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Abstract. In the present paper, the author introduce two new sub-

classes C(k)(α, β, γ) of close-to-convex functions and QC (k)(α, β, γ) of

quasi-convex functions with respect to k-symmetric points. The suffi-

cient conditions and integral representations for functions belonging to

these classes are provided, the inclusion relationships and convolution

conditions for these classes are also provided.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +

∞
∑

n=2

anzn, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Also let

S denote the subclass of A consisting of all functions which are univalent

in U .

We denote by S∗, K, C and QC the familiar subclasses of A consisting

of functions which are, respectively, starlike, convex, close-to-convex and
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quasi-convex in U . Thus, by definition, we have (see, for details, [4, 8];

see also [11, 12])

S∗ =

{

f : f ∈ A and <

{

zf ′(z)

f(z)

}

> 0 (z ∈ U)

}

,

K =

{

f : f ∈ A and <

{

1 +
zf ′′(z)

f ′(z)

}

> 0 (z ∈ U)

}

,

C =

{

f : f ∈ A, ∃g ∈ S∗, such that <

{

zf ′(z)

g(z)

}

> 0 (z ∈ U)

}

,

and

QC =

{

f : f ∈ A, ∃g ∈ K, such that <

{

(zf ′(z))′

g′(z)

}

> 0 (z ∈ U)

}

.

Let f(z) and F (z) be analytic in U . Then we say that the function f(z)

is subordinate to F (z) in U , if there exists an analytic function ω(z)

in U such that |ω(z)| ≤ |z| and f(z) = F (ω(z)), denoted by f ≺ F

or f(z) ≺ F (z). If F (z) is univalent in U , then the subordination is

equivalent to f(0) = F (0) and f(U) ⊂ F (U) (see [1]).

Sakaguchi [9] once introduced a class S∗
s of functions starlike with

respect to symmetric points, it consists of functions f(z) ∈ S satisfying

<

{

zf ′(z)

f(z) − f(−z)

}

> 0 (z ∈ U).

Following him, many authors discussed this class and its subclasses. And

let C∗
s denote the class of functions in S convex with respect to symmetric

points, which satisfy the following inequality

<

{

(zf ′(z))′

f ′(z) + f ′(−z)

}

> 0 (z ∈ U).

Let S
(k)
s (α) denote the class of functions in S satisfying the following

inequality

<

{

zf ′(z)

fk(z)

}

> α (z ∈ U),

where 0 ≤ α < 1, k ≥ 1 is a fixed positive integer and fk(z) is defined

by the following equality

fk(z) =
1

k

k−1
∑

ν=0

ε−νf(ενz) (εk = 1; z ∈ U). (1.2)
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And let C
(k)
s (α) denote the class of functions in S satisfying the following

inequality

<

{

(zf ′(z))′

f ′
k(z)

}

> α (z ∈ U),

where 0 ≤ α < 1, k ≥ 1 is a fixed positive integer and fk(z) is defined by

equality (1.2). The class S
(k)
s (α) of functions starlike with respect to k-

symmetric points of order α was studied by Sokó l [5, 6] and Stankiewicz

[7].

Motivated by S
(k)
s (α) and C

(k)
s (α), we introduce and investigate the

following two more generalized subclasses C(k)(α, β, γ) and QC(k)(α, β, γ)

of S with respect to k-symmetric points, and obtain some interesting

results.

Definition 1. Let C(k)(α, β, γ) denote the class of functions in S

satisfying the following inequality
∣

∣

∣

∣

∣

zf ′(z)
fk(z)

− 1

β zf ′(z)
fk(z)

+ (1 − γ)

∣

∣

∣

∣

∣

< 1 − α (z ∈ U), (1.3)

where 0 ≤ α < 1, 0 ≤ β ≤ 1, 0 ≤ γ < 1, k ≥ 1 is a fixed positive integer

and fk(z) is defined by equality (1.2).

If β = 0 and γ = 0, then the class C(k)(α, β, γ) reduces to the class

S
(k)
s (α) [5, 6, 7]. If α = 0, β = 0, γ = 0 and k = 2, then the class

C(k)(α, β, γ) reduces to the class S∗
s [9].

Definition 2. Let QC(k)(α, β, γ) denote the class of functions in S

satisfying the following inequality
∣

∣

∣

∣

∣

∣

(zf ′(z))′

f ′

k
(z)

− 1

β (zf ′(z))′

f ′

k
(z)

+ (1 − γ)

∣

∣

∣

∣

∣

∣

< 1 − α (z ∈ U),

where 0 ≤ α < 1, 0 ≤ β ≤ 1, 0 ≤ γ < 1, k ≥ 1 is a fixed positive integer

and fk(z) is defined by equality (1.2).

If β = 0 and γ = 0, then the class QC(k)(α, β, γ) reduces to the class

C
(k)
s (α). If α = 0, β = 0, γ = 0 and k = 2, then the class QC (k)(α, β, γ)

reduces to the class C∗
s .

In our investigation of the classes C(k)(α, β, γ) and QC(k)(α, β, γ), we

shall also make use of the following definition and lemmas.

Definition 3 (Hadamard Product or Convolution). Given two func-

tions f, g ∈ A, where f(z) is given by (1.1) and g(z) is defined by

g(z) = z +

∞
∑

n=2

bnzn,
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the Hadamard product (or convolution) f ∗ g is defined (as usual) by

(f ∗ g)(z) = z +

∞
∑

n=2

anbnzn = (g ∗ f)(z).

Lemma 1 [2]. Let H(z) = 1 +
∑∞

n=1 hnzn be analytic in U , 0 ≤ α <

1, 0 ≤ β ≤ 1 and 0 ≤ γ < 1, then the condition
∣

∣

∣

∣

H(z) − 1

βH(z) + (1 − γ)

∣

∣

∣

∣

< 1 − α (z ∈ U)

is equivalent to

H(z) ≺
1 + (1 − α)(1 − γ)z

1 − (1 − α)βz
(z ∈ U).

Lemma 2. Let f(z) ∈ C(k)(0, 0, 0), then we have fk(z) ∈ S∗ ⊂ S.

This lemma is a special case of Theorem 2 in [3].

Lemma 3. Let f(z) ∈ QC(k)(0, 0, 0), then we have fk(z) ∈ K ⊂ S∗.

This lemma is a special case of Theorem 2 in [13].

Lemma 4 [10]. Let −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1, then we have

1 + A1z

1 + B1z
≺

1 + A2z

1 + B2z
.

In the present paper, we shall provide the sufficient conditions and

integral representations for functions belonging to the classes C (k)(α, β, γ)

and QC(k)(α, β, γ), we shall also provide the inclusion relationships and

convolution conditions for these classes.

2. Inclusion Relationships

First we give some inclusion relationships for the classes C(k)(α, β, γ)

and QC(k)(α, β, γ).

Theorem 1. Let 0 ≤ α < 1, 0 ≤ β ≤ 1 and 0 ≤ γ < 1, then we have

C(k)(α, β, γ) ⊂ C(k)(0, 0, 0) ⊂ C ⊂ S.

Proof. Suppose that f(z) ∈ C(k)(α, β, γ), note that H(z) = zf ′(z)/fk(z)

satisfying the condition of Lemma 1, from this we know that the condi-

tion (1.3) can be written as

zf ′(z)

fk(z)
≺

1 + (1 − α)(1 − γ)z

1 − (1 − α)βz
(z ∈ U). (2.1)

Note that

<

{

zf ′(z)

fk(z)

}

= <

{

1 + (1 − α)(1 − γ)ω(z)

1 − (1 − α)βω(z)

}

>
1 + (1 − α)(1 − γ)

1 − (1 − α)β
≥ 0,

thus, by Lemma 2, we have C(k)(α, β, γ) ⊂ C(k)(0, 0, 0) ⊂ C ⊂ S.
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By means of Lemma 3, using the similar method as in Theorem 1, we

have

Corollary 1. Let 0 ≤ α < 1, 0 ≤ β ≤ 1 and 0 ≤ γ < 1, then we have

QC(k)(α, β, γ) ⊂ QC(k)(0, 0, 0) ⊂ QC ⊂ C.

Theorem 2. Let 0 ≤ α1 ≤ α2 < 1, 0 ≤ β2 ≤ β1 ≤ 1, and 0 ≤ γ1 ≤

γ2 < 1, then we have

C(k)(α2, β2, γ2) ⊂ C(k)(α1, β1, γ1).

Proof. Suppose that f(z) ∈ C(k)(α2, β2, γ2), by (2.1), we have

zf ′(z)

fk(z)
≺

1 + (1 − α2)(1 − γ2)z

1 − (1 − α2)β2z
.

Since 0 ≤ α1 ≤ α2 < 1, 0 ≤ β2 ≤ β1 ≤ 1 and 0 ≤ γ1 ≤ γ2 < 1, then we

have

−1 ≤ −(1−α1)β1 ≤ −(1−α2)β2 < (1−α2)(1−γ2) ≤ (1−α1)(1−γ1) ≤ 1.

Thus, by Lemma 4, we have

zf ′(z)

fk(z)
≺

1 + (1 − α2)(1 − γ2)z

1 − (1 − α2)β2z
≺

1 + (1 − α1)(1 − γ1)z

1 − (1 − α1)β1z
,

that is f(z) ∈ C(k)(α1, β1, γ1). This means that

C(k)(α2, β2, γ2) ⊂ C(k)(α1, β1, γ1),

and hence the proof is complete.

For the class QC (k)(α, β, γ), we have

Corollary 2. Let 0 ≤ α1 ≤ α2 < 1, 0 ≤ β2 ≤ β1 ≤ 1, and 0 ≤ γ1 ≤

γ2 < 1, then we have

QC(k)(α2, β2, γ2) ⊂ QC(k)(α1, β1, γ1).

3. Sufficient Conditions

In this section, we give the sufficient conditions for functions belonging

to the classes C(k)(α, β, γ) and QC(k)(α, β, γ).

Theorem 3. Let f(z) = z +
∑∞

n=2 anzn be analytic in U , if for 0 ≤

α < 1, 0 ≤ β ≤ 1 and 0 ≤ γ < 1, we have
∞
∑

n=1

{nk+(1 − α)[(nk + 1)β + (1 − γ)]} |ank+1|

+

∞
∑

n=2

n6=lk+1

n[1 + (1 − α)β] |an| ≤ (1 − α)(1 + β − γ),
(3.1)
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then f(z) ∈ C(k)(α, β, γ).

Proof. Suppose that f(z) = z +
∑∞

n=2 anzn, and fk(z) is defined by

equality (1.2). Then for z ∈ U , we have

M = |zf ′(z) − fk(z)| − (1 − α) |βzf ′(z) + (1 − γ)fk(z)|

=

∣

∣

∣

∣

∣

z +
∞
∑

n=2

nanzn − z −
∞
∑

n=2

ancnzn

∣

∣

∣

∣

∣

−(1 − α)

∣

∣

∣

∣

∣

β

(

z +
∞
∑

n=2

nanzn

)

+ (1 − γ)

(

z +
∞
∑

n=2

ancnzn

)
∣

∣

∣

∣

∣

,

where

cn =
1

k

k−1
∑

ν=0

ε(n−1)ν (εk = 1).

Thus, for |z| = r < 1, we have

M ≤
∞
∑

n=2

(n − cn) |an| r
n − (1 − α)

[

(1 + β − γ)r

−
∞
∑

n=2

[nβ + (1 − γ)cn] |an| r
n
]

<
(

∞
∑

n=2

{(n − cn) + (1 − α)[nβ

+ (1 − γ)cn]} |an| − (1 − α)(1 + β − γ)
)

r.

(3.2)

From the definition of cn we know

cn =







1, n = lk + 1,

0, n 6= lk + 1.

(3.3)

Substituting (3.3) into inequality (3.2), we get

M <
∞
∑

n=1

{nk + (1 − α)[(nk + 1)β + (1 − γ)]} |ank+1|

+
∞
∑

n=2

n6=lk+1

n[1 + (1 − α)β] |an| − (1 − α)(1 + β − γ).

From inequality (3.1) we know that M < 0, thus we can get inequality

(1.3), that is f(z) ∈ C(k)(α, β, γ). This completes the proof of Theorem

3.

For the class QC (k)(α, β, γ), we have
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Corollary 3. Let f(z) = z +
∑∞

n=2 anzn be analytic in U , if for

0 ≤ α < 1, 0 ≤ β ≤ 1 and 0 ≤ γ < 1, we have

∞
∑

n=1

(nk + 1){nk + (1 − α)[(nk + 1)β + (1 − γ)]} |ank+1|

+
∞
∑

n=2

n6=lk+1

n2[1 + (1 − α)β] |an| ≤ (1 − α)(1 + β − γ),

then f(z) ∈ QC(k)(α, β, γ).

4. Integral Representations

In this section, we give the integral representations of functions be-

longing to the classes C(k)(α, β, γ) and QC(k)(α, β, γ).

Theorem 4. Let f(z) ∈ C(k)(α, β, γ), then we have

fk(z) = z · exp

{

1

k

k−1
∑

µ=0

∫ εµz

0

(1 − α)(1 + β − γ)ω(t)

t[1 − (1 − α)βω(t)]
dt

}

, (4.1)

where fk(z) is defined by equality (1.2), ω(z) is analytic in U and ω(0) =

0, |ω(z)| < 1.

Proof. Suppose that f(z) ∈ C(k)(α, β, γ), form (2.1) we can get

zf ′(z)

fk(z)
=

1 + (1 − α)(1 − γ)ω(z)

1 − (1 − α)βω(z)
, (4.2)

where ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1. Substituting z by

εµz in (4.2) respectively (µ = 0, 1, 2, . . . , k − 1; εk = 1), we have

εµzf ′(εµz)

fk(εµz)
=

1 + (1 − α)(1 − γ)ω(εµz)

1 − (1 − α)βω(εµz)
(µ = 0, 1, 2, . . . , k − 1). (4.3)

Note that fk(εµz) = εµfk(z), summing (4.3), we can get

zf ′
k(z)

fk(z)
=

1

k

k−1
∑

µ=0

1 + (1 − α)(1 − γ)ω(εµz)

1 − (1 − α)βω(εµz)
(µ = 0, 1, 2, . . . , k− 1), (4.4)

from equality (4.4) we get

f ′
k(z)

fk(z)
−

1

z
=

1

k

k−1
∑

µ=0

(1 − α)(1 + β − γ)ω(εµz)

z[1 − (1 − α)βω(εµz)]
. (4.5)
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Integrating equality (4.5) we have

log

{

fk(z)

z

}

=
1

k

k−1
∑

µ=0

∫ z

0

(1 − α)(1 + β − γ)ω(εµζ)

ζ[1 − (1 − α)βω(εµζ)]
dζ

=
1

k

k−1
∑

µ=0

∫ εµz

0

(1 − α)(1 + β − γ)ω(t)

t[1 − (1 − α)βω(t)]
dt,

from the above equality, we can get equality (4.1) easily. Hence the proof

is complete.

Theorem 5. Let f(z) ∈ C(k)(α, β, γ), then we have

f(z) =

∫ z

0

exp

{

1

k

k−1
∑

µ=0

∫ εµζ

0

(1 − α)(1 + β − γ)ω(t)

t[1 − (1 − α)βω(t)]
dt

}

·
1 + (1 − α)(1 − γ)ω(ζ)

1 − (1 − α)βω(ζ)
dζ,

(4.6)

where ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1.

Proof. Suppose that f(z) ∈ C(k)(α, β, γ), from equalities (4.1) and

(4.2) we can get

f ′(z) =
fk(z)

z
·

1 + (1 − α)(1 − γ)ω(z)

1 − (1 − α)βω(z)

= exp

{

1

k

k−1
∑

µ=0

∫ εµz

0

(1 − α)(1 + β − γ)ω(t)

t[1 − (1 − α)βω(t)]
dt

}

·
1 + (1 − α)(1 − γ)ω(z)

1 − (1 − α)βω(z)
.

Integrating the above equality, we can get equality (4.6) easily. Hence

the proof is complete.

For the class QC (k)(α, β, γ), we have

Corollary 4. Let f(z) ∈ QC(k)(α, β, γ), then we have

fk(z) =

∫ z

0

exp

{

1

k

k−1
∑

µ=0

∫ εµζ

0

(1 − α)(1 + β − γ)ω(t)

t[1 − (1 − α)βω(t)]
dt

}

dζ,

where fk(z) is defined by equality (1.2), ω(z) is analytic in U and ω(0) =

0, |ω(z)| < 1.

Corollary 5. Let f(z) ∈ QC(k)(α, β, γ), then we have
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f(z) =

∫ z

0

1

ξ

∫ ξ

0

exp

{

1

k

k−1
∑

µ=0

∫ εµζ

0

(1 − α)(1 + β − γ)ω(t)

t[1 − (1 − α)βω(t)]
dt

}

·
1 + (1 − α)(1 − γ)ω(ζ)

1 − (1 − α)βω(ζ)
dζdξ,

where ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1.

5. Convolution Conditions

At last, we provide the convolution conditions for the classes C (k)(α, β, γ)

and QC(k)(α, β, γ).

Theorem 6. A function f(z) ∈ C(k)(α, β, γ) if and only if

1

z

{

f ∗
{ z

(1 − z)2
[1 − (1 − α)βeiθ]

− [1 + (1 − α)(1 − γ)eiθ]h(z)
}

}

6= 0

(5.1)

for all z ∈ U and 0 ≤ θ < 2π, where h(z) is given by (5.6).

Proof. Suppose that f(z) ∈ C(k)(α, β, γ), by Theorem 1, we know

that the condition (1.3) can be written as (2.1), since (2.1) is equivalent

to
zf ′(z)

fk(z)
6=

1 + (1 − α)(1 − γ)eiθ

1 − (1 − α)βeiθ
(5.2)

for all z ∈ U and 0 ≤ θ < 2π. It is easy to know that the condition (5.2)

can be written as
1

z
{zf ′(z)[1 − (1 − α)βeiθ] − fk(z)[1 + (1 − α)(1 − γ)eiθ]} 6= 0. (5.3)

On the other hand, it is well known that

zf ′(z) = f(z) ∗
z

(1 − z)2
. (5.4)

And from the definition of fk(z) we know

fk(z) = z +
∞
∑

n=2

ancnzn = (f ∗ h)(z), (5.5)

where

h(z) = z +
∞
∑

n=2

cnzn (5.6)

for cn satisfy equality (3.3). Substituting (5.4) and (5.5) into (5.3), we

can get (5.1). This completes the proof of Theorem 6.
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For the class QC (k)(α, β, γ), we have

Corollary 6. A function f(z) ∈ QC (k)(α, β, γ) if and only if

1

z

{

f ∗
{

z
{ z

(1 − z)2
[1 − (1 − α)βeiθ]

− [1 + (1 − α)(1 − γ)eiθ]h(z)
}′
}

}

6= 0

for all z ∈ U and 0 ≤ θ < 2π, where h(z) is given by (5.6).
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