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Abstract. In the article, on the base of abstract theory (B. V. Logi-

nov, 1979) the nonlinear eigenvalue problems for nonlinearly perturbed

Helmholtz equations having application to low temperature plasma the-

ory and to some problems of differential geometry are considered. Other

possible often technically more difficult applications (for instance, peri-

odical solutions in heat convection theory) are completely determined

by the group symmetry of original equations and do not depend on

their concrete essence. In the general case of finite group symmetry

with known composition law, a computer program for determination of

all subgroups is given, in particular, for dihedral and also planar and

spatial crystallographic groups.

1. Introduction

In applied problems of critical phenomena, solutions that are invariant

with respect to subgroups of the symmetry group of the original bifur-

cation problem are interesting. The general theory of construction and

investigation of branching equations for bifurcational symmetry breaking
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problems is given in [3,4,9]. It is supposed that the nonlinear equation

By − A(λ)y = R(y, λ), ‖R(y, λ)‖ = o(‖y‖) (1)

(B, A(λ) are linear operators from E1 to E2, E1 and E2 are Banach

spaces, λ ∈ R1) admits the motion group of the Euclidean space Rs,

s > 1. In neighborhoods of critical values λ0 of the parameter λ that are

eigenvalues of the problem (B − A(λ))ϕ = 0, periodical solutions with

crystallographic group symmetry (the semi-direct product G = G1 o G̃1

of the s–parametrical continuous shift group G1 = G1(α1, . . . , αs) and

the group G̃1 of the elementary cell of periodicity constructed on the

basic translations) arise, which are mutually transformed by the action

of the group G̃1.

Basic elements of the zero-subspace N = N(B −A(λ0)) have the form

of Bloch functions

ϕr = ϕlr = exp [ i〈 lr, q〉], q = (x1, . . . , xs), r = 1, . . . , n, (2)

where the inverse lattice vectors lr are given by the dispersion relation,

which determines critical values λ0 of the bifurcation parameter and con-

nects the integer multiples of periods |ak|, k = 1, . . . , s, along the basic

translations ak with physical dimensionless parameters of the applied

problem. An arbitrary s-periodic function can be represented in the

form of Fourier series on the inverse lattice F (q) =
∑

l∈Λ′ fle
i〈l,q〉 and the

basic elements of zero-subspace N(B − A(λ0)) should be determined as

this Fourier series components. By the theorem on inheritance of the

group symmetry of equation (1), the corresponding branching equation

(BEq) 0 = f(ξ, ε) : Ξn → Ξn admits the s-parametrical rotation group

SO(2) × . . . × SO(2)︸ ︷︷ ︸
s times

, which is homomorphic to the shift group G1(α),

and the discrete rotation-reflection group G̃1 determined by the vectors

lr and elements ϕlr ,

f(Agξ, ε) = Bgf(ξ, ε). (3)

Here Ag is the representation of the group G in Ξn, contragredient to its

representation in N , and Bg is its representation in the defect subspace

N∗ = N∗(B − A(λ0)).

The problem on finding solutions of equation (1) which are invariant

with respect to subgroups of the discrete symmetry group G̃1 arises. The

general scheme for its solving is given in [2, 13], and also in [3, 4, 9].

The initial problem is the discrete group G̃1 and the structure L(G̃1)

of all its subgroups. If H0 = G̃1 ⊃ H1 ⊃ H2 ⊃ . . . ⊃ Hæ = {Hk}æ
1

is some chain of subgroups of the length æ then there exists the basis
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Ræ in N with respect to which the representation Ag for every subgroup

Hi splits into irreducible representations. The set of all BEqs for H-

invariant solutions forms the dual by inclusion structure L′ to L(G̃1):

BEq of solutions which are invariant with respect to the more slender

subgroup contains the BEq of solutions which are invariant with respect

to wider subgroup. For two chains A = {Hk}æ
1 and g−1Ag = {g−1Hkg}æ

1

of similar subgroups, the connection between the Hk-invariant element

subspaces and respectively between the BEqs of Hk-invariant solutions

is realized by the element g.

For the simple illustration of this abstract theory, here for the equations

∆ u + λ2 sinh u = 0 (4)

and

∆ u + λ2 sin u = 0 (5)

periodical solutions with hexagonal lattice of periodicity are found. Ap-

plications of these equations to low temperature plasma theory [6, 7] and

to some problems of differential geometry [1, 14] are known. Complicated

examples, for instance, periodical solutions in heat convection theory [10,

11], also can be investigated according to the same scheme. In the general

case of finite group with known composition law, a computer program

for the determination of all subgroups is given.

We use the terminology and notation from [3, 4, 9, 12].

2. Branching equation with hexagon group symmetry D6

for the equations (4), (5)

The general form of BEq admitting the symmetry of hexagonal lattice

l1 = `i +
√

3mj, l3 = 1
2
[(` − 3m)i +

√
3(` + m)j ], l5 = 1

2
[−(` + 3m)i +√

3(` − m)j ], l2k = l2k−1, k = 1, 2, 3 (the integers ` and m have the

same parity) for the first bifurcation point ` = m = 1 with the basis (2)

{ϕr = exp[ i〈lr, q〉]}6
1 in the zero–subspace can be obtained [5, 9] by group

analysis methods on the base of the inheritance theorem (3), where

Bg(α) = Ag(α) = diag{exp (iβ(α1 +
√

3α2)),

exp (−iβ(α1 +
√

3α2)), exp (−iβ(α1 −
√

3α2)),

exp (iβ(α1 −
√

3α2)), exp (−2iβα1), exp (2iβα1)},
(6)

β = π
a

and 2a is the lattice width. The equality (3) means that the man-

ifold F = {ξ, f |f − f(ξ) = 0} is an invariant manifold of the transforma-

tion group ξ̃ = Ag(α)ξ, f̃ = Ag(α)f and can be expressed [8] through the

complete system of functionally independent invariants Ij =
fj

ξj
, j = 1, 6,
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I7 = ξ1ξ2, I8 = ξ3ξ4, I9 = ξ5ξ6, I10 = ξ2ξ3ξ6. Thus the branching system

allowing the hexagon group symmetry has the form [5, 9]

f1(ξ, ε) =
∑
p

ap; 0(ε)ξ1(ξ1ξ2)
p1(ξ3ξ4)

p2(ξ5ξ6)
p3

+
∑

p;k≥ 1

(ξ1ξ2)
p1(ξ3ξ4)

p2(ξ5ξ6)
p3

[ap; k(ε)ξ
k−1
2 ξk

3ξ
k
6 + bp; k(ε)ξ

k+1
1 ξk

4ξ
k
5 ] = 0

f2(ξ, ε) ≡ r3f1(ξ, ε) = 0, f3(ξ, ε) ≡ rf1(ξ, ε) = 0,

f4(ξ, ε) ≡ r4f1(ξ, ε) = 0, f5(ξ, ε) ≡ sf1(ξ, ε) = 0,

f6(ξ, ε) ≡ sr3f1(ξ, ε) = 0,

(7)

where the permutation of the hexagon top numbers (i.e. the hexagon

group D6) is generated by the permutations r = (135246) (the rotation

on the angle π
6

counterclockwise) and s = (15)(26)(3)(4) (the reflection

around the axis joining the tops (3) and (4)).

The main part of the branching system (7) has the form

ξ1ε + Aξ2
1ξ2 + Bξ1ξ3ξ4 + Bξ1ξ5ξ6 + . . . = 0

ξ2ε + Aξ2
2ξ1 + Bξ2ξ3ξ4 + Bξ2ξ5ξ6 + . . . = 0

ξ3ε + Aξ2
3ξ4 + Bξ1ξ2ξ3 + Bξ3ξ5ξ6 + . . . = 0

ξ4ε + Aξ2
4ξ3 + Bξ1ξ2ξ4 + Bξ4ξ5ξ6 + . . . = 0

ξ5ε + Aξ2
5ξ6 + Bξ5ξ3ξ4 + Bξ5ξ1ξ2 + . . . = 0

ξ6ε + Aξ2
6ξ5 + Bξ6ξ3ξ4 + Bξ6ξ1ξ2 + . . . = 0

(8)

where A = ±λ2
0

2
, B = ±λ2

0, λ2
0 = 4π2

a2 (the upper sign is related to the

equation (4) and the lower one to (5))

In the article [5] the following statement is proved

Lemma 1. In the case of hexagonal symmetry, let n = dim N(B) = 6

and assume that the group of symmetries for the branching equation

is given by (6) and the permutations D6. Then the subspace N(B)

decomposes into the direct sum of two one-dimensional and two two-

dimensional irreducible D6-invariant subspaces with basic elements

N
(1)
1 : e1 = 1√

6
(ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6)

=
√

2√
3

(
cos π

a
(x +

√
3y) + cos 2π

a
x + cos π

a
(x −

√
3y)

)
,

N
(1)
2 : e2 = i√

6
(ϕ1 − ϕ2 − ϕ3 + ϕ4 + ϕ5 − ϕ6) =

=
√

2√
3

(
− sin π

a
(x +

√
3y) + sin 2π

a
− sin π

a
(x −

√
3y)

)
,

(9)
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N
(2)
3 :






e3 = i

2
√

3
(ϕ1 − ϕ2 + 2ϕ3 − 2ϕ4 + ϕ5 − ϕ6) =

= − 1√
3

(
sin π

a
(x +

√
3)y + 2 sin 2π

a
x + sin π

a
(x −

√
3y)

)
,

e4 = i
2
(−ϕ1 + ϕ2 + ϕ5 − ϕ6) =

= sin π
a
(x +

√
3y) − sin π

a
(x −

√
3y),

N
(2)
4 :






e5 = 1
2
√

3
(ϕ1 + ϕ2 − 2ϕ3 − 2ϕ4 + ϕ5 + ϕ6) =

= 1√
3

(
cos π

a
(x +

√
3y) − 2 cos 2π

a
x + cos π

a
(x −

√
3y)

)
,

e6 = 1
2
(ϕ1 + ϕ2 − ϕ5 − ϕ6) =

= cos π
a
(x +

√
3y) − cos π

a
(x −

√
3y).

In the same work [5] branching equations for solutions invariant with

respect to normal divisors together with asymptotics of such solutions

are written out.

3. Solutions with subgroups symmetry

Here we find the solutions of (4), (5) which are invariant with respect

to subgroups of the hexagonal group D6.

The initial one is the hexagon group

D6 = {e, r, r2, r3, r4, r5, s, sr, sr2, sr3, sr4, sr5}

generated by the substitutions of N(B) basic elements indexes and the

structure L(D6) of all its subgroups.

In the structure L(D6) the following subgroup chains are selected

A1 : A1,0 = D6 ⊃ A1,1 = {e, r2, r4, sr, sr3, sr5}
⊃ A1,2 = {e, sr} ⊃ A1,3 = {e};

A2 : A2,0 = D6 ⊃ A2,1 = A1,1 ⊃ A2,2 = {e, r2, r4} ⊃ A2,3 = {e};
A3 = sr5A1sr

5 = srA4sr : A3,0 = D6 ⊃ A3,1 = A1,1

⊃ A3,2 = {e, sr3} ⊃ A3,3 = {e};
A4 = r4A1r

2 : A4,0 = D6 ⊃ A4,1 = A1,1 ⊃ A4,2={e, sr5} ⊃ A4,3 = {e};
A5 : A5,0 = D6 ⊃ A5,1 = {e, s, r3, sr3} ⊃ A5,2 = {e, sr3} ⊃ A5,3 = {e};
A6 : A6,0 = D6 ⊃ A6,1 = A5,1 ⊃ A6,2 = {e, s} ⊃ A6,3 = {e};
A7 : A7,0 = D6 ⊃ A7,1 = {e, r2, r4, s, sr2, sr4}

⊃ A7,2 = {e, r2, r4} = A2,2 ⊃ A7,3 = {e};
A8 : A8,0 = D6 ⊃ A8,1 = A7,1 ⊃ A8,2 = {e, sr2} ⊃ A8,3 = {e};
A9 = r5A8r = sr2A10sr

2 : A9,0 = D6 ⊃ A9,1 = A7,1

⊃ A9,2 = {e, sr4} ⊃ A9,3 = {e};
A10 = r4A8r

2 : A10,0 = D6 ⊃ A10,1 = A7,1

⊃ A10,2 = {e, s} ⊃ A10,3 = {e};
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A11 : A11,0 = D6 ⊃ A11,1 = {e, r, r2, r3, r4, r5}
⊃ A11,2 = {e, r2, r4} ⊃ A11,3 = {e};

A12 : A12,0 = D6 ⊃ A12,1 = A11,1 ⊃ A12,2 = {e, r3} ⊃ A12,3 = {e};
A13 : A13,0 = D6 ⊃ A13,1 = {e, r3, sr2, sr5}

⊃ A13,2 = A4,2 ⊃ A13,3 = {e};
A14 : A14,0 = D6 ⊃ A14,1 = A13,1 ⊃ A14,2 = A8,2 ⊃ A14,3 = {e};
A15 : A15,0 = D6 ⊃ A15,1 = A13,1 ⊃ A15,2 = A12,2 ⊃ A15,3 = {e};
A16 : A16,0 = D6 ⊃ A16,1 = {e, r3, sr, sr4} ⊃ A16,2 = A1,2 ⊃ A16,3 = {e};
A17 : A17,0 = D6 ⊃ A17,1 = A16,1 ⊃ A17,2 = A9,2 ⊃ A17,3 = {e};
A18 : A18,0 = D6 ⊃ A18,1 = A16,1 ⊃ A18,2 = A12,2 ⊃ A18,3 = {e}.
The subgroups

{e, r2, r4, sr, sr3, sr5}, {e, r2, r4, s, sr2, sr4},
{e, r, r2, r3, r4, r5}, {e, sr3}, {e, r2, r4}

are normal divisors (on the figure they are shown by semiboldface lines)

For the brevity of presentation we consider here only the four first

chains of subgroups.

3 A. C o n s i d e r t h e c h a i n s A1, A3, A4. The projective

operator P (A1,1) transforms the N(B) into one-dimensional subspace of

A1,1–invariant elements span{ϕ×
1 = 1√

3
(ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6)}.

Complete this one-dimensional subspace up to N(B) by the basic ele-

ments of irreducible invariant subspaces

ϕ×
2 = i√

3
(ϕ1 − ϕ2 − ϕ3 + ϕ4 + ϕ5 − ϕ6),

ϕ×
3 = i√

3
(ϕ1 − ϕ2 + 2ϕ3 − 2ϕ4 + ϕ5 − ϕ6),

ϕ×
4 = i√

3
(−ϕ1 + ϕ2 + ϕ5 − ϕ6),

ϕ×
5 = 1√

3
(ϕ1 + ϕ2 − 2ϕ3 − 2ϕ4 + ϕ5 + ϕ6),

ϕ×
6 = 1√

3
(ϕ1 + ϕ2 − ϕ5 − ϕ6).

Then BEq of A1,1–invariant solutions is resulting from BEq in new

base at ηk = 0, k = 2, 6.

∑

p

ap; 0
η

2(p1+p2+p3)+1
1√
3 3p1+p2+p3

+
∑

p,k≥1

η
2(p1+p2+p3)
1

3p1+p2+p3

[
ap;k

η3k−1
1

(
√

3)3k−1
+ bp; k

η3k+1
1

(
√

3)3k+1

]
(10)

The main part of (10) is the following

η1ε +
A

3
η3

1 +
2B

3
η3

1 = 0
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with solutions η1,2 = ±
√

−3ε
A+2B

, sign ε = −sign (A + 2B), i.e. ε < 0

(ε > 0) for the equation (4) ((5)).

The subspace of N(B) elements which are invariant with respect to

the A1,2-subgroup span {ϕ×
1 = ϕ1+ϕ3√

3
, ϕ×

2 = ϕ2+ϕ4√
3

, ϕ×
5 = ϕ5+ϕ6√

3
} is trans-

ferred by transformation r4 into the subspace span {ϕ×
1 = ϕ1+ϕ2√

3
, ϕ×

3 =
ϕ3+ϕ5√

3
, ϕ×

4 = ϕ4+ϕ6√
3

} of A4,2 = r4A1,2r
2–invariant elements and by trans-

formation sr5 into the subspace span {ϕ×
1 = ϕ1+ϕ6√

3
, ϕ×

2 = ϕ2+ϕ5√
3

, ϕ×
3 =

ϕ3+ϕ4√
3

} of A3,2 = sr5A1,2sr
5–invariant elements. The BEq solutions in-

variant with respect to A1,2 has the form

∑
p

ap; 0
η1√
3

η
p1+p2
1

η
p1+p2
2

η
2p3
5

3p1+p2+p3
+

∑
p, k≥1

η
p1+p2
1

η
p1+p2
2

η
2p3
5

3p1+p2+p3
·

·
[
ap;k

(
η2√
3

)k−1 (
η1√
3

)k (
η5√
3

)k

+ bp; k

(
η1√
3

)k+1 (
η2√
3

)k (
η5√
3

)k
]

= 0

∑
p

ap; 0
η2√
3

η
p1+p3
1

η
p1+p3
2

η
2p2
5

3p1+p2+p3
+

∑
p, k≥1

η
p1+p3
1

η
p1+p3
2

η
2p2
5

3p1+p2+p3
·

·
[
ap;k

(
η1√
3

)k−1 (
η2√
3

)k (
η5√
3

)k

+ bp; k

(
η2√
3

)k+1 (
η1√
3

)k (
η5√
3

)k
]

= 0

∑
p

ap; 0
η5√
3

η
p2+p3
1

η
p2+p3
2

η
2p1
5

3p1+p2+p3
+

∑
p, k≥1

η
p2+p3
1

η
p2+p3
2

η
2p1
5

3p1+p2+p3
·

·
[
ap;k

(
η5√
3

)k−1 (
η1√
3

)k (
η2√
3

)k

+ bp; k

(
η5√
3

)k+1 (
η1√
3

)k (
η2√
3

)k
]

= 0

(11)

with the corresponding main part

η1

(
ε + A+B

3
η1η2 + B

3
η2

5

)
= 0

η2

(
ε + A+B

3
η1η2 + B

3
η2

5

)
= 0

η5

(
ε + 2B

3
η1η2 + A

3
η2

5

)
= 0

(12)

Consequently the A1,2-invariant solutions of the equations (4), (5)

are representing by the formula η∗
1ϕ

×
1 + η∗

2ϕ
×
2 + η∗

5ϕ
×
5 , where the vec-

tor (η∗
1, η

∗
2, η

∗
5) passes the solution set of the system (12). Respectively

the A4,2 = r4A1,2r
2–invariant solutions (A3,2 = sr5A1,2sr

5–invariant so-

lutions) are the following

r4(η∗
1ϕ

×
1 + η∗

2ϕ
×
2 + η∗

5ϕ
×
5 ) = η∗

1 r4ϕ×
1 + η∗

2 r4ϕ×
2 + η∗

5 r4ϕ×
5 = 1√

3
[η∗

1(ϕ4 +

ϕ6) + η∗
2(ϕ3 + ϕ5) + η∗

5(ϕ1 + ϕ2)]

(sr5(η∗
1ϕ

×
1 +η∗

2ϕ
×
2 +η∗

5ϕ
×
5 ) = η∗

1 sr5ϕ×
1 +η∗

2 sr5ϕ×
2 +η∗

5 sr5ϕ×
5 = 1√

3
[η∗

1(ϕ2+

ϕ5) + η∗
2(ϕ1 + ϕ6) + η∗

5(ϕ3 + ϕ4)] )

3 B. C o n s i d e r t h e n o r m a l d i v i s o r s c h a i n A2.

At its investigation in accord to [5, 9] pass to the indicated in Lemma 1

basis of irreducible invariant subspaces.
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For the construction of the equivalent BEq in the basis (9) it should be

taken the substitution ξ = C1ζ, where C ′
1 is the transformation matrix

from {ϕj}6
1 to {ej}6

1 obtained in the Lemma 1, where ζ = (ζ1, ζ2, . . . , ζ6)

are the coordinates of the vector ϕ ∈ N(B) in the basis {ej}6
1. Since

ξ2k = ξ̄2k−1, we can take ξ2k−1 = τ2k−1 + iτ2k, ξ2k = τ2k−1 − iτ2k and the

transformation matrix τ = Cζ is defined by the formula C = C−1
0 · C1,

where C0 is quasidiagonal matrix with blocks

(
1 1

i −i

)
. The corre-

sponding transformation τ ↔ ζ has the form

τ1 = 1√
6
ζ1 + 1

2
√

3
ζ5 +1

2
ζ6

τ2 = 1√
6
ζ2 + 1

2
√

3
ζ5 −1

2
ζ4

τ3 = 1√
6
ζ1 − 1√

3
ζ5

τ4 = − 1
2
√

6
ζ2 + 1√

3
ζ3

τ5 = 1√
6
ζ1 + 1

2
√

3
ζ5 −1

2
ζ6

τ6 = 1√
6
ζ2 + 1

2
√

3
ζ3 +1

2
ζ4

(13)

Applying the formula P (Hk) = 1
|Hk|

∑
g∈Hk

Âg, where Âg are quasidi-

agonal matrices with blocks Tj of irreducible representations, for A2,2 and

A2,1 = A1,1 one has the projector with respect to ζ variables:

PA2,1
= diag(1, 1, 0, 0, 0, 0), PA2,2

= diag(1, 0, 0, 0, 0, 0)

The following statement is true. For A2,2–invariant solutions it should

be taken ζ3 = . . . = ζ6 = 0 or according to (13) τ1 = τ3 = τ5, τ2 =

−τ4 = τ6, for A2,1–invariant solutions one has ζ1 6= 0, ζ = . . . = ζ6 = 0

or τ1 = τ3 = τ5, τ2 = τ4 = τ6.

The relevant branching equations with respect to τ variables have the

following solutions: A2,2–invariant solutions

τ1 = 0, τ2 = ±
(
− ε

A+2B

) 1

2 = ±
√

2
λ0

√
5
(∓ε)

1

2 ;

τ2 = 0, τ1 = ±
(
− ε

A+2B

) 1

2 = ±
√

2
λ0

√
5
(∓ε)

1

2 ;

τ1 6= 0, τ2 6= 0, τ 2
1 + τ 2

2 = − ε
A+2B

= ∓ 2ε
5λ0

;

and A2,1–invariant solutions

τ1 = τ3 = τ5 = ±
(
− ε

A + 2B

) 1

2

= ±
√

2

λ0

√
5
(∓ε)

1

2 .

Here ε < 0 for equation (4) and ε > 0 for equation (5). The cor-

responding solutions for nonlinear problem (4), (5) are represented by

convergent series in ε
1

2 , their asymptotics has the form of linear combi-

nations
∑6

k=1 τkϕ̂k, where the omitted components τk are equal to zero,
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and

ϕ̂1 = 2 cos π
a
(x +

√
3y), ϕ̂2 = 2 sin π

a
(x +

√
3y), ϕ̂3 = 2 cos π

a
x,

ϕ̂4 = 2 sin π
a
x, ϕ̂5 = 2 cos π

a
(x −

√
3y), ϕ̂6 = 2 sin π

a
(x −

√
3y).

Conclusion. Using equations (4), (5) as an example, we have demon-

strated the general scheme of solution construction with subgroup sym-

metry. For every chain of subgroups there exists the basis of the zero-

subspace N(B) in which the BEqs of subgroup invariant solutions form

the dual chain. For two chains A = {Hk}æ
1 and g−1Ag = {g−1Hkg}æ

1

of similar subgroups the connection between the Hk-invariant element

subspaces, and between the BEqs of Hk-invariant solutions, respectively,

is realized by the element g.

This result is completely determined by the original singular nonlinear

equation group symmetry and does not depend on the essence of the

simulated concrete bifurcation phenomenon.
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