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QUIVERS, VECTOR BUNDLES AND COVERINGS OF

SMOOTH CURVES

(submitted by B.N. Shapukov)

Abstract. Fix a finite quiver Q and consider quiver-bundles on

smooth and connected projective curves. Let f : X → Y be a degree m

morphism between such curves and Ẽ a quiver bundle on Y . We prove

that Ẽ is semistable (resp. polystable) if and only if f ∗(Ẽ) is semistable.

Then we construct many stable quiver-bundles on bielliptic curves.

1. Introduction

Here we consider a problem related to stable and semistable quiver-

bundles on a smooth and connected projective curve X, i.e. represen-

tations of a finite quiver into the the category of all coherent sheaves

on X ([1], [6], [11], [12], [13], [14]). We assume the existence of a finite

covering f : X → Y between smooth and connected projective curves

and we want to use informations on quiver-bundles on Y to obtain in-

formations on quiver-bundles on X (for the same quiver). For the case

of plain vector bundles this approach was used several times (see e.g. [3]

for hyperelliptic curves and [10] for bielliptic curves). In the case of plain

vector bundles the starting point is the following result ([8], Lemmas 3.2.2
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and 3.2.3), which was a key step in the usual proof of the (generalized)

Grauert-Mülich restriction theorem ([8], [9]).

Proposition 1. Let X, Y integral projective varieties, OY (1) an ample

line bundle on Y , E a vector bundle on Y and f : X → Y a finite

covering. Set OX(1) := f ∗(OY (1)).

(a) f ∗(E) is OX(1)-semistable if and only if E is OY (1)-semistable.

(b) f ∗(E) is OX(1)-polystable if and only if E is OY (1)-polystable.

Of course, only the “ if ” parts are not trivial. For our quiver-bundles

we do not study or use the existence of moduli spaces (see e.g. [1], [5],

[6], [11], [12], [13], [14]) and hence we may allow fairly general oriented

finite quivers (e.g. with multiple paths). Here we give our set-up. Let

Z be a smooth and connected projective curve and Q = (S, A, s, t) (or

just Q = (S, A) for short) a finite quiver, i.e. two finite sets V, A, V 6= ∅,

equipped with two functions s : A → V (the source), t : A → V (the

target). Contrary to the assumptions made in [1], [6], [12] and [13] we

allow multiple arrows, i.e. we allow the existence of a, b ∈ A such that

s(a) = s(b), t(a) = t(b) and a 6= b: recall that our aims are more modest:

we only consider curves and do not consider moduli spaces. A quiver-

bundle Ẽ of Z is given by a finite set {Ev}v∈V of vector bundles on Z and a

finite set fa : Es(a) → Et(a) of homomorphisms. For every v ∈ V fix mv ∈

R, mv > 0, and call mv the weight of the node v. We will require that

each Ev has non-zero rank, so that its slope µEv
:= deg(Ev)/rank(Ev)

is well-defined and call µ(Ẽ) :=
∑

v∈V mvµ(Ev) the slope (or the total

slope or the total weighted slope) of Ẽ. A subobject F̃ = {Fv, f
′

a} of

Ẽ will be said to be strict if all bundles Fv, v ∈ V , have non-zero rank

and hence the total slope µ(F̃ ) is well-defined. By the very definition of

slope stability (or stability in the sense of Mumford and Takemoto) to

check if Ẽ is semistable or stable or polystable it is sufficient to check all

its strict subobjects. This is one of the two reasons why we do not use

the Hilbert polynomials of the bundles Ev to define total stability. The

second reason is that degrees and slopes work very well when making a

pull-back by a degree m coverings (they are just multiplied by m), while

in general the genus is not multiplied by m. Hence with our definition of

total slope the “ only if ” part in Theorem 1 below is obvious.

In section 2 we will prove the following result.

Theorem 1. Let f : X → Y a degree m covering between smooth and

connected projective curves and Ẽ a quiver-bundle on Y .

(a) f ∗(Ẽ) is semistable if and only if Ẽ is semistable.
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(b) f ∗(Ẽ) is polystable if and only if Ẽ is polystable.

On X we take m · mv, v ∈ V , as weights to define the total weighted

slope, but mv, v ∈ V , defines the same notion of stability and semistabil-

ity, because for any λ > 0 the weights (mv, v ∈ V ) and (λmv, v ∈ V ) give

the same notion of stability. We stress that in the definition of polysta-

bility any vector bundle appearing in a direct factor must have positive

rank, otherwise its slope is not defined.

If f : X → Y is a degree m covering and E a vector bundle on

Y , then deg(f ∗(E)) ≡ 0 (mod m). This is a very strong restrictions

for the semistable quiver-bundles on X obtained using Theorem 1. In

section 3 we will show how to overcome this restriction (when m = 2 and

pa(Y ) = 1, i.e. for bielliptic curves) for certain quivers and how to obtain

stable (not just semistable or polystable) quiver-bundles on any bielliptic

curve X with large genus (again, only for certain very specific quivers).

In Theorem 2 we will consider the case of a multiple arrow, i.e. we fix

an integer n ≥ 2 and take V := {0, 1}, A := {f1, . . . , fn}, s(fi) = 0 and

t(fi) = 1 for all i. In Theorem 3 we will consider the case of a source, i.e.

we fix an integer n ≥ 1 and take V := {0, 1, . . . , n}, A := {f1, . . . , fn}

with s(fi) = 0 and t(fi) = i, for all i. Taking duals, from Theorem 3 one

gets the case of a so-called sink. In Theorem 4 we will consider the case

of an oriented chain, i.e. we take V := {1, . . . , n}, A := {f1, . . . , fn−1}

with s(fi) = i and t(fi) = i + 1, 1 ≤ i ≤ n − 1. In Theorem 5 we

will consider the case of a fork, i.e. we take V := {−1, 0, 1, . . . , n},

A := {f0, f1, . . . , fn}, s(f0) = −1, t(f0) = 0, s(fi) = 0 and t(fi) = 1 for

all 1 ≤ i ≤ n.

2. Proof of Theorem 1

Let Q = (V, S) be a finite quiver in the sense of section 1. We fix

mv ∈ R, mv > 0, for all v ∈ V . All quiver-bundles will be with respect to

the quiver Q and semistability (resp. stability, resp. polystability) will

be the total slope semistability (resp. stability, resp. polystability) with

respect to the weights mv, v ∈ V discussed in section 1. Let Z be any

smooth and connected projective curve.

Remark 1. Let Ẽ = {Ev, fa} and F̃ = {Fv, f
′

a} be stable quiver-bundles

with the same total slope and ũ : Ẽ → F̃ a non-zero morphism. Call

uv : Ev → Fv, v ∈ V , the associated morphism. By the definition of

stability ũ is an isomorphism if uv 6= 0 for all v ∈ V . We do not know if

this is true in general. It is true in certain cases, e.g. the case of triples

([7], Cor. 2.1).
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Lemma 1. Let Ẽ be a quiver-bundle on Z. Then Ẽ has a Harder-

Narasimhan filtration; we do not claim its uniqueness.

Proof. If Ẽ is semistable, then there is nothing to prove. Hence we may

assume that Ẽ is not semistable. Since Q is finite and each bundle Ev,

v ∈ V , associated to Ẽ has a well-defined and finite rank and degree,

there is a quiver-subsheaf F̃ = {Fv, fa}v∈V,a∈A of Ẽ with µ(F̃ ) > µ(Ẽ)

and with µ(F̃ ) maximal; we stress that we may get F̃ such that to no Fv

has rank zero and hence each µ(Fv) is well-defined, because only strict

subobjects are used to test the semistability of a quiver-bundle. Since Z

is smooth, the kernel of any homomorphism m : G → G′ of vector bundles

on Z is saturated in G, i.e. either m ≡ 0 or Coker(m) ∼= Im(m) is locally

free. Hence, by the very definition of subobject and the maximality of

µ(F̃ ) we get that each Fv is a saturated subbundle of Ev, v ∈ V . If

Fv = Ev for at least one v, then we stop: this chain cannot be refined

and we stop. If Fv ( Ev for all v, then the family {fa}a∈A induces a

quiver-structure on the set of vector bundles {Ev/Fv}, v ∈ V . Now we

may use induction on the total rank
∑

v∈V rank(Ev). �

Similarly, we have the following result.

Lemma 2. Let Ẽ be a semistable quiver-bundle on Z. Then Ẽ has a

Jordan-Hölder filtration.

Although we do not claim uniqueness in Lemma 1, we are able to prove

the following key lemma.

Lemma 3. Let Ẽ = {Ev, fa} be a quiver-bundle on Z and Ã := {Av, f
′

a},

B̃ := {Bv, f
′′

v } strict subobjects of Ẽ with maximal total slope and maxi-

mal total rank. Then Ã = B̃

Proof. Since Ã and B̃ have maximal slope, they are semistable. It is

easy to define the subobject Ã + B̃ of Ẽ, because fa(As(a)) + fa(Bs(a)) ⊆

At(a) + Bt(a) for every a ∈ A. Furthermore, Ã + B̃ is a quotient of

Ã⊕ B̃, which is semistable. Since Ã + B̃ is a strict subobject of Ẽ (with

our definition of “ strict ” Ẽ is a strict subobject of itself!), we easily

conclude, by the maximality of the total rank of both Ã and B̃ and the

fact (proved in the proof of Lemma 1) that Av and Bv are saturated in

Ev for all v ∈ V . �

Proof of Theorem 1. Since µ(F̃ ) = m ·µ(F̃ ) for every quiver bundle F̃

on Y , the “ only if ” parts of both (a) and (b) are obvious. Furthermore,

to check the “ if ” parts, it is sufficient to prove the semistabily or the

polystability of a pull-back of f ∗(Ẽ) by another finite covering. Hence we
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may reduce to the case in which f is a Galois covering ; here we use the

assumption char(K) = 0. Call G the Galois group of the covering f . Now

assume Ẽ semistable and that f ∗(Ẽ) is not semistable. Let F̃ be a strict

subobject of f ∗(Ẽ) with maximal slope and (among the strict subobjects

with maximal slope) with maximal total rank. Hence h∗(F̃ ), h ∈ G, has

the same properties. Hence F̃ = h∗(F̃ ) (Lemma 3). Hence G acts on each

Fv. Fix any v ∈ V . Notice that G acts trivially on the fiber of f ∗(Ev)

over any ramification point, P , of f . Since Fv is saturated, in f ∗(Ev), G

acts trivially also the fiber Fv|{P} of Fv at P . By descent theory we get

the existence of a subbundle Mv of Ev such that Fv = f ∗(Mv). Also the

maps f ′

a descend and hence we get a strict subobject M̃ of Ẽ such that

µ(M̃) = µ(F̃ )/m, contradicting the semistability of Ẽ. Now assume Ẽ

polystable. We just proved that f ∗(Ẽ) is semistable. Let Ã be a strict

subobject of f ∗(Ẽ) with maximal slope and minimal total rank. Hence

Ã is stable. Hence µ(Ã) = µ(f ∗(Ẽ)). We just proved that
∑

h∈G h∗(Ã)

descends to a quiver-bundle on Y . By the polystability of Ẽ we get

that C̃ :=
∑

h∈G h∗(Ã) is stable and that, calling Cv, v ∈ V , the vector

bundles associated to C̃, either Cv is a proper saturated subbundle of

f ∗(Ev) for all v, or Cv = f ∗(Ev) for all v, i.e. that either f ∗(Ã) = C̃ is

polystable or we may define a quotient quiver-bundle f ∗(Ẽ)/C̃ with all

associated bundles with non-zero rank. Hence we may define the slopes

of all bundles associated to f ∗(Ẽ)/C̃ and get part (b) by induction on

the total rank of Ẽ.

3. Examples

We recall the following well-known lemma.

Lemma 4. Let f : X → Y be a double covering between smooth and

projective curves and E a stable vector bundle on Y . Assume that f is

not étale, i.e. assume pa(X) ≥ 2pa(Y ). Then f ∗(E) is stable.

Proof. Since char(K) 6= 2, we have f∗(OX) ∼= OY ⊕ R for some R ∈

Pic(Y ) (use the trace map). By Riemann-Hurwitz and the assumption

pa(X) ≥ 2pa(Y ) we get deg(R) < 0. By Proposition 1 f ∗(E) is polystable

and hence f ∗(E) is stable if and only if it is simple. By the projec-

tion formula we have h0(X,End(f ∗(E))) = h0(Y, f∗(End(f ∗(E)))) =

h0(Y,End(E)) + h0(Y,End(E) ⊗ R) = 1 + h0(Y,End(E ) ⊗ R). Since

End(E) is semistable ([8], §3.2) and deg(R) < 0, we get h0(Y,End(E)⊗

R) = 0, concluding the proof. �

From now on, in this paper we fix the following notation. Let Y

be an elliptic curve, X a smooth and connected projective curve and
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f : X → Y a double covering. We assume that f is not étale, i.e. we

assume g := pa(X) ≥ 2 (Riemann-Hurwitz). Let σ : X → X denote the

order two automorphism associated to f .

Theorem 2. Fix an integer n ≥ 2 and take V := {0, 1}, A := {f1, . . . , fn},

s(fi) = 0 and t(fi) = 1 for all i; this quiver is called a multiple arrow.

Fix vector bundles Ei on Y , i ∈ {0, 1}, and set ri := rank(Ei) and

di := deg(Ei). Assume g := pa(X) ≥ 6, (d0 + 1)/r0 < (d1 − 1)/r1, that

each Ei, i = 0, 1, is polystable and that no two of the indecomposable

factors of any Ei are isomorphic. Fix integers ai, i = 0, 1, such that

a0 ∈ {2d0 − 1, 2d0 − 2} and a1 ∈ {2d1 + 1, 2d1 + 2}. Then there exists

a stable quiver-bundle F̃ = {F0, F1, φ1, φn} such that rank(Fi) = ri and

deg(Fi) = ai for all i.

Proof. By Lemma 4 all vector bundles f ∗(Ei) are polystable and Ei and

f ∗(Ei) have the same number of indecomposable factors. Fix a general

P ∈ Y . Hence ](f−1(P )) = 2. Set f−1(P ) = {P ′, P ′′}.

(a) Here we assume a0 = 2d0 − 1 and a1 = 2d1 + 1. Let F0 (resp.

F1) be the general bundle obtained from f ∗(F0) (resp. f ∗(F1)) making

a general negative (resp. positive) elementary transformation supported

by P ′. Call A0 (resp. A1) the general bundle obtained from E0 making

a negative (resp. positive) elementary transformation supported by P .

Since the set of all bundles on X (resp. Y ) obtained from a fixed bundle

making a positive elementary transformation supported by P ′ (resp. P )

is irreducible, to prove Theorem 2 using the bundles F0, F1 just defined

we may assume f ∗(A0) $ F0 $ f ∗(E0) and f ∗(E1) $ F1 $ f ∗(A1);

essentially, f ∗(Ai), i = 0, 1, is obtained from f ∗(Ei) making two “ ex-

changed by the involution σ ” negative elementary transformations at P ′

and P ′′ := σ(P ′), and we impose that Fi is obtained from one of them,

say the one supported by P ′. By [4], Cor. 2.4 and its dual, A0 and A1 are

polystable and no two of the indecomposable factors of of one of them

are isomorphic. Hence we may apply Lemma 4 to their indecomposable

factors. Since A0 is a subsheaf of E0 and E1 is a subsheaf of A1, the maps

fi : E0 → Ei, 1 ≤ i ≤ n, induce maps ui : A0 → A1. Set vi := f ∗(ui).

Since F0 is a subsheaf of f ∗(E0) and f ∗(E1) of F1, each map f ∗(fi) induces

a map φi : F0 → Fi. Set F̃ := {F0, F1, φ1, . . . , φn} in order to obtain a

contradiction we assume that F̃ is not stable with respect to the param-

eters 2m0 and 2m1. Take a strict subobject G̃ = {G0, G1, τ1, . . . , τn} of

F̃ with maximal slope.

First Claim: We may find F0, F1 as above with both F0 and F1

stable
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Proof of the First Claim: We will only prove the stability of F0, be-

cause the case of F1 is very similar. Assume that F0 is not stable and take

a proper subsheaf A of F0 with maximal slope and (among these sub-

sheaves) with minimal rank. Since A has maximal slope, it is semistable

and saturated in F0, i.e. F0/A is locally free. Since A has minimal rank

among the subsheaves of F0 with maximal slope, it is stable. We see F0

as a subsheaf of the σ-invariant vector bundle f ∗(E0). Hence we may see

A as a subsheaf of f ∗(E0). With this identification the subsheaf σ∗(A)

of f ∗(E0) is defined. Since F0 is obtained from f ∗(E0) making a neg-

ative elementary transformation supported by a non-ramification point

of f , for any ramification point O of f the fiber F0|{O} ∼= K⊕rE0 of F0

at O maps isomorphically onto f ∗(E0)|{O}. Since A is saturated in F0,

the fiber A|{O} maps injectively into f ∗(E0)|{O}. Similarly, we see that

the fibers of A ∩ σ∗(A) and A + σ∗(A) over O maps injectively into the

vector space f ∗(E0)|{O}. Since f ∗(E0) comes from Y , σ acts trivially

on the vector space f ∗(E0)|{O} and hence on each of linear subspaces.

Let B be any σ-invariant subsheaf B of f ∗(E0) such that the natural

map B|{O} → f ∗(E0)|{O} is injective for all ramification point O of f .

Descent theory implies the existence of a subsheaf B ′ of E0 such that

B = f ∗(B′). In particular B has even degree. The semistability of E0

implies µ(B′) ≤ µ(E0) with equality if and only if B ′ is a direct factor

of E0 and hence µ(B) ≤ µ(f ∗(E0)) with equality if and only if B is a

direct factor of f ∗(E0) (for the “ equality ” part of the latter statement

we use Lemma 2). At this point we have all the ingredients to copy [4],

pp. 543–544, using our assumption on pa(X), i.e. that there are “ suffi-

ciently many ” ramification points on f . However, we may take a short-

cut. Set r := rank(E0), δ := deg(A) and ρ := rank(A). By [4], Lem-

mas 3.2 and 3.1, the vector bundles Fi, i = 0, 1, are semistable. Hence

µ(A) = µ(F0) = (2d0 − 1)/r). First assume that A is not saturated in

f ∗(E0) and call Ā its saturation. Hence µ(Ā) = µ(A)+1/ρ > µ(f ∗(E0)),

contradicting the semistability of f ∗(E0). Hence A is saturated in f ∗(E0).

Thus σ∗(A) is saturated in f ∗(E0). Notice that f ∗(G0) = F0 ∩σ∗(F0) (as

subsheaves of f ∗(E0)). Since A⊕σ∗(A) is polystable and D := A+σ∗(A)

is a quotient of it, µ(D) ≥ µ(A), with equality if and only if D is iso-

morphic to a direct factor of A ⊕ σ∗(A); since A ⊕ σ∗(A) has only two

direct factors, we get µ(A) = µ(D) if and only if either A = σ∗(A) or

A ∩ σ∗(A) = 0. Let K be the saturation of the sheaf D inside f ∗(E0).

Since D is σ-invariant, K is σ-invariant. Since both A + σ∗(A) and K

are σ-invariant, deg(K)−deg(A+σ∗(A)) is an even integer. Since r > ρ,

µ(A) = (2d0 − 1)/r = µ(f ∗(E0)) − 1/r, and f ∗(E0) is polystable, we get
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K = D, i.e. D is saturated in f ∗(E0). Since it is also σ-invariant, there is

a subbundle D′ of E0 such that D = f ∗(D′). First assume D 6= f ∗(E0).

Hence E0/D
′ is a non-zero vector bundle.

Second Claim: h0(X, f ∗(E0/D
′)) = h0(Y, E0/D

′).

Proof of the Second Claim: Since char(K) 6= 2, there is R ∈ Pic(Y )

such that deg(R) = 1 − g and f∗(OX) = OY ⊕ R (Riemann-Hurwitz).

Hence h0(X, f ∗(E0/D
′)) = h0(Y, E0/D

′) + h0(Y, (E0/D
′) ⊗ R (projec-

tion formula). Hence by Atiyah’s classification of indecomposable vector

bundles on any elliptic curve ([2], Part II), it is sufficient to show that

every indecomposable factor of E0/D
′ has slope < 1 − g. Let t denote

the maximal slope of an indecomposable factor of E0/D
′. Since g ≥ 4,

it is sufficient to check the inequality t < 3. In the proof of the semista-

bility of F0 given in [4] the statement corresponding to the Claim is [4],

Prop. 3.5; in that set-up it was proved the inequality t < 2, but with

the stronger assumption (with our notation) µ(A) > µ(F0); here instead

we only have µ(A) = µ(F0). Following the proof of [4], Prop. 3.5, in our

set-up we get t ≤ 2, concluding the proof of the Second Claim.

Consider the exact sequence

0 → A ∩ σ∗(A) → A ⊕ σ∗(A) → A + σ∗(A) → 0 (1)

By construction the vector bundle f ∗(E0/D
′) splits into two direct fac-

tors, A/(A∩σ∗(A)) and σ∗(A)/(A∩σ∗(A)). The projection of f ∗(E0/D
′)

onto its factor A/(A∩σ∗(A)) does not come from an element of H0(Y, E0/D
′),

contradicting the Claim.

By the Second Claim we have µ(Gi) ≤ µ(Fi) for i = 0, 1, with strict

inequality for at least one index i. Since m0 > 0 and m1 > 0, we have

µ(G̃) > µ(F̃ ), contradiction.

Now assume D = f ∗(E0), i.e D′ = D. Hence 2ρ ≥ r. Since deg(A) =

deg(σ∗(A)) = ρ(2d0−1)/r, while deg(A+σ(A)) = 2d0/r, we obtain 2ρ 6=

r. Hence ρ > r/2, i.e. A ∩ σ∗(A) 6= 0. Notice that A ∩ σ∗(A) ⊂ f ∗(A0).

Since f ∗(A0) is polystable, we get deg(A ∩ σ∗(A)) = rank(A ∩ σ∗(A)) ·

µ(A ∩ σ∗(A)) ≤ (2ρ − r)µ(f ∗(A0)) = (2ρ − r)(2d0 − 2)/r. By Lemma 4

every direct factor of f ∗(E0) is σ-invariant. Apply the proof of the Claim

directly to the vector bundles A + σ∗(A) and A ∩ σ∗(A) and use again

the exact sequence (1).

(b) Here we assume a0 = 2d0 − 2 and a1 = 2d1 + 2. Fix two gen-

eral P1, P2 ∈ Y . Hence ](f−1(P1)) = ](f−1(P2)) = 2. Set {Pi
′, Pi

′′} :=

f−1(Pi), i = 1, 2. Copy the proof of part (a) with the following modifi-

cations. Here A0 (resp. A1) is obtained from E0 (resp. E1) making two

general negative (resp. positive) elementary transformations supported
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by P1 and P2. F0 (resp. F1) is obtained from f ∗(E0) (resp. f ∗(E1))

making two general negative (resp. positive) elementary transformations

supported by P ′
1 and P ′

2. Here we use that g is large to obtain the

Claim proved in part (a) under our numerical assumptions.

(c) The cases “ a0 = 2d0 − 1 and a1 = 2d1 + 2 ” and “ a0 = 2d0 − 2

and a1 = 2d1 + 1 ” are similar and may be done as in part (b). �

Theorem 3. Fix an integer n ≥ 1 and take V := {0, 1, . . . , n}, A :=

{f1, . . . , fn} with s(fi) = 0 and t(fi) = i, for all i; this quiver is called

a source. Fix vector bundles Ei on Y , i ∈ {0, 1, . . . , n}, and set ri :=

rank(Ei), and di := deg(Ei). Assume g ≥ 6, (d0 + 1)/r0 < (di − 1)/ri

for all i ∈ {1, . . . }, that each Ei is polystable and that no two of the

indecomposable factors of any Ei are isomorphic. Fix integers ai, 0 ≤

i ≤ n, such that a0 ∈ {2d0 − 1, } and aj ∈ {2dj, 2dj + 1} for all 1 ≤

j ≤ n. Then there exists a stable quiver-bundle F̃ = {Fv, φa} such that

rank(Fi) = ri and deg(Fi) = ai for all i ∈ {0, 1, . . . , n}. Furthermore, we

may find such a quiver-bundle with all Fv, v ∈ V , stable.

Proof. By Lemma 4 all vector bundles f ∗(Ei) are polystable and Ei and

f ∗(Ei) have the same number of indecomposable factors. It is sufficient to

copy the proof of Theorem 2 with the following modification. If aj = 2dj

for some j, then from Ej and f ∗(Ej) we make first a sufficiently general

negative elementary transformation and then we apply to this bundle

a new sufficiently general positive elementary transformation (based on

a different point of the curve). With our assumptions on g the Second

Claim made in the proof of Theorems 2 is OK in our different set-up. �

In the same way we get the following two examples.

Theorem 4. Take V := {1, . . . , n}, A := {f1, . . . , fn−1} with s(fi) = i

and t(fi) = i + 1, 1 ≤ i ≤ n − 1; this quiver is called an oriented chain.

Fix vector bundles Ei on Y , i ∈ {1, . . . , n}, and set ri := rank(Ei), and

di := deg(Ei). Assume pa(Y ) = 1, g := pa(X) ≥ 6, (di + 1)/ri <

(di+1 − 1)/ri+1 for all i ∈ {1, . . . , n − 1}, that each Ei is polystable, and

that no two of the indecomposable factors of any Ei are isomorphic. Fix

aj ∈ {2dj − 1, 2dj} for all j ∈ {1, . . . , n − 1}. Then there exists a stable

quiver-bundle F̃ = {Fv, φa} such that rank(Fi) = ri and deg(Fi) = ai for

all i ∈ {1, . . . , n}. Furthermore, we may find such a quiver-bundle with

all Fv, v ∈ V , stable.

Theorem 5. Take V := {−1, 0, 1, . . . , n}, A := {f0, f1, . . . , fn}, s(f0) =

−1, t(f0) = 0, s(fi) = 0 and t(fi) = 1 for all 1 ≤ i ≤ n; this quiver

is often called a fork. Fix vector bundles Ei on Y , i ∈ {−1, 01, . . . , n},
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and set ri := rankEi and di := deg(Ei). Assume g ≥ 6, (d−1 + 1)/r−1 <

(d0−1)/r0 and (d0+1)/r0 < (di−1)/ri for all i ∈ {1, . . . , n}. Fix integers

ai ∈ {2di−1, 2di}, i ∈ {−1, 0, 1, . . . , n}.Then there exists a stable quiver-

bundle F̃ = {Fv, φa} such that rank(Fi) = ri and deg(Fi) = ai for all

i ∈ {1, . . . , n}. Furthermore, we may find such a quiver-bundle with all

Fv, v ∈ V , stable.
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