
set of modular vector fields for all volume forms on M is an element of
H} »(M,w). This cohomology class is called the modular class of the
Poisson manifold (M, w).

Let g = g;;da' @ da? be a Riemannian metric on an m-dimensional
oriented manifold M. Then

dV, = \/det g dz' A+ A da™

is a volume form on M. Let ¢ be a complete lift of g.
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Proposition 5.1. For a weakly symmetric Frobenius Weil algebra A
the complete lift g¢ is a metric on TAM, moreover,

det ¢ = M(det g)"™, (5.1)

where M is some constant (depending only on A ).

Proof. We choose the standard Frobenius covector p). Let G;; =
gijes be the analytic prolongations of gij. Then Gjjeqer = Gfajbec and
Giajp = Gipjppe = Giogye Clearly, giajp = gjeia for all a,b,4, 5. If s > 0,

then e; € A, hence the component g;,;; contains gi; only if e e, ¢ Al

Therefore, if e,e;, € A9, then g5 depends only on g?j = ¢;; and the
matrix ||giq;s|| has the following block structure:

* < 15| o
* §2 0 0
* * Eq_g 0
* éq_l 0 0
||gz'jH 0 0 0

where B;, = B,—kx ® ||gij]| and the symbol ® denotes the tensor (Kro-
necker) product of matrices.

The determinant of this matrix is the product of the determinants of di-
agonal blocks: det ||giq o = det || ;|- det(B14—1®1gi5]|) -+ - --det(By_11®
llgi;||) - det ||gi;||. For any two matrices S and T" of dimensions k x k and
¢ x { respectively, one has

det(S® T) = (det S)*(det T)".

We have dy(A)+- - -+d,_1(A) = n—1. Hence, det ||giap|| = M (det g)"*?,
where M = (det By _;)®®) ..... (det B,_1.1)%1A) O

Let
® =dV,e =+/det g€ da' A...dz™ A Ad A Ad™

be the corresponding volume form on T4 M.

Proposition 5.2. Let A (dim;& =n) be a weakly symmetric Frobe-
nius Weil algebra, (M,w) a Poisson manifold, and T* M its Weil bundle.
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Then for a Poisson structure w§ on T*M its modular vector field is

AT = (n+1)(AN,)Y, (5.2)

c

where V' means the vertical lift. For each of the Poisson structures wy,

.., w€, the modular vector fields are zero.

Proof. From (4.4) it follows that the modular vector field of (M, w)
is [11]

oxJ tw oxd oxt’

"L Ow' -0 Iny/det 0
AdVg = Z ( Y g)
j=1
Then (5.1) implies that

0 In+/det g
\/ 1)———— =
8 In det gC _ (n + ) ax] ) b 07

T (5.3)
0, b=1,2...,n.
Let w,iaj ® denote the components of w¢. At first, show that
iajb awij —
5(;“0,1) _ ) G 0T
)
0, a=0,1...,n—1, (5.4)
dw;™°
Dt =0, k=1,...,n.

By (4.7), w;™" = 32" w9754, The arguments similar to the proof

ij ij i

of Proposition 3.4 show that gg;z = 0 for s < b and that gljfb = %ﬁ;b.

iaj

Moreover, 2. = 0 s > b. Hence, the only nonzero summand in e

corresponds to s = b. Therefore ¢ = 0, otherwise 4%, = 0. But % is not

zero only for a = n and k = 0 by virtue of (2.4) (since €® = e, e = 1).
iajb iaj

Hence ag;jb =0fork=1,...,n and 9
we have

Jjb
w,
s~ = 0 for a # n. As for a = n,

w7 B owy ~ OwY
Oxdb — Jxib  Oxd
This completes the proof of (5.4).
Now, show that

0, a=01...,n—1, (5.5)
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Indeed, wy?® = S0 w7340, thus ¢ = s = 0 (otherwise 7§* = 0) which
implies a = n and k = 0 as before.
It remains to prove (5.2). We have

Ay — Z <8wiaﬂ’ iajp0 1IN y/det gc> 0

— 4w - — .
Ozt OxJb Oxta

jb
From (5.4) it follows that
L ow' it ow 9

2o pom "V au e

since the index b can take n + 1 distinct values from 0 to n.
In the summand

Zwmjb& Iny/det g¢ 0O
jb

Oxib ozie
the only possibility is b = 0 by virtue of (5.3), whence, by (5.5), we obtain

Zwmﬂ,a Iny/det g¢ 0O i;j0Inydet g 0
Oxb oz'e dxi Jam

=(n+1lw
jb

O

Corollary 5.3. For a weakly symmetric Frobenius Weil algebra A the
modular class of the Poisson manifold (T*M,w® = w§ + > p_, t"w{) is
represented by (n + 1)AL/, for every modular vector field A,, of the base
manifold (M, w).

Proof. By Proposition 5.2 the result is true for the field Agy,. As in
[11], we have

(Uwf)vzawc(foﬂ'A), feCc (M), A TAM — M.
This immediately proves the Corollary. [J

REFERENCES

[1] T.J. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661.

[2] C.W. Curtis, I. Reiner, Representation theory of finite groups and associative
algebras. New York. John Wiley & Sons Ltd., 1988, 689 p.

[3] A. Gammella, An approach to the tangential Poisson cohomology based on ex-
amples in duals of Lie algebras, Pacific J. Math., 203(2) (2002), 283-319.

[4] J. Grabovski, P. Urbanski, Tangent lifts of Poisson and related structures,
J. Phys. A, 28 (1995), 73-88.

[5] 1. Kolér, P.W. Michor, J. Slovék, Natural Operations in Differential Geometry.
Springer, 1993, 434 pp.



256 VADIM V. SHURYGIN, JUNIOR

[6] Y. Kosmann-Schwarzbach, Modular vector fields and Batalin- Vilkovisky algebras,
in: I. Grabovski, P. Urbanski (Eds.), Poisson Geometry, Banach Center Publi-
cations, 51 (2000), 109-129.

[7] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, “Elie Cartan et les
Math. d’Aujour d’Hui”, Astérisque, hors-série, 1985, 257-271.

[8] G.I. Kruchkovich, Hypercomplex structures on manifolds. I. (Russian) Tr. Semin.
Vektorn. Tenzorn. Anal., 18 (1977), 174-201.

[9] A. Lichnerowicz, Les variétés de Poisson et leurs algébres de Lie associées, J.
Diff. Geom., 12 (1977), 253-300.

[10] P.W. Michor, Remarks on the Schouten-Nijenhuis bracket, Suppl. Rendiconti del
Circolo Matematico di Palermo, Serie II. 16 (1987), 207-215.

[11] G. Mitric, I. Vaisman, Poisson structures on tangent bundles, Diff. Geom. and
Appl., 18 (2003), 207-228.

[12] R.S. Pierce, Associative algebras. Grad. Texts in Math., 88, Springer, 1982, 436
p-

[13] M.M. Postnikov, Lectures in geometry. Semester III: Smooth manifolds. Text-
book. (Lektsii po geometrii. Semestr. III. Gladkie mnogoobraziya. Uchebnoe poso-
bie). (Russian) Moskva: Izdatel’stvo “Nauka”, 1987, 480 p.

[14] A. C. da Silva, A. Weinstein, Geometric Models for Noncommutative Algebras,
Berkeley Lecture Notes, 10, 2000, 184 pp.

[15] A.P. Shirokov, The geometry of tangent bundles and spaces over algebras. (Rus-
sian) Itogi Nauki Tekh., Ser. Probl. Geom., 12 (1981), 61-95 (1981).

[16] Shurygin V.V., The structure of smooth mappings over Weil algebras and the
category of manifolds over algebras. Lobachevskii J. of Math., 5 (1999), 29-55.

[17] 1. Vaisman, Remarks on the Lichnerovicz-Poisson cohomology, Ann. Inst. Fourier
Grenoble, 40 (1990), 951-963.

[18] I. Vaisman, Lectures on the Geomery of Poisson Manifolds, in: Progress in Math.,
118, Birkhéauser, Basel, 1994.

[19] V.V. Vishnevsky, A.P. Shirokov, V.V. Shurygin, Spaces over algebras. (Pros-
transtva nad algebrami). (Russian) Kazan’: Izdatel’stvo Kazanskogo Univer-
siteta., 1985, 263 p.

[20] A. Weil, Théorie des points proches sur les variététes différentiables. Colloque
internat. centre nat. rech. sci., 52, Strasbourg, 1953, pp. 111-117.

[21] A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom.
Phys., 23 (1997), 379-394.

[22] P. Xu, Poisson cohomology of reqular Poisson manifolds, Ann. Inst. Fourier
Grenoble, 42 (1992), 967-988.

[23] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, M. Dekker, New York,
1973.

KAZAN STATE UNIVERSITY, KREMLEVSKAYA, 18, KAZAN, 420008, RuUssiA

E-mail address: 1Vadim.Shurygin@ksu.ru

Received April 8, 2005



