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Abstract. Analogs of Grobman-Hartman theorem on stable and

unstable manifolds solutions for differential equations in Banach spaces

with degenerate Fredholm operator at the derivative are proved. Jordan

chains tools and the implicit operator theorem are used. In contrast to

the usual evolution equation here the central manifold appears even for

the case of spectrum absence on the imaginary axis. If on the imaginary

axis there is only a finite number of spectrum points, then the original

nonlinear equation is reduced to two differential–algebraic systems on

the center manifold.

1. Introduction

Branching theory of solutions of nonlinear equations has various ap-

plications in scientific computing [5, 7, 8]. This is one of the areas in

applied mathematics which is intensively developing in last fifty years.

The goals of this theory are the qualitative theory of dynamical systems

[7], computation of their solutions [4] without assumptions ensuring the

uniqueness of solutions. The classical Lyapounov-Schmidt method, even

in the modern form [19], is often insufficient for computation of compli-

cated dynamics, like bifurcation to invariant tori. Therefore in the last
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two decades the center manifold theory [2, 7, 10, 14, 16] and methods are

developed. However, no results of this theory concerning evolution equa-

tions with degenerate operator at the derivative are known, though these

equations have numerous applications in filtration theory [1], nonlinear

waves theory (the Boussinesq-Love equation) [22] and motion theory of

non-Newtonian fluids [15].

The present work, as an introduction to center manifold methods for

evolution equations with Fredholm operator at the derivative, considers

invariant manifolds technique on the base of the resolving systems theory

[13] developed by authors. It has found some applications to investigation

of the bifurcating solutions stability [11].

The second section of this article contains the necessary tools of gen-

eralized Jordan chains [19], the third, forth, and fifth ones; some aspects

of invariant manifolds theory, and Grobman–Hartman theorem analogs

for such equations. Here the nontrivial center manifold arises even in the

case when the operator B has no A-spectrum σA(B) on the imaginary

axis.

For the computation of center manifold, in section 3 successive ap-

proximation method is suggested. It is considered also the sufficiently

general case of σA(B) presence on imaginary axis (section 4) that will be

the subject of our future investigations. Only for representation of the

nonlinear equation in the form of two equations system in the direct sum

of Banach spaces complete results are obtained. Here, if the spectrum

on imaginary axis σ0
A(B) is non-empty and it is separated on the other

parts of spectrum, then the original nonlinear equation is reduced to two

differential-algebraic systems on the center manifold, for solving of which

the authors suppose to develop numerical methods.

2. Generalized Jordan chains and sets for Fredholm

operators

Let E1 and E2 be Banach spaces, A : E1 ⊃ DA → E2, B : E1 ⊃

DB → E2 be densely defined closed linear Fredholm operators, where

DB ⊂ DA and A is subordinated to B (i.e. ‖Ax‖ ≤ ‖Bx‖+ ‖x‖ on DB),

or DA ⊂ DB and B is subordinated to A (i.e. ‖Bx‖ ≤ ‖Ax‖ + ‖x‖ on

DA). The differential equation

A
dx

dt
= Bx− R(x), R(0) = 0, Rx(0) = 0 (1)

with sufficiently smooth operator R is considered.
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It is supposed the nontriviality of the the zero-subspaces N (A) =

span{φ1, . . . , φm}, N (B) = span{ϕ1, . . . , ϕn} with non-degeneracy condi-

tion N (A)∩N (B) = {0} and the defect-subspaces N ∗(A) = span{ψ̂1, . . . , ψ̂m},

N ∗(B) = span{ψ1, . . . , ψn}. The corresponding biorthogonal systems

{ϑj}m
1 , 〈φi, ϑj〉 = δij; {ζj}m

1 ,
〈
ζi, ψ̂j

〉
= δij, {γj}n

1 , 〈ϕi, γj〉 = δij; {zj}n
1 ,

〈zi, ψj〉 = δij are introduced in [19]. For the reader convenience here

some auxiliary results from [11, 12, 17, 19] are given.

Definition 1. [19] The elements φ
(s)
i , s = 1, . . . , qi, φ

(1)
i = φi, i =

1, . . . , m (ϕ
(s)
i , s = 1, . . . , pi , ϕ

(1)
i = ϕi , i = 1, . . . , n) form the complete

canonical generalized Jordan set (GJS ≡ B-JS) relative to the operator-

function A− λB (B − µA, respectively) if

Aφ
(s)
i = Bφ

(s−1)
i ,

〈
φ

(s)
i , ϑj

〉
= 0, s = 2, . . . qi, i, j = 1, . . . , m;

(Bϕ
(s)
i = Aϕ

(s−1)
i ,

〈
ϕ

(s)
i , γj

〉
= 0, s = 2, . . . , pi, i, j = 1, . . . , n)

Dq ≡ det
[〈
Bφ

(qi)
i , ψ̂j

〉]
6= 0, (Dp ≡ det

[〈
Aϕ

(pi)
i , ψj

〉]
6= 0).

This GJS is called bicanonical if the corresponding B∗-JS (A∗-JS) of

the adjoint operator A∗ (B∗) is also canonical.

The conditions in definition 1 determine the B-JS (A-JS) uniquely.

Its elements are linearly independent and form a basis for the root-

subspace K(A;B) (K(B;A)) of the Fredholm point λ = 0 ∈ σB(A)

(µ = 0 ∈ σA(B)) of the operator-function A − λB (B − µA), where

kA = dimK(A;B) =
m∑

i=1

qi (kB = dimK(B;A) =
n∑

i=1

pi) is called the

root-number of the Fredholm point.

Elements of B and B∗-Jordan sets (A-and A∗-Jordan sets) of the

operator-functions A − λB and A∗ − λB∗ (B − µA and B∗ − µA∗) can

be chosen so that the following biorthogonality conditions hold true:

〈
φ

(j)
i , ϑ

(l)
k

〉
= δikδjl,

〈
ζ

(j)
i , ψ̂

(l)
k

〉
= δikδjl, j(l) = 1, . . . , qi(qk),

ϑ
(l)
k = B∗ψ̂

(qk+1−l)
k , ζ

(j)
i = Bφ

(qi+1−j)
i , i, k = 1, . . . , m

(2)

〈
ϕ

(j)
i , γ

(l)
k

〉
= δikδjl,

〈
z

(j)
i , ψ

(l)
k

〉
= δikδjl, j(l) = 1, . . . , pi(pk),

γ
(l)
k = A∗ψ

(pk+1−l)
k , z

(j)
i = Aϕ

(pi+1−j)
i , i, k = 1, . . . , n.

(3)
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The relations (2)–(3) allow to introduce the projectors [19]

p =
m∑

i=1

qi∑
j=1

〈
·, ϑ(j)

i

〉
φ

(j)
i = 〈·, ϑ〉φ : E1 → EkA

1 = K(A,B),

q =
m∑

i=1

qi∑
j=1

〈
·, ψ̂(j)

i

〉
ζ

(j)
i =

〈
·, ψ̂

〉
ζ : E2 → E2,kA

= span{ζ (j)
i },

P =
n∑

i=1

pi∑
j=1

〈
·, γ(j)

i

〉
ϕ

(j)
i = 〈·, γ〉ϕ : E1 → EkB

1 = K(B;A),

Q =
n∑

i=1

pi∑
j=1

〈
·, ψ(j)

i

〉
z

(j)
i = 〈·, ψ〉 z : E2 → E2,kB

= span{z(j)
i }

(4)

(where φ = (φ
(1)
1 , · · · , φ(q1)

1 , · · · , φ(1)
m , · · · , φ(qm)

m ), and the vectors ϑ, ψ̂, ζ,

ϕ, γ, ψ, z are defined in the same way) generating the following direct

sums expansions

E1 = EkA

1 +̇E∞−kA

1 , E2 = E2,kA
+̇E∞−kA

,

E1 = EkB

1 +̇E∞−kB

1 , E2 = E2,kB
+̇E2,∞−kB

.
(5)

The intertwining relations are realized

Ap = qA on DA, Bp = qB on DB,

(BP = QB on DB, AP = QA on DA),

Aφ = AAζ, Bφ = ABζ, B∗ψ̂ = ABϑ,

(Bϕ = ABz, Aϕ = AAz, A∗ψ = AAγ),

(6)

with cell-diagonal matrices AA = (A1, . . . , Am), AB = (B1, . . . , Bm)

(AB = (B1, . . . , Bn), AA = (A1, . . . , An)), where the qi×qi-cells (pi×pi-

cells) have the forms

Ai =




0 0 0 . . . 0 0

0 0 0 . . . 0 1
...

...
...

. . .
...

...

0 0 1 . . . 0 0

0 1 0 . . . 0 0



, Bi =




0 0 0 . . . 0 1

0 0 0 . . . 1 0
...

...
...

. . .
...

...

0 1 0 . . . 0 0

1 0 0 . . . 0 0




(Bi’s have the same form as the Ai’s, correspondingly Ai’s have also the

same form as the Bi’s). The following relations for the operators A and

B hold:

N (A) ⊂ EkA

1 , AEkA

1 ⊂ E2,kA
, A(E∞−kA

1 ∩DA) ⊂ E2,∞−kA
,

N (B) ⊂ E∞−kA

1 , BEkA

1 ⊂ E2,kA
, B(E∞−kA

1 ∩DB) ⊂ E2,∞−kA
.

(7)

u

A= A|
E

∞−kA
1

∩DA
,
u

B= B|
E

∞−kA
1

∩DB
, and the mappings B : EkA

1 → E2,kA
,
u

A:

E∞−kA

1 ∩ DA → E2,∞−kA
are one-to-one. In the same way, the oper-

ators B and A act in invariant pairs of the subspaces EkB

1 , E2,kB
and
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E∞−kB

1 , E2,∞−kB
and also

t

B= B|
E

∞−kB
1

∩DB
: E∞−kB

1 ∩ DB → E2,∞−kB
,

A : EkB

1 → E2,kB
are isomorphisms.

3. Grobman–Hartman theorem analogs when σ0
A(B) = ø

We suppose that, for the A-spectrum σA(B) of the operatorB, Re σA(B) 6=

0 and the spectral sets σ−

A(B) = {µ ∈ σA(B)| Re µ < 0} and σ+
A(B) =

{µ ∈ σA(B)| Re µ > 0} are distant from the imaginary axis on some

distance 0 < d <∞.

All solutions of the corresponding to (1) linear Cauchy problem

A
dx

dt
= Bx, x(0) = x0 (8)

belong to E∞−kA

1 and (8) is solvable if and only if x0 ∈ E∞−kA

1 . In

fact, one sets x(t) = x0 + v(t) + w(t), v(t) =
m∑

i=1

qi∑
s=1

ξis(t)φ
(s)
i ∈ EkA

1 ,

w(t) ∈ E∞−kA

1 . Then (8) splits into the system

u

A
dw
dt

=
u

B w + (I − q)Bx0,
dξis(t)

dt
= ξi,s−1,

s = 2, . . . , qi, i = 1, . . . , m, ξiqi
= 0.

(9)

Consequently ξis(t) ≡ 0, x0 ∈ E∞−kA

1 , Bx0 =
u

B x0 ∈ E2,∞−kA
and the

solution of (8) takes the form

x(t) = x0 +

∫ t

0

[exp(
u

A
−1 u

B (t− s)]
u

A
−1 u

B x0ds = exp(
u

A
−1 u

B t)x0, (10)

Thus one has σA(B) = σ(
u

A
−1 u

B). Here the function exp(
u

A
−1 u

B t) has the

form of the contour integral
1

2πi

∫

γ

(µI−
u

A
−1 u

B)−1eµt dt at the assumption

about sectorial property [7] of the operator
u

A
−1 u

B (or, that is the same,

about A-sectorial property of the operator B [18]) with some special

contour γ belonging to sector Sα,θ(B) in A-resolvent set of the operator

B [18]. Moreover, this is true when the operator
u

A
−1 u

B is bounded.

For the generalization of the Grobman-Hartman theorem we will follow

the work [6]. Let us define the spaces Dk, k = 1, 2 with graphs norms:

(1) D1 = DB ⊂ DA with the norm ‖x‖1 = ‖x‖E1
+ ‖Bx‖E2

, x ∈ D1,

if A is subordinated to B,

(2) D2 = DA ⊂ DB with the norm ‖x‖2 = ‖x‖E1
+ ‖Ax‖E2

, x ∈ D2,

if B is subordinated to A,
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and introduce the spacesXk0, Xk1, Xk2, Yk0, Yk1, Yk2 consisting of the bounded

uniformly continuous functions f(t) on [0,∞) with their values corre-

spondingly in Dk, Dk ∩ E
∞−kA

1 , EkA

1 , E2, E2,∞−kA
, E2,kA

with supremum

norms on the relevant spaces, and the spaces

X1
ks = {f(t) ∈ Xks|ḟ(t) ∈ Xks}, ‖f(t)‖X1

ks
= max{‖f(t)‖Xks

, ‖ḟ(t)‖Xks
}.

Everywhere below the operator
u

A
−1 u

B is supposed to be bounded in

Xk1 (for the case k=1 it is evident) and the operator R be sufficiently

smooth in a small neighborhood of zero in Dk.

Then the operator

Ax = Aẋ−Bx (11)

acting from X1
k0 to Yk0 is linear, continuous and vanishes on some set

X̃k2 ⊂ N (A) dense in Xk2.

Let be Dk ⊃ Sk = {initial values of solutions of the equation (8), which

are defined and remain in a small neighborhood of zero in Dk for t ∈

[0,+∞)} and Uk = {initial values of solutions of (8), which are defined

and remain in a small neighborhood of zero in Dk for t ∈ (−∞, 0]}. From

(11) it follows that Sk+̇Uk = E∞−kA

1 ∩ Dk. Then the equality σA(B) =

σ(
u

A
−1 u

B) allows to define the projectors P−u = 1
2πi

∫

γ−

(µI
E

∞−kA
1

−
u

A
−1 u

B

)−1udµ (γ− is the contour in ρA(B) surrounding the points µ ∈ σA(B)

with Re µ < 0), and P+ = I
E

∞−kA
1

− P−. Whence Dk = D−

k +̇D0
k+̇D

+
k ,

D0
k = EkA

1 , D±

k = P±Dk. Operator A is Noetherian [19] with R(A) = Yk1

and

N (A) = {f(t) ∈ X1
k0|f(t) = exp(

u

A
−1 u

B t)P−f(0) ∈ D−

k }+̇{f(t) ∈ D0
k}

= N1(A)+̇N2(A) for t ≥ 0

(N (A) = {f(t) ∈ X1
k0|f(t) = exp(

u

A
−1 u

B t)P+f(0) ∈ D+
k }+̇{f(t) ∈ D0

k}

for t ≤ 0).

Now setting x = y + z + v, z ∈ D+
k , v ∈ D0

k = EkA

1 , y ∈ D−

k , one can

write (1) in the form (w = y + z in (9))

Az = R(z + y + v) (Ay = R(y + z + v)) (12)

and apply the implicit operator theorem to (12) regarding y, v (z, v) as

functional parameters (see the relevant theorems 22.1 and 22.2 in [19] for

continuous and analytic operator R, respectively). It follows that (12)

has a sufficiently smooth or analytic (according to the properties of the
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operator R) solution in some neighborhoods of zero values of parameters

y, v (z, v):

z = z(y + v), z(0) = 0 = Dz(0) (y = y(z + v), y(0) = 0 = Dy(0)) (13)

Thus we get the following Grobman–Hartman theorem [6] analog assert-

ing that the local solutions behavior for nonlinear equation in hyperbolic

equilibrium neighborhood is the same that for its linearization.

Theorem 1. There exist a neighborhood ω−(ω+) of zero in D0
k+̇D

−

k (in

D0
k+̇D

+
k ) and a sufficiently smooth mapping zR = zR(ξ, η) = zR(ξ ·φ+η) :

ω− → D+
k , η ∈ D−

k (yR = yR(ξ, ζ) = yR(ξ · φ + ζ) : ω+ → D−

k , ζ ∈ D+
k ),

such that a) zR(0, 0) = 0, DξzR(0, 0) = 0, DηzR(0, 0) = 0 (yR(0, 0) = 0,

DξyR(0, 0) = 0, DζyR(0, 0) = 0), b) for any solution x(t) of (1) with

initial data x(0) = ξ ·φ+η+zR(ξ ·φ+η) (x(0) = ξ ·φ+yR(ξ ·φ+ζ)+ζ) one

has z(t) = zR(ξ(t)·φ+y(t)) ∈ D+
k for t ≥ 0 (y(t) = yR(ξ(t)·φ+z(t)) ∈ D−

k

for t ≤ 0), c) any solution x(t) of (1) with initial data from b) takes

the form x(t) = ξ(t) · φ + y(t) + zR(ξ(t) · φ + y(t)) (x(t) = ξ(t) · φ +

yR(ξ(t) · φ + z(t)) + z(t)) and tends to zero when t → +∞(t → −∞),

and belongs, consequently, to local stable manifold Sk(R) (local unstable

manifold Uk(R)).

Proof. We give here the proof for the function zR and the local stable

manifold Sk(R), the proof of the second part is analogous. Define the

projector P̃−of X1
k1 onto N1(A) by the equality (P̃−f)(t) = exp(

u

A
−1 u

B

t)P−f(0), t ≥ 0. If one sets x(t) = v(t)+y(t)+z(t), v(t) = px(t), v(0) =

ξ · φ =
m∑

i=1

qi∑
s=1

ξis · φ
(s)
i , y(t) = P̃−x(t) = exp(

u

A
−1 u

B t)η, η = y(0), z(t) =

(IX1

k1

−P̃−) x(t), then the Lyapounov–Schmidt method (theorem 27.1 [19]

for Noetherian operators with d-characteristic (n, 0) and the indicated

above theorems (22.1, 22.2 [19]) implies that there is a unique solution

of (12) z = zR(ξ(t)·φ+y(t)) ∈ X1
k1 such that x(0) = ξ ·φ+η+zR(ξ ·φ+η),

i. e. the unique solution of (1) x(t) = v(t) + y(t) + zR(ξ(t) · φ + y(t)),

v(t) = ξ(t) · φ, in a sufficiently small semi-neighborhood of t = 0, where

the function zR(ξ, η) = zR(ξ · φ + η) is sufficiently smooth by ξ, η, and

zR(0, 0) = 0, DξzR(0, 0) = 0, DηzR(0, 0) = 0.

Writing the equation (1) in p, q-projections one can get the system

for the determination of ξis(t) (so-named the resolving system (RS) for

the equation (1) [11–13]). Here x(t) = ξ(t) · φ + w(t), where w(t) =

y(t)+ zR(ξ(t) ·φ+ y(t)) for t ≥ 0 and w(t) = yR(ξ(t) ·φ+ z(t)) + z(t) for
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t ≤ 0
u

A
dw

dt
=

u

B w − (IDk
− q)R(ξ · φ+ w) (14)

0 = ξiqi
(t) −

〈
R(ξ(t) · φ+ w), ψ̂

(1)
i

〉
,

ξ̇iqi
(t) = ξi,qi−1(t) −

〈
R(ξ(t) · φ+ w), ψ̂

(2)
i

〉
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ξ̇i2(t) = ξi1(t) −
〈
R(ξ(t) · φ+ w), ψ̂

(qi)
i

〉
,

ξis(0) = ξis, s = 1, . . . , qi, i = 1, . . . , m.

(15)

Consequently, the manifold Sk(R) = { initial values of solutions of the

equation (1), which are defined and remain in a small neighborhood of

0 ∈ Dk for t ∈ [0,+∞)} (the manifold Uk(R) = { initial values of

solutions (1), which are defined and remain in a small neighborhood of

0 ∈ Dk for t ∈ (−∞, 0]}) has the local presentation x(0) = ξ · φ + η +

zR(ξ · φ + η) (x(0) = ξ · φ + yR(ξ · φ + ζ) + ζ), where η ∈ D−

k (ζ ∈ D+
k )

and ξ are small. �

Remark 1. The invariant manifold M determined by the function ξ ·φ+

η+zR(ξ ·φ+η) for t ≥ 0 (ξ ·φ+yR(ξ ·φ+ζ)+ζ for t ≤ 0) can be regarded

as the center manifold (ξ ·φ ∈ D0
k), that is nontrivial for the equation (1)

even if {µ ∈ σA(B)|Re µ = 0} = ø. Here {ξ · φ} can be called the linear

center manifold tangent to M. One can say that M has an hyperbolic

structure. Thus the RS (15) represents the differential-algebraic system

on M. Of course, if the operator A is invertible, M and the system (15)

are absent, i.e. in the Grobman–Hartman theorem zR = zR(η) [6].

Theorem 2. Let the operators A,B and R in (1) be intertwined by the

group G representations Lg (acting in E1) and Kg (acting in E2) and

the condition I (direct supplements E∞−m
1 to N (A) and E∞−n

1 to N (B)

are invariant relative to Lg) holds true. Then the center manifold M is

invariant relative to the operators Lg.

Proof. According to [13], projectors p,P(q,Q) commute with the oper-

ators Lg(Kg) and invariant pairs of subspaces reduce the representations

Lg(Kg). �

In the article [11] it is proved that the stability (instability) of the

trivial solution (even for non-autonomous) equation (1) at sufficiently

general conditions is determined by the RS (15) with corollaries for the

investigation of the stability (instability) of bifurcating solutions.
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In applications, of interest is the case when σ+
A(B) = ø. Then Dk =

D−

k +̇D0
k, x(t) = ξ(t) · φ + y(t) and the center manifold has the form

ξ(t) · φ+ y(ξ(t) · φ). Here the equation (14) gives

u

A y′(ξ(t) · φ)(dξ

dt
· φ) =

u

B y(ξ(t) · φ)+

(I − q)R(ξ(t) · φ+ y(ξ(t) · φ)),

y(0) = 0, y′(0) = 0

(16)

Combined with (15) this gives a possibility for the determination of center

manifold w(ξ(t) · φ) = ξ(t) · φ+ y(ξ(t) · φ) by successive approximations

in conditions of sufficiently smooth operator y(ξ · φ). However on this

way essential difficulties arise which are connected with the fact that the

system (15) is differential-algebraic, i.e. the differential equations for the

functions ξi1(t), i = 1, . . . , m, are absent. One can find y(ξ ·φ) iteratively

at the differentiation of the first equations (15).

Remark 2. Theorem 1 and all corollaries remain true for the parameter

depending equation

A
dx

dt
= Bx−R(x, λ), R(0, λ) ≡ 0, Rx(0, 0) = 0, (17)

(λ ∈ Λ, Λ is some Banach space) in a small neighborhood of λ = 0, when,

as above, Re σA(B) 6= 0, i.e. λ = 0 is not a bifurcation point. However

all functions w, zR and yR will depend on small parameter λ.

4. The case of σ0
A(B) 6= ø

Here we consider the sufficiently general case when σ0
A(B) consists of

a finite number of eigenvalues with finite multiplicities, but σh
A(B) =

σ−

A(B)∪σ+
A(B) is separated from the imaginary axis by the lines Re µ =

±d, 0 < d <∞. As above, the main assumption consists of the operator
u

A
−1 u

B which is not bounded on Xk1. Then σA(B) = σu

A
(
u

B) and the

Banach space Dk = Dk ∩E
∞−kA

1 can be decomposed into the direct sum

Dk = D0
k+̇Dh

k , Dh
k = D+

k +̇D−

k . Now, to equation (14) one can apply

the theorem on center manifold [7, 20] in order to prove the following

statement:

Theorem 3. Let the root number kA be finite, the operator R l-time

be differentiable, and the conditions of Section 4 hold true. Then, in

a sufficiently small neighborhood Ω in Dk there exists the mapping χ ∈

C l(D0
k,D

h
k) such that χ(0) = 0, Dχ(0) = 0 and the graph of χ is a

manifold Mc having the following properties:
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(1) Mc is locally invariant under the flow generated by the equa-

tion (14) in Dk,

(2) if σ+
A(B) = ø (σ−

A(B) = ø), then Mc is locally exponentially

attracting as t→ +∞ (t→ −∞).

Remark 3. In applications the case σ+
A(B) = ø is interesting. Then

theorem 3 reduces the equation (1) to two differential-algebraic systems

(resolving systems [13]), one of which is (15) on the manifold M and the

second one represents the system on the center manifold Mc.

Under assumptions of theorem 2 these differential-algebraic resolving

systems inherit the group symmetry of the original equation (1). This

follows from [13] according to projectors p,P (q,Q)-commutativity with

the representation operators Lg (Kg) and their reducibility by invariant

pairs of subspaces. The investigation of connections between Mc and M

and corresponding resolving systems is the subject of our future work.

These questions become clear for the corresponding to σ0
A(B) 6= ø

simple case [9] when σ+
A(B) = ø, but σ0

A(B) = {µ ∈ σA(B)|Re µ = 0} 6= ø

contains some finite number 2n = 2n1 + · · ·+ 2n` A-eigenvalues ±iαs of

multiplicities ns, s = 1, . . . , `, αs = κsα, α 6= 0 with coprime κs > 0 or

(and) zero-eigenvalue. Without loss of generality we can suppose that

the equation (1) is written in the form of the system

A1ẋ = B1x− f(x, y)

A2ẏ = B2y − R(x, y),
A =

(
A1 0

0 A2

)
, B =

(
B1 0

0 B2

)
, (18)

where the linear operators A1, B1 : E
kB1

1 → E2,kB1
(kB1

= 2n1p1 + · · · +

2n`p`, ps are A1-Jordan chains lengths for ±iαs, s = 1, . . . , `) act in

the invariant pair of finite dimensional subspaces E
kB1

1 , E2,kB1
and A2,

B2 act in the invariant pair of subspaces E
∞−kB1

1 , E2,∞−kB1
. Thus,

σA1
(B1) = σ0

A(B) and σ0
A2

(B2) = ø. Here f and R are C2-functions

vanishing together with their first derivatives at the origin.

In the simplest case the main assumption is

N (A1) = {0}, N (A2) = span {φ(2)1, . . . , φ(2)m2
} (19)

Then, under conditions of section 3, there exists the function yR(ξ2(t) ·

φ(2), x) vanishing together with its first derivatives at the origin, such

that the second equation (18) reduces to the system

u

A2
dyR

dt
=

u

B2 yR − (I − q(2))R(x, ξ2(t) · φ(2) + yR(ξ2(t) · φ(2), x)) (20)
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(q(2) =
m2∑
i=1

q2,i∑
j=1

< ·, ψ̂(j)
(2),i > ζ

(j)
(2) : E2,∞−kB1

→ span{ζ (j)
(2)i},

u

A2,
u

B2 act in

invariant pair of subspaces E
∞−kB1

−kA2

1 , E2,∞−kB1
−kA2

)

0 = ξ2iq2,i
(t) −

〈
R(x, ξ2(t) · φ(2) + yR(ξ2(t) · φ(2), x)), ψ̂

(1)
(2),i

〉
,

ξ̇2iq2,i
(t) = ξ2i,q2,i−1(t) −

〈
R(x, ξ2(t) · φ(2) + yR(ξ2(t) · φ(2), x)), ψ̂

(2)
(2),i

〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ξ̇2i2(t) = ξ2i1(t) −
〈
R(x, ξ2(t) · φ(2) + yR(ξ2(t) · φ(2), x)), ψ̂

(q2,i)

(2),i

〉
,

ξ2iσ(0) = ξ2iσ, σ = 1, . . . , q2,i, i = 1, . . . , m2.

(21)

If the system (18) is equipped with initial values x(0), y(0), then they

must satisfy the equality

y(0) = ξ2 · φ(2) + yR(ξ2 · φ(2), x(0)). (22)

Now one has to solve the problem

A1ẋ = B1x− f(x, ξ2(t) · φ(2) + yR(ξ2(t) · φ(2), x)) (23)

at the initial data x(0) satisfying (22).

Thus one has two systems (21) and (23) on the center manifold y =

yR(ξ2(t) · φ(2), x), where the differential–algebraic system (23) possesses

the properties indicated in theorem 3.

5. Grobman–Hartman theorem analog for maps

According to section 3 the equation (14) can be written in the form

dw

dt
=

u

A
−1 u

B w−
u

A
−1

(IDk
− q)R(ξ · φ+ w) (24)

in the space X1
k1. Then the assumption about the boundedness of the op-

erator
u

A
−1 u

B in Xk1 allows to prove Grobman–Hartman theorem analog

for maps [21]. In fact, then for small ξ there exists the resolving operator

Uξ(t, ·) : Xk1 → X1
k1, w0 7→ w(t) for the problem (24) with the initial

value w(0) = w0 (at ξ = 0, U0(t) is linear). Thus the following assertion

is true:

Theorem 4. For small ξ at σ0
A(B) = ø and operator

u

A
−1 u

B boundedness

assumption there exits the resolving operator Uξ(t, w0) and a homeomor-

phism Φξ : X1
k1 → X1

k1, ||ξ|| � 1, such that for t ∈ R and w0 ∈ Xk1 the

following relation

U0(t)Φξ(w0) = Φξ(Uξ(t, w0)) = Φξ(w(t)) (25)



88 B.KARASÖZEN, I.V.KONOPLEVA, AND B.V. LOGINOV

is true, where the function w(t) and the initial values w0, ξ0 satisfy the

initial value problem for differential–algebraic system (15).

Remark 4. The case of σ0
A(B) presence on imaginary axis remains un-

studied. See on this connection the work [21].

Conclusion and future work. The results of this article remain

true for the more general operators subordinateness (A is subordinate to

B if on DB ‖Ax‖ ≤ ‖Bx‖ + α‖x‖ , α ≥ 0).

At the usage of the work [3] one can extend our results on partial

differential equations in Banach spaces with degenerate operator at the

highest differential expression.

The obtained results can serve only as the first step in the center

manifold theory and its methods for computation of bifurcation solution

asymptotics and their stability investigation. Future work here is the

development of qualitative and numerical methods for the investigation

of these differential–algebraic systems.
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