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Abstract. In the present paper, we construct complete lifts of co-

variant and contravariant tensor fields from the smooth manifold M to

its Weil bundle TAM for the case of a Frobenius Weil algebra A. For a

Poisson manifold (M,w) we show that the complete lift wC of a Poisson

tensor w is again a Poisson tensor on T AM and that wC is a linear

combination of some ”basic” Poisson structures on T AM induced by w.

Finally, we introduce the notion of a weakly symmetric Frobenius Weil

algebra A and we compute the modular class of (T AM,wC) for such

algebras.

1. Preliminaries

A Weil algebra [5, 16] is an associative commutative algebra A with

unit over the field R of real numbers, which is of the form A = R ⊕
◦

A,

where
◦

A is a finite-dimensional maximal ideal, consisting of nilpotent

elements. In what follows we denote n = dimR

◦

A.

By
◦

Ar we denote the rth power of
◦

A. Let dk(A) = dimR

◦

Ak/
◦

Ak+1.

The number d1(A) is usually called the width of A. The positive integer

q defined by
◦

Aq 6= 0,
◦

Aq+1 = 0 is called the height of A.

The chain of embedded ideals

A ⊃
◦

A ⊃
◦

A2 ⊃ · · · ⊃
◦

Aq ⊃ 0
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can be extended to the chain of ideals called the Jordan-Hölder compo-

sition series [16]

A ⊃
◦

A = I1 ⊃ I2 ⊃ . . . ⊃ In ⊃ 0,

where Ia/Ia+1 is a 1-dimensional algebra with the zero multiplication.

Here
◦

Ak = I1+d1(A)+···+dk−1(A) for 2 ≤ k ≤ q.

This is the particular case of the general ring construction, see [12]. Using

the Jordan-Hölder composition series one can choose the Jordan-Hölder

basis

{ea} = {e0, eâ}, a = 0, 1, . . . , n = dim
◦

A, â = 1, . . . , n, (1.1)

in A such that e0 = 1 ∈ R, eâ ∈ Iâ, eâ 6∈ Iâ+1. In general, this basis

is not unique. For X = xaea = x0 + xâeâ ∈ A we set
◦

X = xâeâ, then

X = x0 +
◦

X. Let δa be the coordinates of unit of A, i.e., 1 = δaea.

We denote by (γc
ab) the structural tensor of A with respect to the basis

(1.1), i.e., eaeb = γc
abec. It satisfies γb

0a = δb
a (the Kronecker’s delta) and

γc

ab̂
= 0 for a ≥ c. Since A is commutative and associative, it also satisfies

the conditions γc
ab = γc

ba and

γc
abγ

b
ef = γb

aeγ
c
bf . (1.2)

The conditions of differentiability of a function f : U ⊂ A → A

on a commutative associative algebra A (or, briefly, A-differentiability),

usually called Scheffers’ equations, are (see [19]):

∂cf
bγc

ag = γb
ac∂gf

c, (1.3)

where ∂af
b = ∂f b/∂xa. Scheffers’ equations are equivalent to

∂af
b = γb

acδ
g∂gf

c. (1.4)

For f : U ⊂ Am → A, f : {X i = xiaea} 7→ f(X i) = f b(xia)eb, where

Am = A×· · ·×A is the A-module ofm-tuples of elements of A, Scheffers’

conditions of A-differentiability are of the form [19]:

∂iaf
b = γb

acδ
g∂igf

c. (1.5)

If a function f satisfies (1.5), its differential can be represented in the

form df = fidX
i, where fi = δa∂iaf is the partial derivative with respect

to X i ∈ A. Thus,

fi =
∂f

∂X i
= δa ∂f

∂xia
. (1.6)

The functions fi(X
j), i = 1, . . . , m, are also A-differentiable.
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The following theorem (see [16]) describes the local structure of an

A-differentiable map of the form F : U ⊂ Am → Ak for a Weil algebra

A. The natural epimorphism πq
0 : Am → Rm determines the canonical

◦

Am-foliation on Am. Recall that a smooth map f : M → N of a foliated

manifold (M,F) is called projectable or basic if f is constant along the

leaves of F .

Theorem 1.1 ([16]). 1) Let U ⊂ Am be an open set. Then any

A-smooth map Φ : U → Ak is of the form

X i′ = ϕi′ +

q∑

|p|=1

1

p!

Dpϕi′

Dxp

◦

Xp, (1.7)

(where i = 1, . . . , m, i′ = 1, . . . , k, p = (p1, . . . , pm) is a multiindex

of length m and
◦

Xp = (
◦

X1)p1 . . . (
◦

Xm)pm) for some basic smooth map

ϕi′ : U → A which is projectable with respect to the canonical
◦

Am-

foliation.

Definition. The map Φ : U → Ak given by the formulas (1.7) is

called the analytic prolongation of the projectable map ϕ : U → Ak.

The analytic prolongation of a map ϕ will be denoted by ϕA.

Proposition 1.1 ([16]). The analytic prolongation has the following

properties:

1◦. (ϕ+ ψ)A = ϕA + ψA.

2◦. (ϕ · ψ)A = ϕA · ψA.

3◦. (ϕA ◦ ψ)A = ϕA ◦ ψA.

4◦. (Dpϕ/Dxp)A = DpϕA/DXp for ϕ : U ⊂ An → A.

We denote by Mf the category of smooth manifolds and by FM that

of fibered manifolds. To each Weil algebra A there corresponds a functor

TA : Mf → FM called the Weil functor which maps a smooth manifold

M to the fibered manifold πA : TAM →M called the Weil bundle (see [5,

16, 20]). A.P. Shirokov proved [15] that TAM carries the structure of a

smooth manifold over A. Weil functors preserve products, i.e., TA(M ×
N) ∼= TAM×TAN . Moreover, under some additional conditions (locality

and regularity) each product preserving bundle functor F : Mf → FM
is equivalent to a Weil functor TA for a Weil algebra A [5].

A Weil algebra A is said to be Frobenius (cf. [19, 2]) if there exists

a nondegenerate bilinear form q : A × A → R, satisfying the following

condition of associativity:

q(XY,Z) = q(X, Y Z) for any X, Y, Z ∈ A. (1.8)
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Frobenius algebras play an important role in the theory of smooth man-

ifolds over algebras in constructing realizations of tensor operations [8].

With respect to the basis (1.1) the condition (1.8) is written as

qbcγ
c
ef = γc

beqcf . (1.9)

We will call q a Frobenius form. A Frobenius form is not unique (if exists).

For a Frobenius algebra A we define the Frobenius covector p : A → R

by p(X) := q(X, 1). Its coordinates with respect to the basis (1.1) satisfy

paγ
a
bc = qbc. (1.10)

Contracting (1.10) with δc and taking into consideration that δc = δc
0

(the Kronecker’s delta) with respect to the basis (1.1), we obtain

pb = qbcδ
c. (1.11)

From (1.8) and (1.10) it easily follows that

q(X, Y ) = p(XY ) for each X, Y ∈ A. (1.12)

We denote the set of all Frobenius covectors on A by A∗
Fr.

Example 1.1. The important example of a Frobenius Weil algebra is

the algebra of dual numbers D = R(ε) = {x0 + x1ε | x0, x1 ∈ R, ε2 = 0}.
To this algebra there corresponds the tangent bundle functor: TR(ε)M =

TM .

Example 1.2. Another example is the algebra Dn = R(εn) = {x0 +

x1ε + · · · + xn−1ε
n−1 | xi ∈ R, εn = 0}. of plural numbers which is a

generalization of the previous one. To this algebra there corresponds the

functor of jet bundle of higher order.

If A and B are Frobenius algebras, then A ⊗ B is also a Frobenius

algebra (see, e.g. [19]).

In what follows we assume all Weil algebras under consideration to be

Frobenius algebras.

2. The structure of a Frobenius Weil algebra

Let A be a Frobenius Weil algebra of height q and let n = dim
◦

A. Let

us choose a Jordan-Hölder basis (1.1) in A.

Lemma 2.1. dim
◦

Aq = 1, i.e.,
◦

Aq = In.

Proof. On the contrary, suppose that dimR

◦

Aq ≥ 2. Then at least

two last elements en−1 and en of a basis (1.1) belong to
◦

Aq and, conse-

quently, for any â = 1, . . . , n there hold eâen−1 = eâen = 0. Hence for

any c = 0, . . . , n the matrix ‖γc
ab‖ contains zeros everywhere in two last
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columns (with the numbers n− 1 and n) except for the first row. Then

for each covector (pc) the matrix ‖qab‖ = ‖pcγ
c
ab‖ also contains zeros ev-

erywhere in two last columns except the first row, and thus is degenerate.

Contradiction. By this reason, dimR

◦

Aq = 1, which implies
◦

Aq = In or,

equivalently,
◦

Aq = R · en. �

Lemma 2.2. For each Frobenius covector p on A, its last component

pn is not zero.

Proof. From the equalities 1 · en = e0en = en and eâen = 0 for each

â = 1, . . . , n it follows, that for each c = 0, . . . , n− 1 and for each b there

holds

γc
bn = 0, γn

0n = 1, γn
ân = 0.

Hence, for each c = 0, . . . , n − 1 the last column of the matrix ‖γc
ab‖

contains only zeros and the last column of the matrix ‖γn
ab‖ is

T (1, 0, . . . , 0).

Therefore the last column of ‖qab‖ = ‖pcγ
c
ab‖ is

T (pn, 0, . . . , 0), (2.1)

hence pn 6= 0. �

Remark 2.1. One can prove both lemmas without using coordinates.

Indeed, denote

Ann
◦

A := {X ∈
◦

A |X ·
◦

A = 0}.

Let 0 6= X ∈ Ann
◦

A, then for each Y = y0 +
◦

Y we have XY = Xy0,

whence q(X, Y ) = p(XY ) = y0p(X). From the degeneracy of q it fol-

lows that p(X) 6= 0. Therefore Ann
◦

A ∩ ker p = 0 which implies that

dim Ann
◦

A ≤ 1. But, clearly, 0 6=
◦

Aq ⊂ Ann
◦

A, hence dim
◦

Aq =

dim Ann
◦

A = 1.

Let us denote ‖hab‖ := ‖γn
ab‖.

Lemma 2.3. The Jordan-Hölder basis (1.1) can be chosen in such a

way that the matrix ‖hab‖ is nondegenerate.

Proof. Let us choose any Jordan-Hölder basis (1.1). If p(0) = (0, . . . , 0, 1)

is a Frobenius covector, then the matrix ‖hab‖ is nondegenerate. Assume

the contrary and consider any p ∈ A∗
Fr. Without loss of generality we

may assume that pn = 1 (otherwise consider 1
pn
p).
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1) We prove that the first component p0 of p may be taken to be zero.

Indeed, in the matrix ‖qab‖ only the element q00 depends on p0:

‖qab‖ =




p0 ∗ . . . ∗ 1

∗ ∗ . . . ∗ 0
...

...
. . .

...
...

∗ ∗ . . . ∗ 0

1 0 . . . 0 0




(∗ denotes the elements which do not depend on p0.) The cofactor of

q00 = p0 contains only zeros in the last column, hence it is zero itself.

Thus, the determinant det ‖qab‖ does not depend on p0 and we may

assume that p0 = 0.

2) By the assumption, p(0) = (0, . . . , 0, 1) is not a Frobenius covector,

therefore there exists at least one c, 1 ≤ c ≤ n − 1, such that pc 6= 0.

Consider another basis {e′a} in A:

e′0 = e0 = e0−p0en, e′a = ea−paen, a = 1, 2, . . . , n−1, e′n = en.

(2.2)

One can easily see that {e′a} is also a Jordan-Hölder basis. Since eaen = 0

for each a ≥ 1, the structural constants γ ′c
ab will have the following

form with respect to this basis: γ ′cab = γc
ab for c = 1, 2, . . . , n − 1 and

γ′nab = γn
ab + γd

abpd, where the summation over d is taken from 1 to n− 1.

Thus, ‖γ′nab‖ equals to ‖qab‖ and therefore is nondegenerate. �

In what follows we will suppose the Jordan-Hölder basis to be chosen in

such a way that ‖hab‖ is nondegenerate and we will call p(0) = (0, . . . , 0, 1)

the standard Frobenius covector.

Remark 2.2. One can also give a noncoordinate proof of Lemma 2.3.

Let
◦
p ∈ A∗ be defined by

◦
p(X) := x0.

1) We show that if p ∈ A∗
Fr then p̃ := p − p(1)

◦
p also is a Frobenius

covector. Suppose the contrary. Then there exists X ∈ A such that

p̃(XY ) = 0 for any Y ∈ A. This means that x0p(
◦

Y )+y0p(
◦

X)+p(
◦

X
◦

Y ) =

0. Let Z ∈
◦

Aq be an element such that p(Z) = 1 (in terms of the Jordan-

Hölder basis, Z = en) and let X̃ = X−x0Z. Then for any Y ∈ A one has

X̃Y = XY − x0y0Z = x0y0 + x0
◦

Y + y0
◦

X +
◦

X
◦

Y − x0y0Z. One can easily

see that p(X̃Y ) = 0, which contradicts to the fact that p is a Frobenius

covector.

This means that we can deform any p ∈ A∗
Fr in such a way that

R ⊂ ker p.
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2) Now, by Lemma 2.2 or Remark 2.1, one has A = ker p ⊕
◦

Aq. We

define a bilinear form h(X, Y ) on A to be the projection of XY onto
◦

Aq

along ker p. This form is nondegenerate. Indeed, let X ∈ A be such that

h(X, Y ) = 0 for any Y ∈ A. We write XY = U + Z, where U ∈ ker p,

Z ∈
◦

Aq. Then 0 = h(X, Y ) = Z, hence p(XY ) = p(Z) = 0 which

contradicts to Lemma 2.2.

Thus, without loss of generality, we may assume the matrix ‖hab‖ =

‖γn
ab‖ to be nondegenerate. This matrix has the following form:

‖hab‖ =




0 0 · · · 0 1

0 0
... B

...

0 0

1 0 · · · 0 0



, (2.3)

where B denotes the nonsingular square block. The inverse matrix is of

the same form:

‖hab‖ =




0 0 · · · 0 1

0 0
... B−1 ...

0 0

1 0 · · · 0 0




(2.4)

This allows us to introduce another basis in A: we put ea = habeb, then

ea = habe
b. Denote by γab

c the structural constants of A with respect to

the basis {ea}, i.e. eaeb = γab
c e

c. Clearly,

γab
s = hakhb`hcsγ

c
k` (2.5)

and

γc
k` = hakhb`h

csγab
s . (2.6)

Since δa = δa
0 with respect to the basis (1.1), we have hcsδ

s = γn
csδ

s = γn
c0,

which is not zero only for c = n and γn
n0 = 1. Therefore γab

0 = γab
s δ

s =

hakhb`γc
k`hcsδ

s = hakhb`γn
k` = hakhb`hk` = hakδb

k = hab. Thus,

hab = γab
0 .

Moreover, it is clear from (2.4) that en = e0, hence eaen = ea, which

implies that

γan
c = δa

c . (2.7)
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From the formula (1.2) it follows that γc
srhcd = γc

srγ
n
cd = γc

dsγ
n
cr =

γc
dshcr = γc

drγ
n
cs = γc

drhcs. Thus,

γc
srhcd = γc

dshcr = γc
drhcs. (2.8)

The tensors γc
ab and γab

c are also related with the following formulas.

We have γc
kah

k` = hschbahdkh
k`γdb

s (by (2.6)) = hschbaγ
`b
s , hence hbaγ

`b
s =

hscγ
c
kah

k` = γc
sahckh

k` (by (2.8)) = γ`
sa. Thus,

γ`
sa = hbaγ

`b
s , (2.9)

whence

γbc
s = habγc

sa. (2.10)

Let p (pn 6= 0) be an arbitrary Frobenius covector on A and ‖qab‖ =

‖γc
abpc‖. Let us find the explicit form of the inverse matrix ‖qab‖. Denote

‖qab‖ = ‖γab
c t

c‖, where (tc) are to be defined later.

From (2.7) it follows that the last column of ‖qab‖ is

T (t0, t1, . . . , tn). (2.11)

The system of linear equations qabx
b = δn

a on (xb) has the unique solution.

We define (tb) to be this solution:

qabt
b = γk

abpkt
b = δn

a . (2.12)

Equivalently, t = (tb) is defined by q(t, · ) = p(0)( · ). Therefore, by (2.11),

the last column of the matrix ‖qabq
bc‖ coincides with the last column of

the unit matrix.

Let us show that this is true for any other column, i.e., that for each

c = 0, 1, . . . , n− 1,

qabq
bc = δc

a. (2.13)

We need to check that pkγ
k
abt

sγbc
s = pkγ

k
abγ

c
srh

brts = δc
a. Contracting

the left-hand side with hcd and using (2.8) yields pkγ
k
abγ

c
srh

brtshcd =

pkt
shbrγk

abγ
c
dshcr = pkt

sγk
abγ

b
ds = pkt

sγk
bsγ

b
ad = δn

b γ
b
ad = γn

ad = had. Since

the contraction of δc
a with hcd also gives had and had is nondegenerate, the

relation (2.13) holds true. Thus, the inverse matrix ‖qab‖ has the form

‖γab
c t

c‖, where t = (tc) is defined by (2.12).

We also show that (pa) is defined uniquely by (tc). It is sufficient to

prove that det ‖γc
abt

b‖ 6= 0. Contracting with had gives tbγc
abh

ad = tbγcd
b =

qcd. The last matrix is nondegenerate, hence the result follows. It follows

also that if det ‖γc
abt

b‖ 6= 0 for some t = (tb) then the corresponding

covector p ∈ A∗
Fr. Indeed, in this case ‖qcd‖ = ‖qcd‖ is nondegenerate,

hence ‖qcd‖ is also nondegenerate.



POISSON STRUCTURES ON WEIL BUNDLES 237

The last row of ‖qab‖ has the form (pn, 0, . . . , 0). Its product with the

last column of ‖qbc‖ equals 1 by the definition of the inverse matrix and

also equals pnt
0 by (2.1). Therefore, pnt

0 = 1, in particular, t0 6= 0.

Thus, we proved the following

Proposition 2.1. For any Frobenius covector p (pn 6= 0) on A the

matrix ‖qab‖ is of the form qab = γab
c t

c, where the vector t = (tc) and

covector p uniquely define each other by (2.12), moreover, t0pn = 1.

In particular, if p = p(0) is the standard Frobenius covector, i.e., pa =

δn
a , then tc = δc

0. Indeed, in this case γc
abpc = γn

ab = hab, hence, habt
b = δa

n

by (2.12). Denote by t′ the column T (t1, . . . , tn−1). From (2.3) we obtain

tn = 0, Bt′ = 0, t0 = 1. Since det B 6= 0, each of t1, . . . , tn−1 is equal to

zero.

One can represent the ”multiplication table” of A with respect to the

basis (1.1) as follows. By
◦

As, s = 1, 2, . . . , q − 1, in the first column

and the first row we denote the ds(A) elements of (1.1) which lie in
◦

As \
◦

As+1 (or, equivalently, project to the basis of
◦

As/
◦

As+1 under the

natural epimorphism
◦

As →
◦

As+1). The product of two such elements

of (1.1), one of them lying in the
◦

Ak-column, another in the
◦

A`-row,

belongs to
◦

Ak+`, thus we write
◦

Ak+` in the intersection of
◦

Ak-column

and
◦

A`-row. The whole table now has the following block structure:

1
◦

A
◦

A2 . . .
◦

Ak . . .
◦

Aq−2
◦

Aq−1 en

1 1
◦

A
◦

A2 . . .
◦

Ak . . .
◦

Aq−2
◦

Aq−2
◦

Aq

◦

A
◦

A
◦

A2
◦

A3 . . .
◦

Ak+1 . . .
◦

A
q−1 ◦

Aq 0
◦

A2
◦

A2
◦

A3
◦

A4 . . .
◦

Ak+2 . . .
◦

Aq 0 0

... . . . . . . . . . . . . . . . . .
.

. .
.

. .
. ...

◦

Aq−k
◦

Aq−k
◦

Aq−k+1
◦

Aq−k+2 . . .
◦

Aq . .
.

. .
.

. . .
...

... . . . . . . . . . . .
.

. .
.

. .
.

. . . . . .
...

◦

Aq−2
◦

Aq−2
◦

Aq−1
◦

Aq 0 . .
.

. . . 0 0 0
◦

Aq−1
◦

Aq−1
◦

Aq 0 . .
.

. . . . . . 0 0 0

en

◦

Aq 0 0 . . . . . . . . . 0 0 0
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The secondary diagonal of this table contains blocks
◦

Aq consisting

of real multiples of en. Hence all the matrices ‖γc
ab‖, c = 0, 1, . . . , n −

1, contain zeros in these blocks and the matrix ‖γn
ab‖ = ‖hab‖ has the

following block structure:

1
◦

A
◦

A2 . . .
◦

Aq−2
◦

Aq−1 en

1 0 0 0 . . . 0 0 1
◦

A 0 * * . . . * B1,q−1 0
◦

A2 0 * * . .
.

B2,q−2 0 0

...
... . . . . .

.
. .

.
. .

. ...
...

◦

Aq−2 0 * Bq−2,2 . .
.

0 0 0
◦

Aq−1 0 Bq−1,1 0 . . . 0 0 0

en 1 0 0 . . . 0 0 0

Definition. We will say that the Frobenius Weil algebra A of height q

is weakly symmetric, if dk(A) = dq−k(A) for each k = 1, 2, . . . , q − 1.

For a weakly symmetric algebra all the blocks Bk,q−k, k = 1, 2, . . . , q−1,

are squares. One can easily see that in this case

det ‖qab‖ = det ‖pn · γn
ab‖ = pn+1

n detB1,q−1 · · · · · detBq−1,1, (2.14)

therefore, all the blocks Bk,q−k, k = 1, 2, . . . , q − 1, are nondegenerate.

From (2.14) it follows that for this algebra each p ∈ A∗ such that pn 6= 0,

is a Frobenius covector.

Example 2.1. The simplest example of weakly symmetric Weil alge-

bra is the algebra of plural numbers R(εn). For this algebra q = n and the

Jordan-Hölder basis is ea = εa, a = 0, 1, . . . , n. Therefore ds(R(εn)) = 1

for each s = 1, . . . , n and all the blocks Bk,n−k consist of one element

each. Clearly,

‖γn
ab‖ =




0 0 . . . 0 1

0 0 . . . 1 0

... . .
.

. .
.

. .
. ...

0 1 0 . . . 0

1 0 . . . . . . 0




.
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Example 2.2. It is clear that every Frobenius Weil algebra A of

height q = 2 is weakly symmetric. For the elements {ea}, a = 0, . . . , n,

of Jordan-Hölder basis we have e1 . . . , en−1 ∈
◦

A, en ∈
◦

A2. Therefore,

eaeb = λaben, a, b = 1, . . . , n − 1, and eaen = 0, a = 1, . . . , n. Hence, for

any Frobenius covector p = (pa) (pn 6= 0)

‖qab‖ =




p0 p1 p2 . . . pn−1 pn

p1 λ11 pn λ12 pn . . . λ1,n−1 pn 0

p2 λ21 pn λ22 pn . . . λ2,n−1 pn 0

...
...

...
. . .

...
...

pn−1 λn−1,1 pn λn−1,2 pn . . . λn−1,n−1 pn 0

pn 0 . . . . . . 0 0




and ‖qab‖ is nondegenerate if and only if Λ = ‖λab‖ is nondegenerate.

We will denote this Weil algebra by A(Λ, n).

Proposition 2.2. Let A and B be two weakly symmetric Frobenius

Weil algebras. Then A ⊗ B is also weakly symmetric.

Proof. If {ea} and {fα} are Jordan-Hölder bases of A and B respec-

tively, then {ea⊗fα} is the Jordan-Hölder basis of A⊗B. It follows that

the height of A ⊗ B equals q1 + q2, where q1 and q2 are the heights of

A and B, respectively. It can be easily seen that dk(A ⊗ B) = dk(A) +

dk−1(A)d1(B)+· · ·+d1(A)dk−1(B)+dk(B). Moreover, dq1+q2−k(A⊗B) =

dq1−k(A) + dq1−k+1(A)dq2−1(B) + · · · + dq1−1(A)dq2−k+1(B) + dq2−k(B),

which coincides with dk(A ⊗ B). �

3. Complete lifts of tensor fields

Let A be a Weil algebra of height q and let n = dim
◦

A. In what follows

we will assume that A is a Frobenius algebra. As before, we denote the

Frobenius covector by p = (pc) and the Frobenius form by q = (qab).

Let M be an m-dimensional smooth manifold. Then TAM is an m-

dimensional A-smooth manifold and for each x ∈ TAM the tangent

space TxT
AM is an m-dimensional A-module. Thus, we can consider

A-tensors at any point x ∈ TAM and A-smooth tensor fields on TAM

(see [19]). In what follows, we assume all the manifolds and the maps

between manifolds to be of class C∞.
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We denote the algebra of smooth functions on M by C∞(M), the space

of covariant tensors on M by T ∗(M) and the space of skew-symmetric

contravariant tensors (multivector fields) on M by V∗(M). By | · | we

denote the degree of a tensor field, i.e., |ξ| = s if ξ ∈ T s(M) and |u| = s

if u ∈ Vs(M).

In this part of the paper we construct complete lifts of covariant and

contravariant tensor fields from M to the Weil bundle TAM .

Let (xi) = (x1, . . . , xm) be local coordinates on M . We will enumerate

the corresponding local coordinates on TAM by the double index ia:

(xia), i = 1, . . . , m, a = 0, . . . , n, where we identify xi0 = xi.

Let ξ ∈ T k(M) be a tensor field of type (k, 0) on M . In local coordi-

nates

ξ = ξi1...ikdx
i1 ⊗ · · · ⊗ dxik .

Let Ξi1...ik = (ξi1...ik)
A be analytic prolongations of the functions ξi1...ik .

We multiply these A-valued functions by ea1
. . . eak

, where {ea} is a

Jordan-Hölder basis (1.1). Let Ξi1...ikea1
. . . eak

= Ξb
i1a1...ikak

eb, where

Ξb
i1a1...ikak

∈ R. Denote

ξi1a1 ...ikak
:= Ξb

i1a1...ikak
pb. (3.1)

We define the complete lift ξC of ξ by

ξC = ξC
A

:= ξi1a1...ikak
dxi1a1 ⊗ · · · ⊗ dxikak .

If {ea′} is another basis in A and ea′ = τ a
a′ea, then, obviously, dxia′

=

τa′

a dx
ia. Thus, our definition does not depend on a choice of a basis in

A.

Proposition 3.1. ξC is a well-defined tensor field of type (k, 0) on

TAM . If ϕ : N →M is a smooth map, then

(TAϕ)∗(ξC) = (ϕ∗ξ)C .

Proof. Let N be another smooth manifold with local coordinates (yα)

and ϕ : N → M be a smooth map which has the form xi = ϕi(yα) with

respect to these coordinates. Denote θ = ϕ∗ξ, then

θα1...αk
=
∂ϕi1

∂yα1
. . .

∂ϕik

∂yαk
ξi1...ik .

Let Θα1...αk
be analytic prolongations of the components θα1...αk

and let

Φi be the analytic prolongations of the maps ϕi. Note that Φi(Y α) =

ϕia(Y α)ea = ϕia(yαb)ea is the local representation of the map TAϕ :

TAN → TAM , considered as an A-smooth map and the functions
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ϕia(yαb) are the local representations of TAϕ, considered as a map be-

tween real smooth manifolds. From Proposition 1.1 it follows that

Θα1...αk
=

∂Φi1

∂Y α1
. . .

∂Φik

∂Y αk
Ξi1...ik .

Since δa = δa
0 with respect to the Jordan-Hölder basis, (1.6) implies that

∂Φi`

∂Y αj
=

∂Φi`

∂yαj0
=
∂Φi`

∂yαj
.

Thus

Θα1...αk
eb1 . . . ebk

=
∂ϕi1c1

∂yα1
ec1 . . .

∂ϕikck

∂yαk
eck
Ui1...ikeb1 . . . ebk

. (3.2)

But eb1ec1 = γa1

b1c1
ea1

, . . . , ebk
eck

= γak

bkck
eak

, therefore the right-hand side

of (3.2) takes the form

∂ϕi1c1

∂yα1
γa1

b1c1
. . .

∂ϕikck

∂yαk
γak

bkck
Ξi1...ikea1

. . . eak
.

From Scheffers’ equations (1.5) it follows that

∂ϕi1c1

∂yα1
γa1

b1c1
=
∂ϕi1a1

∂yα1b1
, . . . ,

∂ϕikck

∂yαk
γak

bkck
=
∂ϕikak

∂yαkbk
,

hence,

Θα1...αk
eb1 . . . ebk

=
∂ϕi1a1

∂yα1b1
. . .

∂ϕikak

∂yαkbk
Ξi1...ikea1

. . . eak
.

Then, by (3.1), we have

θα1b1...αkbk
=
∂ϕi1a1

∂yα1b1
. . .

∂ϕikak

∂yαkbk
ξi1a1...ikak

, (3.3)

i.e. (TAϕ)∗(ξC) = θC = (ϕ∗ξ)C .

In particular, if ϕ is a local diffeomorphism (coordinate transforma-

tion) of M , i.e., xj′ = ϕj′(xi), then

ξi1a1...ikak
=
∂ϕj′

1
b1

∂xi1a1
. . .

∂ϕj′
k
bk

∂xikak
ξj′

1
b1...j′

k
bk
.

This implies that ξi1a1...ikak
is a well-defined tensor field of type (k, 0) on

TAM . �

In order to construct the complete lifts of contravariant tensor fields

we need to take another basis in A: ea = qabeb, then ea = qabe
b.

Let now u ∈ Vk(M) be a skew-symmetric contravariant tensor field

on M ; with respect to the local coordinates,

u = ui1...ik
∂

∂xi1
∧ · · · ∧ ∂

∂xik
.
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Let U i1 ...ik = (ui1...ik)A be the analytic prolongations of ui1...ik and let

U i1 ...ikea1 . . . eak = U i1a1...ikak

b eb, where U i1a1...ikak

b ∈ R. Denote

ui1a1...ikak := U i1a1 ...ikak

b δb. (3.4)

We define the complete lift uC of u by

uC = uC
A

:= ui1a1...ikak
∂

∂xi1a1
∧ · · · ∧ ∂

∂xikak
.

One can easily check that this definition also does not depend on the

choice of a basis in A.

Proposition 3.2. uC is a well-defined skew-symmetric contravariant

tensor field of degree k on TAM . If ϕ : M → N is a smooth map and u

is ϕ-related to a tensor filed v on N , then uC is (TAϕ)-related with vC .

Proof. Let N be another smooth manifold with local coordinates (yα)

and ϕ : M → N be a smooth map which is given by yα = ϕα(xi) with

respect to the local coordinates. Let v ∈ Vk(N) be another tensor field

and let u and v be ϕ-related ([13, 14]). Then, in local coordinates we

have

vα1...αk =
∂ϕα1

∂xi1
. . .

∂ϕαk

∂xik
ui1...ik

Denote the analytic prolongations of vα1...αk
by Vα1...αk

and the analytic

prolongations of the maps ϕi by Φi. Then

V α1...αk =
∂Φα1

∂X i1
. . .

∂Φαk

∂X ik
U i1...ik ,

and

V α1...αkeb1 . . . ebk =
∂ϕα1c1

∂xi1
ec1 . . .

∂ϕαkck

∂xik
eck
U i1...ikeb1 . . . ebk .

We have ebrecr
= qbrsresr

ecr
= qbrsrγdr

srcr
edr

= qbrsrγdr
srcr

qardr
ear for each

r = 1, . . . , k. Let us show that qbsγd
scqad = γb

ac. Indeed, the contraction

of the left-hand side with qbf gives qbsγd
scqadqbf = γd

fcqad, which coincides

with γb
acqbf by (1.9). Thus,

V α1...αkeb1 . . . ebk =
∂ϕα1c1

∂xi1
ec1 . . .

∂ϕαkck

∂xik
eck
U i1...ikeb1 . . . ebk =

= γb1
a1c1

∂ϕα1c1

∂xi1
. . . γbk

akck

∂ϕαkck

∂xik
U i1...ikea1 . . . eak =

=
∂ϕα1b1

∂xi1a1
. . .

∂ϕαkbk

∂xikak
U i1 ...ikea1 . . . eak ,
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hence, by (3.4),

vα1b1...αkbk =
∂ϕα1b1

∂xi1a1
. . .

∂ϕαkbk

∂xikak
ui1a1...ikak .

Therefore, uC is (TAϕ)-related to vC .

In particular, if ϕ is a local diffeomorphism of M , i.e. xj′ = ϕj′(xi),

then

uj′
1
b1...j′

k
bk =

∂ϕj′1b1

∂xi1a1
. . .

∂ϕj′
k
bk

∂xikak
ui1a1...ikak .

This means that ui1a1...ikak
is a well-defined tensor field of type (0, k)

on TAM . Since u is skew-symmetric and the multiplication in A is

commutative, uC is also skew-symmetric. �

Let

[·, ·] : Vk(M) × V`(M) → Vk+`−1(M),

be the Schouten-Nijenhuis bracket on the multivector fields (a general-

ization of Lie bracket of vector fields [9, 10, 14, 18]).

Proposition 3.3. The complete lift is compatible with the Schouten-

Nijenhuis bracket, i.e.,

[u, v]C = [uC , vC ]. (3.5)

Proof. First let us derive an auxiliary formula. Let f be a real-valued

function on M and F = F aea = Fbe
b be its analytic prolongation. Then

Fb = qabF
a. From the Scheffers’ conditions (1.4) it follows that ∂cFb =

γa
cdqabδ

g∂gF
d = γa

cdqabδ
gqdr∂gFr. Contracting with δb, by (1.11), we obtain

∂c(δ
bFb) = δbqabδ

gγa
cdq

dr∂gFr = paγ
a
cdq

drδg∂gFr = qcdq
drδg∂gFr = δg∂gFc.

Thus,

∂c(δ
bFb) = δg∂gFc. (3.6)

Let u ∈ Vg(M), v ∈ Vh(M) be multivector fields. With respect to the

local coordinates,

[u, v]k2...kg+h =
1

(g − 1)!h!
ε

k2...kg+h

i2...igj1...jh
uri2...ig

∂

∂xr
vj1...jh+

+
(−1)g

g!(h− 1)!
ε

k2...kg+h

i1...igj2...jh
vrj2...jh

∂

∂xr
ui1...ig ,

(3.7)
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where εj1...js

i1...is
= δj1

i1
. . . δjs

is
(see, e.g., [9]). By Theorem 1.1, the same for-

mula holds for the analytic prolongations:

[U, V ]k2...kg+h =
1

(g − 1)!h!
ε

k2...kg+h

i2...igig+1...ig+h
U ri2...ig

∂

∂Xr
V ig+1...ig+h+

+
(−1)g

g!(h− 1)!
ε

k2...kg+h

i1...igig+2...ig+h
V rig+2...ig+h

∂

∂Xr
U i1...ig ,

(3.8)

Let us multiply both sides of (3.8) by ea2 . . . eag+h and then contract with

δm. In the left-hand side we get ([u, v]C)k2a2...kg+hag+h . Consider the first

summand in the right-hand side (without ε):

1

(g − 1)!h!
U ri2...igea2 . . . eag

∂

∂Xr
V ig+1...ig+heag+1 . . . eag+h =

1

(g − 1)!h!
U ri2...igea2 . . . eagδb ∂

∂xrb
V ag+1ig+1...ag+hig+h by (1.6) =

1

(g − 1)!h!
U ri2...igeaea2 . . . eagδb ∂

∂xrb
V

ag+1ig+1...ag+hig+h
a =

1

(g − 1)!h!
U ri2...igeaea2 . . . eag

∂

∂xra
(δbV

ag+1ig+1...ag+hig+h

b ) by (3.6) =

1

(g − 1)!h!
U ra i2a2...igag

m em ∂

∂xra
((vC)ag+1ig+1...ag+hig+h).

Contracting with δm we get

1

(g − 1)!h!
(uC)ra i2a2...igag

∂

∂xra

(
(vC)ag+1ig+1...ag+hig+h

)
.

The commutativity of multiplication in A yields that

ε
k2...kg+h

i2...ig+h
= ε

k2a2...kg+hag+h

i2a2...ig+hag+h
.

In the same manner we deal with the second summand in (3.8) and then

obtain. Therefore

([u, v]C)k2a2...kg+hag+h =

1
(g−1)!h!

ε
k2a2...kg+hag+h

i2a2...igagig+1ag+1...ig+hag+h
(uC)ra i2a2...igag ∂

∂xra

(
(vC)ag+1ig+1...ag+hig+h

)
+

+ (−1)g

g!(h−1)!
ε

k2a2...kg+hag+h

i1a1...igagig+2ag+2...ig+hag+h
(vC)ra ig+2ag+2...ig+hag+h ∂

∂xra

(
(uC)i1a1...igag

)
,

which coincides with (3.5). �
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The construction of the vertical lift of multivector fields to the tangent

bundle (see [23]) also may be generalized to Weil bundles in the following

way. Let u = ui1...ik ∂
∂xi1

∧ · · · ∧ ∂
∂xik

∈ Vk(M). We define the vertical lift

uV ∈ Vk(TAM) of u by

uV = uV
A

:= ui1...ik
∂

∂xi1n
∧ · · · ∧ ∂

∂xikn
. (3.9)

Proposition 3.4. The vertical lift uV is a well-defined multivector

field on TAM .

Proof. Let xi′ = xi′(xi) be a coordinate change on M , then

ui′
1
...i′

k =
∂xi′

1

∂xi1
. . .

∂xi′
k

∂xik
ui1...ik .

Thus it suffices to prove that

∂

∂xi′sn
=
∂xis

∂xi′s

∂

∂xisn
. (3.10)

Let us determine the corresponding change of coordinates xi′a = xi′a(xib)

on TAM . By (1.7),

X i′ = xi′ + xi′âeâ = xi′ +

q∑

|p|=1

1

p!

Dpxi′

Dxp

◦

Xp. (3.11)

Hence, for TAM we have

xi′ = xi′(xi),

xi′â = f i′â(xib), â = 1, . . . , n.

Let us show that

∂f i′â

∂xib
= 0 for b > â.

Indeed, the coefficients 1
p!

Dpxi′

Dxp in (3.11) depend only on xi = xi0, while

the expression (
◦

X1)p1 . . . (
◦

Xm)pm contains xib only as a coefficient at eb

in
◦

X i. Since γs

cd̂
= 0, for c > s the coefficient at eâ which appears

when we expand brackets in (
◦

X1)p1 . . . (
◦

Xm)pm does not depend on xib.

Moreover, it can depend on xiâ only for the summand corresponding to

|p| = 1 (because for |p| ≥ 2 the expression xiâeâ will be multiplied by

some element of
◦

A and thus after the expanding brackets the coefficient
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at eâ does not depend on xiâ). For the case |p| = 1 we obtain the only

summand ∂xi′

∂xi x
iâeâ depending on xiâ. Therefore,

∂xi′ â

∂xiâ
=
∂xi′

∂xi
for any â = 1, . . . , n.

Hence, the Jacobi matrix of the coordinate transformation xi′a =

xi′a(xib) on TAM has the following block structure:

∂xi′

∂xi 0 0 · · · 0 0

∗ ∂xi′

∂xi 0 · · · 0 0

∗ ∗ . . .
. . .

...
...

...
. . .

. . .
. . .

. . .
...

∗ · · · . . . ∗ ∂xi′

∂xi 0

∗ ∗ · · · ∗ ∗ ∂xi′

∂xi

,

where ∗ denotes the blocks which are unessential for our consideration.

Now (3.10) is obvious. �

Proposition 3.5. For any u, v ∈ V∗(M) there holds

[uV , vV ] = 0. (3.12)

Proof. This follows easily from (3.7). Indeed,

(uV )i1a1...ikak = 0,

if at least one of indices a1, . . . , ak is not equal to n. But then

∂vj1b1...j`b`

∂xrn
= 0.

Thus, all the summands in the right-hand side of (3.7) are zero. �

4. Poisson structures on TAM

Recall that a Poisson bracket on a smooth manifold M is a bilinear

skew-symmetric mapping { , } : C∞(M)×C∞(M) → C∞(M), satisfying

the Leibniz rule

{f, gh} = {f, g}h+ g{f, h}
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and the Jacobi identity

{{f, g}, h} + {{g, h}, f}+ {{h, f}, g} = 0.

A Poisson manifold is a smooth manifold M endowed with a Poisson

bracket. The Poisson bracket on M uniquely defines a bivector field

w = wij ∂

∂xi
∧ ∂

∂xj
∈ V2(M) (4.1)

such that

{f, g} = i(w)(df ∧ dg) (4.2)

for any f, g ∈ C∞(M), where i(w) : Ωm(M) → Ωm−2(M) is the inner

product; in local coordinates

(i(w)α)i1...im−2
= wjkαjki1...im−2

.

This bivector field is usually called the Poisson bivector. It is known

(see, e.g., [7, 9, 18]) that the bracket (4.2) on C∞(M) satisfies the Jacobi

identity if and only if

[w,w] = 0. (4.3)

In local coordinates this is written as

wjs∂w
k`

∂xs
+ wks∂w

`j

∂xs
+ w`s∂w

jk

∂xs
= 0.

In what follows we will denote the Poisson manifold by (M,w).

To each function f ∈ C∞(M) there corresponds the Hamiltonian vec-

tor field Xf = Xw
f ∈ V1(M) defined by Xf (g) := {f, g}. Locally, Hamil-

tonian vector fields on (M,w) have the form [14, 11, 18]

Xw
f = {f, ·}w =

∂f

∂xi
wij ∂

∂xj

(
f ∈ C∞(M)

)
. (4.4)

For a Poisson manifold (M,w), the Lichnerowicz-Poisson coboundary

operator

σ = σw : Vk(M) → Vk+1(M),

is defined by σu := [w, u]. Because the Schouten-Nijenhuis bracket sat-

isfies the super-Jacobi identity (see [9, 14])

(−1)|u|·|v|[[v, y], u] + (−1)|v|·|y|[[y, u], v] + (−1)|y|·|u|[[u, v], y] = 0,

one has σ ◦ σ = 0. Thus the cohomology spaces

Hk
LP (M,w) :=

ker σ : Vk(M) → Vk+1(M)

im σ : Vk−1(M) → Vk(M)
,

called the Lichnerowicz-Poisson cohomology spaces of Poisson manifold

(M,w) are defined. The problem of computing this cohomology is very

difficult (see, e.g., [3, 17, 22]).
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One can easily see that [w, f ] = Xf for any f ∈ C∞(M), hence Hamil-

tonian vector fields form the space of 1-coboundaries of σ [14].

Let (M,w) be a Poisson manifold and A be a Frobenius Weil algebra.

Consider the complete lift wC of w to TAM . By (3.5) and (4.3), wC is a

Poisson bivector on TAM .

Proposition 4.1. The complete lift of multivector fields induces a

homomorphism of Lichnerowicz-Poisson cohomology

[u] ∈ H∗
LP (M,w) 7−→ [uC] ∈ H∗

LP (TAM,wC). (4.5)

Proof. From (3.5) it follows that

(σwu)
C = σwC uC ,

which implies that (4.5) is a homomorphism. �

Let us find how the complete lift wC does depend on the choice of

a Frobenius covector p on A. We denote by t the corresponding vec-

tor defined by (2.12). Let wij
s be the components of the analytic pro-

longation W ij = (wij)A, i.e., W ij =
∑

s≥0 w
ij
s es. In what follows we

will omit the sign of summation over s. Then W ijeaeb = wij
s ese

aeb =

wij
s q

acqbkeseced = wij
s q

acqbkγd
scγ

`
kde` = wij

s q
acqbkγd

scγ
`
kdq`re

r. Contracting

with δr, we obtain

wiajb = wij
s q

acqbkγd
scγ

`
kdq`rδ

r = wij
s q

acqbkγd
scγ

`
kdp` =

wij
s γ

ac
r t

rγbk
f t

fγd
scγ

`
kdp` = wij

s t
rtfhagγc

grh
ebγk

feγ
d
scγ

`
kdp` (by (2.5)) =

wij
s t

rtfhaghebγc
grγ

k
deγ

`
kfγ

d
scp` (by (1.2)) = wij

s t
rhaghebγc

grγ
k
deδ

n
kγ

d
sc =

(by (2.12)) =

wij
s t

rhaghebγc
grhdeγ

d
sc = wij

s t
rhagδb

dγ
c
grγ

d
sc = wij

s t
rhagγc

grγ
b
sc =

wij
s t

rγac
r γ

b
sc.

Thus, for any Frobenius covector p, the complete lift wC is the linear

combination

wC = tkwC
k , (4.6)

where

wC
k =

n∑

s=0

wij
s γ

ac
k γ

b
cs

∂

∂xia
∧ ∂

∂xjb
. (4.7)

Let us show that each of wC
k is a multivector field and that

[wC
k , w

C
k ] = [wC

k , w
C
` ] = 0 (4.8)
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for any k, ` = 0, . . . , n. To this end we will express each of wC
k in

terms of complete lifts wC corresponding to different Frobenius cov-

ectors. We will assume the basis (1.1) to be chosen in such a way

that p(0) = (0, . . . , 0, 1) is a Frobenius covector. Recall that the cor-

responding vector t(0) is (1, 0, . . . , 0). Since the determinant det ‖γc
abt

b‖
is a continuous function in t and does not vanish at t = t(0), this de-

terminant does not vanish in a neighborhood of this point. Therefore

one can find ε > 0 such that this determinant is nonzero for each of

the vectors t(k) = (1, 0 . . . , 0, ε, 0, . . . , 0) (ε at the kth place), t(k−) =

(1, 0 . . . , 0,−ε, 0, . . . , 0) (−ε at the kth place) and

t(k,`) = (1, 0 . . . , 0, ε, 0, . . . , 0, ε, 0, . . . , 0)

(ε at the kth and `th places), k, ` = 1, . . . , n. Hence the corresponding

covectors p(k) p(k,`) are Frobenius covectors. For each vector t under

consideration the complete lift wC is a Poisson bivector, which implies

[wC, wC ] = [tkwC
k , t

`wC
` ] = 0. (4.9)

Substituting t = t(0) into (4.6) and (4.9), we see that wC
0 ∈ V2(TAM)

and [wC
0 , w

C
0 ] = 0. Now substitute t = t(k) and t = t(k−), which gives

wC
0 + εwC

k ∈ V2(TAM), therefore wC
k ∈ V2(TAM) and

[wC
0 + εwC

k , w
C
0 + εwC

k ] = [wC
0 − εwC

k , w
C
0 − εwC

k ] = 0.

Expanding these equations yields 2ε[wC
k , w

C
0 ]+ε2[wC

k , w
C
k ] = −2ε[wC

k , w
C
0 ]+

ε2[wC
k , w

C
k ] = 0, which implies [wC

0 , w
C
k ] = [wC

k , w
C
k ] = 0. Finally, sub-

stituting t = t(k,`) into (4.9) one gets [wC
k , w

C
` ] = 0. Thus, the following

theorem is valid.

Theorem 4.1. Let (M,w) be a Poisson manifold and TAM be its

Weil bundle for a Frobenius Weil algebra A. Then for each Frobenius

covector p on A the complete lift wC of Poisson bivector w to TAM is

of the form

wC = tkwC
k ,

where t = (tk) and wC
k are defined by (2.12) and (4.7) respectively. More-

over,

[wC
k , w

C
k ] = [wC

k , w
C
` ] = 0

for any k, ` = 0, . . . , n.

Remark 4.1. One can easily see that wC
n = wV . Indeed, in this case

k = n in (4.7). But (2.4) implies that en = e0 and that each of ea,

a = 0, 1, . . . , n− 1, does not contain e0 in its decomposition. Hence the
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only nonzero component of γac
n is γnn

n = 1. Then γb
nd is 1 only for b = n,

d = 0 and γb
nd = 0 for any other values of b and d. Consequently,

wC
n = wij ∂

∂xin
∧ ∂

∂xjn
.

Thus, Theorem 4.1 (as well as Proposition 3.5) implies that wV is also

a Poisson bivector on TAM .

Example 4.1. Let A be the algebra of plural numbers R(εn). Choose

a Jordan-Hölder basis e0 = 1, ea = εa, a = 1, . . . , n in it. The explicit

form of the analytic prolongations W ij =
∑

s≥0 w
ij
s ε

s can be found by

(1.7), for instance,

wij
0 = wij,

wij
1 = xk1∂w

ij

∂xk
,

wij
2 = xk1x`1 ∂2wij

∂xk∂x`
+ xk2∂w

ij

∂xk
, etc.

The corresponding bivectors wC
k are (here wij

k means the square block

‖wij
k ‖)

wC
0 =




0 0 . . . 0 0 wij

0 0 . . . 0 wij wij
1

...
... . .

.
. .

.
. .

. ...

0 0 . .
.

. .
.

. . . . . .

0 wij wij
1 . . . . . . wij

n−1

wij wij
1 . . . . . . wij

n−1 wij
n




,

wC
k =




0 0 . . . . . . 0 0 . . . 0 0

0 0 . . . . . . 0 0 . . .
...

...
...

... . .
.

. .
.

. .
.

. .
.

. .
.

. . . 0

0 0 . .
.

. .
.

0 0 . . . 0 wij

0 0 . .
.

. .
.

0 . . . 0 wij wij
1

...
...

...
...

... . .
.

. .
.

. .
. ...

0 0 . . . . . . . .
.

. .
.

. .
.

. . .
...

0 0 . . . 0 wij wij
1 . . . . . . wij

n−k−1

0 . . . 0 wij wij
1 . . . . . . wij

n−k−1 wij
n−k




, k = 1, . . . , n−1,



POISSON STRUCTURES ON WEIL BUNDLES 251

wC
n =




0 0 . . . 0 0

0 0 . . . 0 0
...

... . .
. ...

...

0 0 . . . . . . 0

0 0 . . . 0 wij




.

In particular, for the case A = R(ε), which corresponds to the tangent

bundle TM and the standard Frobenius covector p = (0, 1), the complete

lift wC is

wC = wij ∂

∂xi
∧ ∂

∂yj
+

1

2
yk∂w

ij

∂xk

∂

∂yi
∧ ∂

∂yj
.

This Poisson bivector was studied by many authors, see, e.g., [1, 4, 11].

Example 4.2. Consider the algebra A(Λ, n). We will denote the

elements of the inverse matrix Λ−1 by λab.

By (1.7), denote

wij
a = xka∂w

ij

∂xk
, wij

n = xkn∂w
ij

∂xk
+ λabx

kax`b ∂
2wij

∂xk∂x`
.

Then, for this algebra (4.7) implies that

wC
0 =




0 0 0 . . . 0 wij

0 λ11 wij λ12 wij . . . λ1,n−1 wij wij
1

0 λ21 wij λ22 wij . . . λ2,n−1 wij wij
2

... . . . . . . . . . . . .
...

0 λn−1,1wij λn−1,2 wij . . . λn−1,n−1 wij wij
n−1

wij wij
1 wij

2 . . . wij
n−1 wij

n




,

wC
b =




0 0 . . . . . . 0 0

...
... . . . . . . . . .

...

...
... . . . . . . . . . wij

...
... . . . . . . . . .

...

0 . . . . . . . . . 0 0

0 . . . wij . . . 0
n−1∑
a=1

λabw
ij
a




, b = 1, . . . , n−1, wij at the bth place
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wC
n =




0 . . . 0 0

... . . . . . .
...

0 . . . . . . 0

0 . . . 0 wij




.

5. Modular classes of Poisson structures on TAM

In the final part of the present paper we compute the modular classes

of Poisson structures wC
k for the case of weakly symmetric Frobenius Weil

algebras.

Recall that if µ is a volume form on the oriented manifold M then the

divergence divµX of a vector field X is defined by

LXµ = (divµX)µ

and one has

divµ(fX) = f divµX +Xf, f ∈ C∞(M).

Therefore for a Poisson manifold (M,w) with the volume form µ the

operator

∆µ : f ∈ C∞(M) 7−→ divµXf ∈ C∞(M)

is defined, where Xf is a Hamiltonian vector field of f . Easy computa-

tions show that ∆µ is a derivation on C∞(M) and, hence, a vector field

on M [21]. This vector field is called the modular vector field of oriented

Poisson manifold (M,w, µ).

The modular vector field satisfies σ∆µ = 0 [6]. If we replace µ with

any other volume form aµ, where a ∈ C∞(M) is a positive function, then

the modular vector field changes to ∆aµ = ∆µ + H− log a [21]. As far as

Hamiltonian vector fields are 1-coboundaries of σ, this implies that the

set of modular vector fields for all volume forms on M is an element of

H1
LP (M,w). This cohomology class is called the modular class of the

Poisson manifold (M,w).

Let g = gijdx
i ⊗ dxj be a Riemannian metric on an m-dimensional

oriented manifold M . Then

dVg =
√

det g dx1 ∧ · · · ∧ dxm

is a volume form on M . Let gC be a complete lift of g.
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Proposition 5.1. For a weakly symmetric Frobenius Weil algebra A

the complete lift gC is a metric on TAM , moreover,

det gC = M(det g)n+1, (5.1)

where M is some constant (depending only on A).

Proof. We choose the standard Frobenius covector p(0). Let Gij =

gs
ijes be the analytic prolongations of gij. Then Gijeaeb = Gc

iajbec and

giajb = Gc
iajbpc = Gn

iajb. Clearly, giajb = gjbia for all a, b, i, j. If s > 0,

then es ∈
◦

A, hence the component giajb contains gs
ij only if eaeb /∈

◦

Aq.

Therefore, if eaeb ∈
◦

Aq, then giajb depends only on g0
ij = gij and the

matrix ‖giajb‖ has the following block structure:

* * * · · · * * ‖gij‖
* · · · · · · . .

.
* B̂1 0

* · · · . .
.

. .
.

B̂2 0 0
... . .

.
. .

.
. .

.
. .

.
. .

. ...

* * B̂q−2 . .
.

. .
. · · · 0

* B̂q−1 0 . .
. · · · · · · 0

‖gij‖ 0 0 · · · · · · · · · 0

where B̃k = Bq−k,k ⊗ ‖gij‖ and the symbol ⊗ denotes the tensor (Kro-

necker) product of matrices.

The determinant of this matrix is the product of the determinants of di-

agonal blocks: det ‖giajb‖ = det ‖gij‖·det(B1,q−1⊗‖gij‖)·· · ··det(Bq−1,1⊗
‖gij‖) · det ‖gij‖. For any two matrices S and T of dimensions k× k and

`× ` respectively, one has

det(S ⊗ T ) = (det S)k(det T )`.

We have d1(A)+· · ·+dq−1(A) = n−1. Hence, det ‖giajb‖ = M(det g)n+1,

where M = (det B1,q−1)
d1(A) · · · · · (det Bq−1,1)

dq−1(A). �

Let

Φ = dVgC =
√

det gC dx1 ∧ . . . dxm ∧ · · · ∧ dx1n ∧ · · · ∧ dxmn

be the corresponding volume form on TAM .

Proposition 5.2. Let A (dim
◦

A = n) be a weakly symmetric Frobe-

nius Weil algebra, (M,w) a Poisson manifold, and TAM its Weil bundle.
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Then for a Poisson structure wC
0 on TAM its modular vector field is

∆TAM
Φ = (n+ 1)(∆M

dVg
)V , (5.2)

where V means the vertical lift. For each of the Poisson structures wC
1 ,

. . . , wC
n , the modular vector fields are zero.

Proof. From (4.4) it follows that the modular vector field of (M,w)

is [11]

∆dVg
=

m∑

j=1

(
∂wij

∂xj
+ wij ∂ ln

√
det g

∂xj

)
∂

∂xi
.

Then (5.1) implies that

∂ ln
√

det gC

∂xjb
=





(n + 1)
∂ ln

√
det g

∂xj
, b = 0,

0, b = 1, 2 . . . , n.

(5.3)

Let wiajb
k denote the components of wC

k . At first, show that

∂wiajb
0

∂xjb
=





∂wij

∂xj
, a = n,

0, a = 0, 1 . . . , n− 1,

∂wiajb
k

∂xjb
= 0, k = 1, . . . , n.

(5.4)

By (4.7), wiajb
k =

∑n

s=0 w
ij
s γ

ac
k γ

b
cs. The arguments similar to the proof

of Proposition 3.4 show that ∂w
ij
s

∂xjb = 0 for s < b and that
∂w

ij
b

∂xjb = ∂wij

∂xj .

Moreover, γb
cs = 0 s > b. Hence, the only nonzero summand in

∂w
iajb
k

∂xjb

corresponds to s = b. Therefore c = 0, otherwise γb
cs = 0. But γa0

k is not

zero only for a = n and k = 0 by virtue of (2.4) (since e0 = en, en = 1).

Hence
∂w

iajb

k

∂xjb = 0 for k = 1, . . . , n and
∂w

iajb
0

∂xjb = 0 for a 6= n. As for a = n,

we have

∂winjb
0

∂xjb
=
∂wij

b

∂xjb
=
∂wij

∂xj
.

This completes the proof of (5.4).

Now, show that

wiaj0
0 =





wij, a = n,

0, a = 0, 1 . . . , n− 1,

wiaj0
k = 0, k = 1, . . . , n.

(5.5)
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Indeed, wiaj0
k =

∑n
s=0 w

ij
s γ

ac
k γ

0
cs, thus c = s = 0 (otherwise γcs

0 = 0) which

implies a = n and k = 0 as before.

It remains to prove (5.2). We have

∆Φ =
∑

jb

(
∂wiajb

∂xjb
+ wiajb∂ ln

√
det gC

∂xjb

)
∂

∂xia
.

From (5.4) it follows that
m∑

j=1

∂wiajb

∂xjb

∂

∂xia
= (n+ 1)

∂wij

∂xj

∂

∂xin
,

since the index b can take n + 1 distinct values from 0 to n.

In the summand
∑

jb

wiajb∂ ln
√

det gC

∂xjb

∂

∂xia

the only possibility is b = 0 by virtue of (5.3), whence, by (5.5), we obtain

∑

jb

wiajb∂ ln
√

det gC

∂xjb

∂

∂xia
= (n+ 1)wij ∂ ln

√
det g

∂xj

∂

∂xin
.

�

Corollary 5.3. For a weakly symmetric Frobenius Weil algebra A the

modular class of the Poisson manifold (TAM,wC = wC
0 +

∑n

k=1 t
kwC

k ) is

represented by (n + 1)∆V
µ , for every modular vector field ∆µ of the base

manifold (M,w).

Proof. By Proposition 5.2 the result is true for the field ∆dVg
. As in

[11], we have

(σwf)V = σwC(f ◦ πA), f ∈ C∞(M), πA : TAM →M.

This immediately proves the Corollary. �
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[5] I. Kolář, P.W. Michor, J. Slovák, Natural Operations in Differential Geometry.

Springer, 1993, 434 pp.



256 VADIM V. SHURYGIN, JUNIOR

[6] Y. Kosmann-Schwarzbach, Modular vector fields and Batalin-Vilkovisky algebras,

in: I. Grabovski, P. Urbanski (Eds.), Poisson Geometry, Banach Center Publi-

cations, 51 (2000), 109–129.

[7] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, “Elie Cartan et les
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