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Abstract. We construct new finite-dimensional submanifolds in

the solution space of Kolmogorov-Petrovsky-Piskunov equation. We de-

scribe the corresponding evolutionary dynamics and exact solutions.

1. Introduction

In this paper we consider finite dimensional dynamics for the classi-

cal Kolmogorov-Petrovsky-Piskunov equation (or a non-linear reaction-

diffusion equation)

ut = uxx + f(u), (1)

which first appeared in the context of genetics model for the spread of

an advantageous gene through a population ([10]). It has been applied

since to a number of biological and chemical models.

Usually one requires a special form of the non-linearity: f(0) = f(1) =

0, f(u) > 0 for 0 < u < 1 (and a condition like f ′′(u) < 0). There

are different constraints for other types of reaction-diffusion equation.

We will not restrict to a special form of f(u), but note that the above

conditions are satisfied for a certain range of parameters of our solutions.
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Special attention has been devoted to the convergence to the travel-

ling waves and the stability of these waves ([2], [7],[14]). Such solutions

naturally appear with our approach.

It is not much known about existence of entire or meromorphic families

of solutions of the Kolmogorov-Petrovsky-Piskunov (KPP) equation for

general f(u) (we will be interested in non-linear function f(u) from (1)).

In addition to the travelling waves and x-independent solutions there

are only few examples of finite-dimensional submanifolds in the solutions

space ([5]).

For some particular f(u) exact solutions of the KPP equation were

obtained via Painleve expansion method ([1], [6]), bi-linear method ([9]),

symmetry methods ([3]) and others ([15]).

We find finite dimensional dynamics for the Kolmogorov-Petrovsky-

Piskunov equation by the method developed in [13]. We investigate 1-,

2- and 3-dimensional dynamics and this allows us to find new classes of

solutions.

Indeed, the solutions are identified with the trajectories within these

dynamics (so that we essentially find 0, 1 and 2-dimensional spaces of

solutions, if we fix parameters), so they are obtained via integration of

a pair of ODEs. Moreover the dynamical approach allows to understand

which solutions are stable or attracting within the considered family.

2. The Method

Finite dimensional dynamics for evolutionary equations

ut = ϕ

(

x, u, ux, ...,
∂mu

∂xm

)

(2)

are finite dimensional submanifolds in the space of functions u(x), on

which equation (2) defines a dynamical system.

These submanifolds can be described as spaces of solutions of ODE

g(x, y, y′, y′′, ..., y(n−1), y(n)) = 0 (3)

with function ϕ being a symmetry. Here y = u(t, ·) with ”frozen” depen-

dent coordinate t. This gives an n-dimensional dynamics via (2).

Let Jk be the space of k-jets of functions y = y(x) with canonical

coordinates (x, p0, ..., pk−1, pk), see [11]. ODE (3) corresponds in the jet-

space to the surface

g(x, p0, . . . , pn−1, pn) = 0
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and a function ϕ(x, p0, ..., pm−1, pm) is a generating function of a symme-

try iff ϕ satisfies the following equation

Xϕ(g) = 0 (4)

on the (m− 1)st prolongation E (m−1)
n ⊂ Jm+n−1 of the equation {g = 0}.

Here the symmetry vector field is

Xϕ = ϕ̄ ∂p0
+ D(ϕ̄)∂p1

+ ...+ Dm(ϕ̄)∂pm
,

where we denote

D =
∂

∂x
+ p1

∂

∂p0
+ · · ·+ pm

∂

∂pm−1
+ · · ·

the total derivative and ϕ̄ the restriction of ϕ to the prolonged equation

(3). In terms of the total derivative the prolongation can be written as

E (k)
n = {g = 0,Dg = 0, . . . ,D(k)g = 0}.

We call function g(x, p0, ..., pn−1, pn) dynamics of order n for evolution-

ary equation (2) if g satisfies ODE (4) for the function ϕ. This equiv-

alently means that equations ut = ϕ and g = 0 are compatible. The

compatibility condition can be written via the Mayer bracket criterion of

[12] and this yields (4) again.

Thus finite-dimensional dynamics can be obtained by the integration

of equation (4) with respect to the function g. Since in our case (1) the

function ϕ = p2 +f(p0) does not involve x explicitly, it is natural to look

for a dynamics not involving x explicitly (see Sec. 6 for justification), i.e.

g = g(p0, . . . , pn).

In this paper we find solutions of equation (4) for functions g of order

≤ 3 that have polynomial form with respect to some group of variables.

This reduces the problem to an ODE system for the coefficients of the

polynomials. We will omit the straightforward analysis of these systems

and just formulate the results.

3. Dynamics of the first order

We start with the case, leading to the known solutions, but which

simply demonstrates our method.

Theorem 1. One-dimensional dynamics g(p0,p1) of the KPP equation

is: Either g(p0, p1) = p1 with f(p0) arbitrary or

g(p0, p1) = p1 − a(p0) with f(p0) = ka(p0) − a′(p0)a(p0),

where a(p0) is an arbitrary smooth function and k ∈ R.
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Remark 1. Linear in p1 dynamics g1, . . . , gk produce dynamics g =

g1 · · · gk of order 1 and degree k and locally, outside singularities, all

algebraic in p1 dynamics are such. However equivalence problem can be

more complicated: Note that equations g(p0, p1) of order k in p1, which

have k different real roots, can be geometrically interpreted as a k-webs in

the plane (x, p0), i.e. k different foliations. The KPP equation represents

a symmetry of this k-web.

If g(p0, p1) = p1, then we get x-independent solutions.

In the second case we assume that a(p0) ≥ 0. Then ϕ̄ = p2+f(p0)|{g=0} =

ka(p0). The corresponding dynamics is described by the vector field

Xϕ = ka(p0)
∂

∂p0

+ kp1a
′(p0)

∂

∂p1

on {g = 0}. To integrate the vector field we introduce the following

function:

B(p0) =

∫

dp0

a(p0)
.

Then Xϕ(B) = k and a trajectory p0(t) can be found from the relation

B(p0(t)) = kt +B(p0(0)).

Since x = B(y) is the inverse function to the solution y = y(x) of the

equation y′ = a(p0), we have p0(t) = B−1(kt+x). Applying this formula

to a solution u0(x) of the equation {g = 0} we get the travelling wave

solution of the Kolmogorov-Petrovsky-Piskunov equation

u(x, t) = B−1(kt+ x), with u(x, 0) = u0(x) = B−1(x).

Example 1. The quadratic dynamics g(p0, p1) = p2
1 − b(p0) is equivalent

to a linear dynamics. However particular forms of the function b(p0) can

provide interesting phenomena. Consider, for example,

b(p0) = ap0 + c.

Then the function f(p0) has the following form

f(p0) = k
√
ap0 + c+

a

2
.

The equation corresponding to g = 0 is

(y′)2 − ay − c = 0 (5)

with solutions

y(x) = − c

a
+

1

a

(ax

2
±

√
ay0 + c

)2

.
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Calculating the trajectories of the vector field Xϕ we get the solutions:

u±(x, t) = − c

a
+
a

4

(

kt− sign(a) | x± 2
√

au0(0) + c/a |
)2

.

These are the travelling waves with a reflection. A typical graph of it is

shown on the picture below.

The function u+(x, t0) for a = k = 1 = −c, u0(0) = 5 and various t0.

Notice that there are two solutions of equation (5), corresponding to

y(0) = −c/a. One is the constant solution y(x) = − c
a
; it is isolated and

irrelevant for the dynamics. The other is the solution y(x) = − c
a

+ a
4
x2

and the dynamics converts it into the travelling wave.

Here we see the influence of the singularity: the vector field Xϕ on

R
1(p0) has a zero corresponding to p0 = −c/a, while there is no stationary

solution of the dynamics. The explanation is that the flow dynamics of

the KPP equation enters into the singular point in a finite time and then

instantly exits.

4. Dynamics of the second order

If we consider the general case of KPP dynamics of (1) given by the

2nd order ODE g = p2 − F (p0, p1), its defining equation is
(

∇2 − Fp1
∇− Fp0

)

(F − f) = 0, where ∇ = F∂p1
+ p1∂p0

.

Thus we have plenty of solutions (at least analytic in the domain, where

Cauchy-Kovalevskaya theorem holds) for every function f(p0).



18 B. KRUGLIKOV AND O. LYCHAGINA

To get more explicit solutions of (1) let us study some special forms of

the function F (p0, p1). If it does not depend on p0, then f(p0) is linear,

which is not much an interesting case. Consider the case, when F (p0, p1)

is linear (we always mean non-homogeneous, i.e. just of degree 1) in p1:

Theorem 2. Second order dynamics of the form g = p2 +a(p0)p1 +b(p0)

is either:

g = p2 − (αp0 + β)p1 −
1

2
f(p0)

with f(p0) = α2

9
p3

0 + αβ
3
p2

0 + γp0 + δ and α, β, γ, δ ∈ R arbitrary,

or

g = p2 − βp1 + γf(p0)

with β, γ ∈ R arbitrary if f(p0) is linear and γ = 1 if f(p0) is arbitrary.

Remark 2. In the first case (mainly the only non-trivial) the parameters

can be chosen to satisfy the requirements for non-linearity in KPP. Note

also that for α 6= 0 the function f(u) is cubic, as it is in the Fitzhugh-

Nagumno equation.

In the first case

ϕ̄ = (αp0 + β)p1 +
3

2
(
α2

9
p3

0 +
αβ

3
p2

0 + γp0 + δ)

on {g = 0} ' R
2(p0, p1). The dynamics is described by the equation

ṗ0 = (αp0 + β)p1 +
3

2

(α2

9
p3

0 +
αβ

3
p2

0 + γp0 + δ
)

,

ṗ1 = αp2
1 +

(3

2
α2p2

0 + 3αβp0 + β2 +
3

2
γ
)

p1

+
(αp0 + β)

2

(α2

9
p3

0 +
αβ

3
p2

0 + γp0 + δ
)

.

This equation can possess up to 4 critical points and for generic values

of parameters they are non-degenerate. One can check that all possible

signatures (source, saddle and sink) can be realized. In particular, for

the parameters with sinks we have a stable solution and so the dynamics

(within the considered family) does not converge to travelling waves.

Analysis of this polynomial system of ODEs shows that it has quite

complicated phase portrait and we illustrate this on the pictures below.
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The phase portrait for α = β = γ = δ = 1.

In the second case ϕ̄ = βp1 + (1 − γ)f(p0) and so for linear f(p0) we

have a general linear system on the plane R
2(p0, p1). For non-linear f(p0)

we have γ = 1, so the system becomes (β 6= 1, otherwise it is trivial)

p̈0 − β2ṗ0 + βγ f(p0) = 0

(p1 = ṗ0/β), which by a substitution p0 = v eβ2x/2 reduces to the system

v′′ = Ψ(x, v) with Ψ = 1
4
β4v − βγ e−β2x/2f(eβ2x/2v).

The picture shows sensitivity to initial conditions.
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The equation g = 0 has two symmetries: p1 – shift by x and the above

ϕ̄. They commute and hence by the Lie-Bianchi theorem ODE g = 0 is

integrable in quadratures, see [4]. This gives exact solutions of the KPP.

Indeed, the first integrals I1, I2 in the first case of the above theorem are

given by the formula

(I1, I2) =

∫

(dp0, dp1) ·
(

p1 ϕ̄− f

ϕ̄ Dgϕ̄

)−1

,

where Dg = p1∂p0
+ (ϕ̄− f)∂p1

and similarly for the second case.

5. Dynamics of the third order

We will study dynamics g, which is quasi-linear in p2 and p3. In any of

the dynamics below one can obtain a more general form by substitution

p0 7→ p0 + c, where c = const, but we do not write it for the sake of

brevity.

Theorem 3. Third order dynamics of the KPP of the form

g(p0, p1, p2, p3) = p3 + p2A(p0, p1) +B(p0, p1)

is either

g(p0, p1, p2, p3) = p3 −
p2p1

p0
+ a

(p2
1 − p2p0)

p0
− b p1

with

f(p0) = cp0 − b p0 log p0,

or

g(p0, p1, p2, p3) = p3 − 3
p2p1

p0

+ 2
p3

1

p2
0

+ a p1

with

f(p0) = cp0 − b p0 log p0 + a p0(log p0)
2,

or

g(p0, p1, p2, p3) = p3 −
p2p1

p0
+ a

(p2
1 − p2p0)

p0
+ b

p1

p0

with f(p0) = 0. Here a, b, c ∈ R are arbitrary.

Remark 3. Note that for c = 0 and b > 0 in the first case, or b > 2a > 0

in the second case, the function f(u) is concave for u ∈ (0, 1), i.e. has

the form important for biological applications of KPP.
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From now on we will restrict to investigate only the first case from

the theorem. The second is similar and the last one is not an interesting

case.

For the dynamics from the first case the vector field Xϕ restricted to

the equation {g = 0} ' R
3(p0, p1, p2) has the form

Xϕ = (p2 + p0(c− b log p0)) ∂p0
+

(p1(p2 − ap1)

p0

+ ap2 + p1(c−

− b log p0)
)

∂p1
+

(p2
2 − a2p2

1

p0
+ abp1 + p2(a

2 + c− b log p0)
)

∂p2

If a, b 6= 0, this vector field has the only singularity at the point

p0 = ec/b, p1 = p2 = 0.

For a = 0, there is a plane if singularities, corresponding to KPP:

p2 + p0(c− b log p0) = 0.

In the case b = 0, a 6= 0 we have two lines of singular points for c < 0

and one for c = 0:

p1 = ±
√
−cp0, p2 = ap1 − (c± a

√
−c)p0.

At the singular point (p0 = ec/b, p1 = p2 = 0) the linear part of Xϕ has

the following spectrum

λ1 = −b,
λ2 = (a2 − a

√
a2 + 4b)/2,

λ3 = (a2 + a
√
a2 + 4b)/2.

This singular point is hyperbolic for a 6= 0 and b > 0 with signature

(− − +) and it is elliptic repelling (source) for a 6= 0 and b < 0. For

a = 0 or b = 0 the singular points are all degenerate.

In order to find trajectories of Xϕ let us introduce new coordinates

u = log p0,

v =
p1

p0
,

w =
p2 − ap1

p0
.
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Then the system for trajectories is the following

u = c + w + av − bu, (6)

v = a(w + av − v2), (7)

w = abv. (8)

From this system we get
··
w = a2bw + a2w − (w)2/b

and
dv

dw
=

1

b

(

w

v(w)
+ a− v(w)

)

. (9)

This equation describes the phase portrait of the system (7-8) in the non-

degenerate case b 6= 0 (for b = 0 we get 1-dimensional logistic equation).

We picture it below.

A typical phase portrait of the system (7-8).

Equation (9) is an Abel’s ODE of the second kind (class A [8, p.26]).

It has exact formula for solutions in the case a = 0

v(w) = ±
√

w − b

2
+ C0e−2w/b,

but generally it is not integrable in quadratures. We however can describe

the behaviour of the solutions of this equation for arbitrary a.

Namely, in the left half-plane for the ”time” w → −∞ the integral

curves exponentially diverge, so that we have hyperbolic non-stability

(this easily follows from the form of ODE). On the contrary, in the
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right half-plane when ”time” w → +∞ we have the following stabil-

ity property: All the integral curves asymptotically approach the curve

v0(w) = a
2
±

√

w + a2

4
(we assume without loss of generality that a, b > 0,

because for b < 0 we need to reverse ”time” w – see below, while for a < 0

it suffices to reflect the plane with respect to the line {w = 0}).
To demonstrate this last claim, we formulate it more formally in the

first quadrant of the plane R
2(w, v): For every ε > 0 the integral curve

eventually enters the strip between the curves

v0(w) =
a

2
+

√

w +
a2

4
and vε(w) =

a− ε

2
+

√

w +
(a− ε)2

4
.

Indeed, the vector field

ξ = b
∂

∂w
+

(w

v
+ a− v

) ∂

∂v

along the upper boundary v = v0(w) is horizontal, ξ = (b, 0), while the

tangent vector is τ = (1, v′0(w)) with v′0(w) > 0. Thus the flow of ξ enters

the strip along the upper boundary. On the lower boundary v = vε(w)

the vector field is ξ ≈ (b, ε), while the tangent vector is τ = (1, v ′ε(w))

with v′ε(w) < ε
2b

for w � 1. Thus the flow of ξ enters the strip along the

lower boundary as well.

Since ε is arbitrary small, the curve v = v0(w) (though not precisely

invariant by the dynamics) attracts asymptotically all the integral curves

of the vector field ξ (i.e. of our Abel’s ODE). We demonstrate this effect

on the picture, where we magnify the piece of the right half-plane to see

the attraction.

Attracting parabola with attracted integral curves for the Abel’s ODE.
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The global dynamics is thus exponentially diverging in the left-half

plane and exponentially converging in the right one. However, the dy-

namics is more complicated than just going from some infinity from the

left to close-to-parabola on the right. There is another piece of sensitive

dependence on initial data near the axis {w = 0}.
To see this let us change the variables: {w → x, v → z−1}. This

transforms Abel’s ODE of the second kind to the following Abel’s ODE

of the first kind:
dz

dx
= −x

b
z3 − a

b
z2 +

1

b
z.

This equation has vanishing at x = 0 main term in the right-hand-side

and this leads to a certain blow-up of solutions.

For b < 0 the above described parabola as well as the ray {v = 0, w <

0} from the origin to −∞ are repelling (unstable).

The solutions repel, when they pass the origin.

Thus we have described the 2-dimensional dynamics of equations (7-

8). Given functions v(t), w(t) we can solve the remaining equation (6),

which is a linear non-homogeneous ODE in u(t). The solution u(t) =

u0(t) + Ke−bt will converge to a particular solution u0(t) as t → +∞
when b > 0 and will diverge from it in all directions when b < 0.
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In particular, for b > 0 the dynamics (u(t), v(t), w(t)) asymptotically

converges to one curve over the above parabola and so for t→ +∞ our 3-

dimensional dynamics becomes 1-dimensional, while for t→ −∞ we have

exponential instability. But for b < 0 we have exponential instability in

all directions for t→ +∞, but stability for t→ −∞. Thus the dynamics

exhibits sensitive dependence on initial conditions.

To find a solution space for ODE g(p0, p1, p2, p3) = 0 we remark that

this equation has three symmetries

ϕ1 = p0,

ϕ2 = p1,

ϕ3 = cp0 − bp0 log p0 + p2.

These symmetries are linearly dependent and

α1Xϕ1
+ α2Xϕ2

+Xϕ3
= 0

for

α1 =
ap1 − p2 − cp0 + bp0 log p0

p0

and

α2 = −a.
Therefore

H = b log p0 + a
p1

p0
− p2

p0
,

is a first integral of the ODE {g = 0}, and the order of this equation can

be reduced. Thus we get an ODE of the second order instead of g = 0:

p2 = ap1 + bp0 log p0 − Cp0.

If a = 0 this equation becomes a stationary Shrödinger equation with

logarithmic non-linearity and it can be reduced to the following 1-st order

ODE:

p2
1 + p2

0(b + C) − 2bp2
0 log p0 = const .

6. Conclusion

We have constructed some new explicit solutions of the KPP equation

and studied the corresponding dynamics. If we do not specify the overde-

termination g = 0, then the non-linearity in (1) can be arbitrary and we

can find a compatible g.

If first order g = g(p0, p1), then as we have shown the corresponding

solutions are standard: x-independent or travelling waves. For a more

general form g = g(x, p0, p1) all the solutions u = u(t, x) can appear as

invariant dynamics of (1) obtained via ODE g = 0.
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Since x does not enter the KPP equation, the dynamics preserves the

class of differential equations g = 0 not involving x. Let us explain

why for n > 1 almost every solution of (1) belongs to some dynamics

g = g(p0, . . . , pn−1, pn).

Indeed, let ψt(x) = u(t, x) be a solution with t considered as a param-

eter. Then we have 3 functions ψt(x), ψ
′
t(x), ψ

′′
t (x), from which we can

generically exclude t, x (consider two of the functions as ”parameters”)

and get a relation h′′ = Φ(h, h′), where h = ψt. In other words, given

function ψ0 the evolution determines a 1-parameter family ψt, shifts of

x-parameter (along the symmetry p1) makes this family 2-dimensional,

and it is given as a solutions space of some 2nd order ODE. Thus we

justify usage of dynamics g of order n > 1 not involving x.

Note however that for a generalized equation (1) with non-linearity

f(x, u) involving x explicitly the usage of x can be essential. For instance,

let us consider evolutionary PDE

ut = uxx + b(x)f(u).

Then it has linear second order dynamics

g = p2 + α(x)p1 + β(x)p0 (10)

iff f(u) is linear. Thus we consider instead the evolutionary equation

(2) with ϕ = p2 + b(x)u + c(x). Then (10) is an invariant dynamics iff

α(x) = y(x), β(x) = w(x)+ 1
4
y(x)2+ 1

2
y′(x), b(x) = w(x)− 1

4
y(x)2+y′(x),

where w(x) is arbitrary and y(x) is the solution of the equation

y′′′ + 4wy′ + 2w′y = 0. (11)

The function c(x) can then be found from the equation c′′ + α(x)c′ +

β(x)c = 0.

Remark 4. Equation (11) coincides with Eq.(9) from §2.4.1 of [13],

which arise in relation to the spectral problem for the Shrödinger equation.

Compatibility equation (4) for the ODE g = 0 is a determined equation

and every its solution yields a family of solutions for initial problem (1).

However it can be difficult to find such solutions explicitly. That’s why

we fix an ansatz for g and classify the KPP equations, admitting solutions

with this g.

The usual symmetry can be also thought of as an ansatz and there

exists a classification of KPP (non-linear reaction-diffusion) equations,

admitting classical and generalized symmetries, see [3].
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In this paper we have considered dynamics of order n ≤ 3, which are

quasilinear in pn−1, pn. We finish with a general result about such systems

for arbitrary n:

Theorem 4. Let g = pn + pn−1R(p0, . . . , pn−2) + S(p0, . . . , pn−2)

be a dynamics for the KPP equation (1). Then R is linear and S is

cubic in pn−2.

Indeed, if we calculate G = Xϕ̄(g) mod(g = 0) as a function on Jn−1,

then we find that

∂3G

∂p3
n−1

= −6
∂2R

∂p2
n−2

and
∂4G

∂p2
n−1∂p

2
n−2

= −2
∂4S

∂p4
n−2

,

whence the claim follows from (4). Moreover, if n > 2, then

−1

4

∂3G

∂p2
n−1∂pn−2

=

(

∂R

∂pn−2

)2

− ∂2R

∂pn−2∂pn−3
− 1

2

∂3S

∂p3
n−2

.

Thus the dynamics has the form:

g = pn + pn−1pn−2R0 + pn−1T + 1
3
p3

n−2

(

R2
0 − ∂R0

∂pn−3

)

+

2
∑

k=0

Skp
k
n−2,

where R0, T, Sk depend on p0, . . . , pn−3. Exploring further the homoge-

neous terms we will find the normal form of g and of f for every n.
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