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Abstract. Some new random coincidence point and random fixed

point theorems for multifunctions in separable complete metrically con-

vex metric spaces are proved. Our results are stochastic generalizations

of classical coincidence and fixed point theorems.

1. Introduction

In order to give stochastic generalizations for classical coincidence

point theorems and classical fixed point theorems many authors ([1, 3, 4,

5, 6, 8, 9]) introduced more general contractive inequalities. We consider

a class of generalized contractions that includes the classes considered in

([1, 3, 4, 5, 6, 8, 9]) and this enables us to prove more general random

fixed point and random coincidence point theorems for multifunctions.

The results presented in this paper are stochastic versions of correspond-

ing results in [10].

Throughout this paper (X, d) is a separable complete metrically con-

vex metric space, K is a nonempty subset of X = (X, d) and (Ω, σ) is

measurable space with a σ-algebra σ of subsets of Ω. Let 2K be the

family of all subsets of K, and CB(X) the family of all nonempty closed
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bounded subsets of X. For any nonempty subsets A, B of X, we write

d(x, A) = inf{d(x, a) : a ∈ A}(x ∈ X),

d(A, B) = inf{d(a, b) : a ∈ A, b ∈ B},

H(A, B) = max

{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)

}

,

and H(., .) is called the Hausdorff metric on CB(X).

Definition 2.1 A mapping µ : Ω → 2K is called measurable if for any

open subset C of K, µ−1(C) = {w ∈ Ω : µ(w) ∩ C 6= ∅} ∈ σ.

Definition 2.2 A mapping z : Ω → X is said to be a measurable selector

of a measurable mapping µ : Ω → 2K if z is measurable and for any

w ∈ Ω, z(w) ∈ µ(w).

Definition 2.3 A metric space (X, d) is said to be metrically convex if

for any x, y ∈ X with x 6= y, there exists z ∈ X, x 6= z 6= y such that

d(x, z) + d(z, y) = d(x, y)

Definition 2.4 A mapping T : Ω × K → X is called a random operator

if for any x ∈ K, T (., x) is measurable. A mapping F : Ω×K → CB(X)

is called a multifunction if for every x ∈ K, F (., x) is measurable.

Definition 2.5 A measurable mapping z : Ω → X is called a random

fixed point of a multifunction (random operator) F : Ω × K → CB(X)

(T : Ω × K → X) if for every w ∈ Ω, z(w) ∈ F (w, z(w)) (T (w, z(w)) =

z(w)).

Definition 2.6 A measurable mapping z : Ω → X is a random coin-

cidence point of F : Ω × K → CB(X) and T : Ω × K → X if for

every w ∈ Ω, T (w, z(w)) ∈ F (w, z(w)). Let C(T, F ) stand for the set

of random coincidence points of the maps T and F , that is, C(T, F )

={z(w) : T (w, z(w)) ∈ F (w, z(w))}.

Definition 2.7 Let T : Ω × K → X be a random operator and F : Ω ×

K → CB(X) be a multifunction. Then T and F will be called pointwise

R−weakly commuting on K if given x ∈ K and T (w, x) ∈ K, there exists

a measurable map R : Ω → (0,∞) such that for each y ∈ K ∩ F (w, x),

d(T (w, y), F (w, T (w, x))) ≤ R(w)d(F (w, x), T (w, x)). (*)

The maps T and F will be called R−weakly commuting on K if for each

x ∈ K, T (w, x) ∈ K and (*) holds. If R(w) = 1 for each w ∈ Ω, we get

the definition of weak commutativity of F and T on K. T and F are

commuting at a point x ∈ K if T (w, F (w, x)) ⊂ F (w, T (w, x)) whenever
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F (w, x) ⊂ K and T (w, x) ∈ K. T and F are commuting on K if they

are commuting at each point x ∈ K.

2. MAIN RESULTS

Let F, G : Ω×K → CB(X) be multifunctions and S, T : Ω×K → X

be random operators such that

H(F (w, x), G(w, y)) ≤ α(w)d(T (w, x), S(w, y))

+ β(w)[d(T (w, x), F (w, x)) + d(S(w, y), G(w, y))]

+ γ(w)[d(T (w, x), G(w, y)) + d(S(w, y), F (w, x))] (2.1)

for each x, y ∈ K and for each w ∈ Ω, where α, β, γ : Ω → (0,∞) are

measurable mappings such that

(α(w) + β(w) + γ(w))(1 + β(w) + γ(w))/(1− β(w)− γ(w))2 < 1. (2.2)

Theorem 1. Let (X, d) be a separable complete metrically convex met-

ric space, K a nonempty closed subset of X, and δK the boundary of

K. Let F, G : Ω × K → CB(X) be continuous multifunctions and

S, T : Ω × K → X be random operators, such that

(i) contractive inequalities (2.1) and (2.2);

(ii) δK ⊂ S(w, K) ∩ T (w, K), F (w, K) ∩ K ⊂ S(w, K), G(w, K) ∩ K ⊂

T (w, K); and

(iii) T (w, x) ∈ δK ⇒ F (w, x) ⊂ K, S(w, x) ∈ δK ⇒ G(w, x) ⊂ K;

are satisfied.

If, either T (w, K) and S(w, K) or F (w, K) and G(w, K) are closed sub-

spaces of X, then

(a) F and T have a random coincidence point;

(b) G and S have a random coincidence point.

Furthermore,

(c) F and T have a common random fixed point T (w, v(w)) provided

T (w, T (w, v(w))) = T (w, v(w)) and T and F are commuting at v(w) ∈

C(T, F );

(d) G and S have a common random fixed point S(w, µ(w)), provided

S(w, S(w, µ(w))) = S(w, µ(w)) and S and G are commuting at µ(w) ∈

C(S, G);

(e) S, T, F and G have a common random fixed point, provided (c) and

(d) both are true.

Proof. If the following equality

t(w) = (α(w) + β(w) + γ(w))(1 + β(w) + γ(w))/(1− β(w)− γ(w))2 = 0
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holds true, then the theorem holds trivially. Next if t(w) > 0, then

we proceed to construct the sequences {xn(w)} and {yn(w)}, where

xn, yn : Ω → X are measurable mappings.

Let x0, x1 : Ω → X be a measurable mappings such that y1 : Ω → X de-

fined by y1(w) = S(w, x1(w)) ∈ F (w, x0(w)), for all w ∈ Ω . Indeed, since

F is a continuous random operator, we conclude that, for every v ∈ X,

the map (w, x) → d(v, F (w, x)) is a caratheodory function (that is mea-

surable in w ∈ Ω, continuous in x ∈ X). Thus it is jointly measurable.

Hence since x0 : Ω → X is measurable, w → d(v, F (w, x0(w))) is measur-

able. Therefore, w → F (w, x0(w)) is weakly measurable by Wagner ([4],

p 868). By Kuratowski, K ([7], selection theorem 8), there exists a mea-

surable map x1 : Ω → X such that y1(w) = S(w, x1(w)) ∈ F (w, x0(w))

for x0(w), x1(w) ∈ K, for all w ∈ Ω. It follows from (ii) and (iii) that

F (w, x0(w)) ⊂ K. Therefore, y1(w) ∈ K. It further implies by Itoh

([9], Proposition 4), (ii) and (iii) that there exist measurable mappings

x2, y2 : Ω → X such that, for each w ∈ Ω, and for y2(w) ∈ K (suppose),

we have x2(w) ∈ K and y2(w) = T (w, x2(w)) ∈ G(w, x1(w)) such that

d(y1(w), y2(w)) ≤ H(F (w, x0(w)), G(w, x1(w)))+

((1 − β(w) − γ(w))/(1 + β(w) + γ(w)))t(w).

If y2(w) /∈ K, then there exists a measurable map p : Ω → X such

that p(w) ∈ δK and

d(S(w, x1(w)), p(w)) + d(p(w), y2(w)) = d(S(w, x1(w)), y2(w)).

Since p(w) ∈ δK ⊂ T (w, K), there exists x2(w) ∈ K such that p(w) =

T (w, x2(w)) and so

d(S(w, x1(w)), T (w, x2(w)))+d(T (w, x2(w)), y2(w)) = d(S(w, x1(w)), y2(w)).

Thus repeating the above arguments, we obtain two sequences {xn(w)}

and {yn(w)}, where xn, yn : Ω → X are measurable mappings, and

xn(w) ∈ K such that

• y2n(w) ∈ G(w, x2n−1(w)), y2n+1(w) ∈ F (w, x2n(w)),

• y2n(w) ∈ K ⇒ y2n(w) = T (w, x2n(w)) or y2n(w) /∈ K

⇒ T (w, x2n(w)) ∈ δK and

d(S(w, x2n−1(w)), T (w, x2n(w))) + d(T (w, x2n(w)), y2n(w))

= d(S(w, x2n−1(w)), y2n(w)),
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• y2n+1(w) ∈ K, y2n+1(w) = S(w, x2n+1(w)), or y2n+1(w) /∈ K,

S(w, x2n+1(w)) ∈ δK, and

d(T (w, x2n(w)), S(w, x2n+1(w))) + d(S(w, x2n+1(w)), y2n+1(w))

= d(T (w, x2n(w)), y2n+1(w)).

d(y2n−1(w), y2n(w)) ≤ H(G(w, x2n−1(w)), F (w, x2n−2(w)))

+ ((1 − β(w) − γ(w))/(1 + β(w) + γ(w)))t2n−1(w),

d(y2n(w), y2n+1(w)) ≤ H(F (w, x2n(w)), G(w, x2n−1(w)))

+ ((1 − β(w) − γ(w))/(1 + β(w) + γ(w)))t2n(w).

Put

P0 = {T (w, x2i(w)) ∈ {T (w, x2n(w))} : T (w, x2i(w)) = y2i(w)},

P1 = {T (w, x2i(w)) ∈ {T (w, x2n(w))} : T (w, x2i(w)) 6= y2i(w)},

Q0 = {S(w, x2i+1(w)) ∈ {S(w, x2n+1(w))} : S(w, x2i+1(w)) = y2i+1(w)},

Q1 = {S(w, x2i+1(w)) ∈ {S(w, x2n+1(w))} : S(w, x2i+1(w)) 6= y2i+1(w)}.

Further, as shown in [2], for measurable maps zn : Ω → X, {zn(w)} is a

Cauchy sequence, where

z2n(w) = T (w, x2n(w)), z2n+1(w) = S(w, x2n+1(w)),

and there exists at least one subsequence

{T (w, x2nk
(w))}, or {S(w, x2nk+1(w))},

which is contained in P0, or Q0, respectively. First we suppose that

there exists a subsequence {T (w, x2nk
(w))} which is contained in P0, and

T (w, K), S(w, K) are closed subspaces of X. Since {T (w, x2nk
(w))} is

a Cauchy sequence in T (w, K). Then there exists a measurable map

u : Ω → X such that {T (w, x2nk
(w))} → u(w) ∈ T (w, K). Let v(w) ∈ K

for a measurable map v : Ω → X and (w, v(w)) ∈ T−1(u(w)). Then

u(w) = T (w, v(w)). Since {S(w, x2nk+1(w))} is a subsequence of the

Cauchy sequence {zn(w)}, {S(w, x2nk+1(w))} converges to u(w) as well.
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By (2.1), we have

d(F (w, v(w)), T (w, x2nk
(w))) ≤ H(F (w, v(w)), G(w, x2nk−1(w)))

≤ α(w)d(T (w, v(w)), S(w, x2nk−1(w)))

+β(w)[d(T (w, v(w)), F (w, v(w)))+d(S(w, x2nk−1(w)), G(w, x2nk−1(w)))]

+γ(w)[d(T (w, v(w)), G(w, x2nk−1(w)))+d(S(w, x2nk−1(w)), F (w, v(w)))]

≤ α(w)d(u(w), S(w, x2nk−1(w)))

+ β(w)[d(u(w), F (w, v(w))) + d(S(w, x2nk−1(w)), T (w, x2nk
(w)))]

+ γ(w)[d(u(w), T (w, x2nk
(w))) + d(S(w, x2nk−1(w)), F (w, v(w)))].

Letting n → ∞, we obtain

d(F (w, v(w)), u(w)) ≤ (β(w) + γ(w))d(u(w), F (w, v(w))),

proving u(w) ∈ F (w, v(w)), since F (w, v(w)) is closed. This proves (a).

Since the Cauchy sequence {zn(w)} converges to u(w) ∈ K and u(w) ∈

F (w, v(w)), u(w) ∈ F (w, K)∩K ⊂ S(w, K), there exists µ(w) ∈ K such

that S(w, µ(w)) = u(w), where µ : Ω → X is a measurable map. By

(2.1) again, we have

d(S(w, µ(w)), G(w, µ(w))) = d(T (w, v(w)), G(w, µ(w)))

≤ H(F (w, v(w)), G(w, µ(w))) ≤ α(w)d(T (w, v(w)), S(w, µ(w)))

+ β(w)[d(T (w, v(w)), F (w, v(w)))+ d(S(w, µ(w)), G(w, µ(w)))]

+ γ(w)[d(T (w, v(w)), G(w, µ(w))) + d(S(w, µ(w)), F (w, v(w)))]

= (β(w) + γ(w))d(S(w, µ(w)), G(w, µ(w))),

this proves (b).

If F (w, K) and G(w, K) are closed subspaces, then

u(w) ∈ F (w, K) ∩ K ⊂ S(w, K) or u(w) ∈ G(w, K) ∩ K ⊂ T (w, K),

and the above argument establishes (a) and (b). If we suppose that there

exists a subsequence {S(w, x2nk+1(w))} contained in Q0, and T (w, K),

S(w, K) are closed subspaces of X, then, noting that {S(w, x2nk+1(w))}

is a Cauchy sequence in S(w, K), an analogous argument establishes (a)

and (b).

To prove (c), note that v(w) ∈ C(T, F ) and u(w) = T (w, v(w)). From

this T (w, u(w)) = T (w, T (w, v(w))) = T (w, v(w)), hence T (w, u(w)) =

u(w), and from the commutativity of T and F , we derive

u(w) = T (w, u(w)) = T (w, T (w, v(w))) ∈ T (w, F (w, v(w)))

⊂ F (w, T (w, v(w))) = F (w, u(w)).
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Thus u(w) is a common random fixed point of T and F . Similar argu-

ment yields u(w) = S(w, u(w)) ∈ G(w, u(w)), proving (d). Now e) is

immediate.

Corollary 1. Let (X, d) be a separable complete metrically convex

metric space, K a nonempty closed subset of X, and δK the boundary

of K. Let F, G : Ω × K → CB(X) be continuous multifunctions and

T : Ω × K → X be a random operator, such that

(i) contractive inequality (2.1) with S = T , and inequality (2.2);

(ii) δK ⊂ T (w, K), F (w, K) ∪ G(w, K) ∩ K ⊂ T (w, K);

(iii) T (w, x) ∈ δK ⇒ F (w, x) ∪ G(w, x) ⊂ K;

(iv) either T (w, K) or F (w, K) and G(w, K) are closed subspaces of

X.

Then, F, G, and T have a common random coincidence point v(w).

Furthermore, F, G, and T have a common random fixed point provided

T (w, v(w)) is a random fixed point of T and T commutes with each of F

and G at v(w).

Theorem 2. Let (X, d) be a separable complete metrically convex metric

space, K a nonempty closed subset of X, and δK the boundary of K.

Let F, G : Ω × K → CB(X) be continuous multifunctions and S, T :

Ω × K → X be continuous random operators, such that

(i) contractive inequalities (2.1) and (2.2);

(ii) δK ⊂ S(w, K)∩T (w, K), F (w, K)∩K ⊂ S(w, K), G(w, K)∩K ⊂

T (w, K); and

(iii) T (w, x) ∈ δK ⇒ F (w, x) ⊂ K, S(w, x) ∈ δK ⇒ G(w, x) ⊂ K;

are satisfied.

Suppose that (T, F ) and (S, G) are pointwise R-weakly commuting pairs,

then

(a) There exists a point z(w) ∈ K such that S(w, z(w)) ∈ G(w, z(w))

and T (w, z(w)) ∈ F (w, z(w)).

Furthermore,

(b) T and F have a common random fixed point provided

T (w, T (w, z(w))) = T (w, z(w));

(c) S and G have a common random fixed point provided

S(w, S(w, z(w))) = S(w, z(w));

(d) S, T, F and G have a common random fixed point provided (b) and

(c) both are true.

Proof. Proceeding as in the proof of Theorem 1, we suppose that there

exists a subsequence {T (w, x2nk
(w))} which is contained in P0. Further,
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subsequences {T (w, x2nk
(w))} and {S(w, x2nk+1(w))} both converge to

a z(w) ∈ K, since K is closed in complete X, where z : Ω → X is

a measurable map. Since T (w, x2nk
(w)) ∈ G(w, x2nk−1(w)) ∩ K and

S(w, x2nk−1(w)) ∈ K, the pointwise R−weak commutativity of G and S

implies

d(S(w, T (w, x2nk
(w))), G(w, S(w, x2nk−1(w))))

≤ R1(w)d(T (w, x2nk
(w)), S(w, x2nk−1(w))) (2.3)

for some measurable map R1 : Ω → (0,∞). Also,

d(S(w, T (w, x2nk
(w))), G(w, z(w)))

≤ d(S(w, T (w, x2nk
(w))), G(w, S(w, x2nk−1(w))))

+ H(G(w, S(w, x2nk−1(w))), G(w, z(w))) (2.4)

Letting k → ∞ in (2.3) and (2.4) and using the continuity of S and T ,

we obtain

d(S(w, z(w)), G(w, z(w))) ≤ 0,

yielding S(w, z(w)) ∈ G(w, z(w)). Since y2nk+1(w) ∈ F (w, x2nk
(w)) ∩ K

and T (w, x2nk
(w)) ∈ K, the pointwise R−weak commutativity of F and

T implies

d(T (w, y2nk+1(w)), F (w, T (w, x2nk
(w))))

≤ R2(w)d(y2nk+1(w), T (w, x2nk
(w)))

for some measurable map R2 : Ω → (0,∞). Therefore, as previously, the

continuity of T and F implies

d(T (w, z(w)), F (w, z(w))) ≤ 0,

proving T (w, z(w)) ∈ F (w, z(w)). This proves (a).

If we suppose that there exists a subsequence {S(w, x2nk+1(w))} con-

tained in Q0, then analogous argument establishes (a).

If T (w, T (w, z(w))) = T (w, z(w)) then T (w, z(w)) ∈ K. Thus z(w) ∈

K and T (w, z(w)) ∈ K ∩ F (w, z(w)). Now using the pointwise R−weak

commutativity of T and F at z(w), we get

d(T (w, T (w, z(w))), F (w, T (w, z(w)))) ≤ R3(w)d(F (w, z(w)), T (w, z(w))),

for some measurable map R3 : Ω → (0,∞), where T (w, T (w, z(w))) ∈
F (w, T (w, z(w))). This proves (b). A similar argument proves (c). Now

(d) is immediate.

Corollary 2. Let (X, d) be a separable complete metrically convex

metric space, K a nonempty closed subset of X, and δK the boundary
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of K. Let F, G : Ω × K → CB(X) be continuous multifunctions and

T : Ω × K → X be a continuous random operator, such that

(i) contractive inequality (2.1) with S = T and inequality (2.2);

(ii) δK ⊂ T (w, K), F (w, K) ∪ G(w, K) ∩ K ⊂ T (w, K);

(iii) T (w, x) ∈ δK ⇒ F (w, x) ∪ G(w, x) ⊂ K.

Suppose that T is pointwise R−weakly commuting with each of F and

G.

Then, F, G, and T have common random coincidence point z(w). Fur-

thermore, F, G, and T have a common random fixed point, provided

T (w, T (w, z(w))) = T (w, z(w)).

Consider F, G : Ω × K → CB(X) and T : Ω × K → X satisfying

H(F (w, x), G(w, y)) < M(x, y) (2.5)

when M(x, y) > 0, x, y ∈ K, where

M(x, y) = α(w)d(T (w, x), T (w, y))

+ β(w)[d(T (w, x), F (w, x)) + d(T (w, y), G(w, y))]

+ γ(w)[d(T (w, x), G(w, y)) + d(T (w, y), F (w, x))]

and α, β, γ : Ω → (0,∞) are measurable mappings such that

0 < (α(w)+β(w)+γ(w))(1+β(w)+γ(w))/(1−β(w)−γ(w))2 ≤ 1. (2.6)

Theorem 3. Let (X, d) be a separable complete metrically convex metric

space, K a nonempty compact subset of X, and δK the boundary of

K. Let F, G : Ω × K → CB(X) be continuous multifunctions and

T : Ω × K → X be a continuous random operator, such that

(i) contractive inequalities (2.5) and (2.6);

(ii) δK ⊂ T (w, K), F (w, K) ∪ G(w, K) ∩ K ⊂ T (w, K);

(iii) T (w, x) ∈ δK ⇒ F (w, x) ∪ G(w, x) ⊂ K.

Suppose that T is pointwise R-weakly commuting with each of F and

G;

Then, F, G, and T have common random coincidence point z(w).

Furthermore, F , G, and T have a common random fixed point provided

T (w, z(w)) is a random fixed point of T .

Proof. In view of the last part of Corollary 2, it is enough to show that

F, G and T have a common random coincidence point. We claim that

M(x(w), y(w)) = 0, for some x(w), y(w) ∈ K, where x, y : Ω → X are

measurable mappings. Otherwise the function

q(x(w), y(w)) = H(F (w, x(w)), G(w, y(w)))/M(x(w), y(w))
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is continuous and satisfies q(x(w), y(w)) < 1 for (x(w), y(w)) ∈ K × K.

Since K × K is compact, there exists u(w), v(w) ∈ K such that

q(x(w), y(w)) ≤ q(u(w), v(w)) = ν(w) < 1

for x(w), y(w) ∈ K and for some measurable map ν : Ω → (0, 1). Conse-

quently,

H(F (w, x(w)), G(w, y(w))) ≤ ν(w)M(x(w), y(w)).

Further, in view of (2.6), it is a straightforward verification that

(ν(w)α(w) + ν(w)β(w) + ν(w)γ(w))(1 + ν(w)β(w) + ν(w)γ(w))/

(1 − ν(w)β(w) − ν(w)γ(w))2 < 1.

So, by Corollary 2, T (w, z(w)) ∈ F (w, z(w))∩G(w, z(w)) for some z(w) ∈
K, and we have M(z(w), z(w)) = 0. This contradicts M(z(w), z(w)) > 0.

Therefore M(x(w), y(w)) = 0 for some x(w), y(w) ∈ K, and this implies

T (w, x(w)) ∈ F (w, x(w)) and T (w, x(w)) = T (w, y(w)) ∈ G(w, y(w)). If

M(x(w), y(w)) = 0, then T (w, x(w)) ∈ G(w, x(w)), and if M(x(w), x(w))

6= 0, then (2.5) implies

(1 − β(w) − γ(w))d(T (w, x(w)), G(w, x(w))) ≤ 0,

yielding T (w, x(w)) ∈ G(w, x(w)). Similarly, in either of the two cases

M(y(w), y(w)) = 0 and M(y(w), y(w)) > 0, T (w, y(w)) ∈ F (w, y(w)).

This proves that F, G and T have a common random coincidence point.
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