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Abstract. We obtain the complete convergence rates for maximums

of partial sums of Banach space valued random elements consisting of

a moving average process. The corresponding almost sure convergence

results for partial sums are derived, too.

1. Introduction

The concept of complete convergence was first introduced by Hsu and

Robbin (1947) as follows. A sequence of random variables {Un, n ≥} is

said to converge completely to a constant c if
∑∞

n=1 P{|Un − c| > ε} <

∞ for all ε > 0. By the Borel-Cantelli lemma, this implies Un → c

almost surely (a.s.) and the converse implication is true if the {Un, n ≥

1} are independent. Hsu and Robbin (1947) proved that the sequence

of arithmetic means of independent and identically distributed random
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variables converges completely to the excepted value if the variance of the

summands is finite. Their research was continued by Erdös (1949,1950),

and Baum and Katz(1965) among others.

The following generalization of the Hsu and Robbin (1947) result was

obtained in Baum and Katz(1965).

Theorem A. Let {Xn, n ≥ 1} be a sequence of independent identically

distributed random variables, Sn =
∑n

k=1 Xk, β ≥ −1, and 0 < ν < 2.

Then the conditions E|X1|
(β+2)ν < ∞ and EX1 = 0 for the case ν ≥ 1,

are necessary and sufficient for

∞
∑

n=1

nβP
{

|Sn| > εn1/ν
}

< ∞ for all ε > 0.

It is an interesting problem to investigate the rate of complete con-

vergence for dependent random variables. One of the first results in this

direction, that is the rate of complete convergence for moving average

sequences was in Li, Rao, and Wang (1992). This gives a partial solution

for the sufficiency part of the Baum-Katz statement for β = 0.

Theorem B. Let {Yn,−∞ < n < ∞} denote a double infinite se-

quence of independent identically distributed random variables, and let

Vk =
∑∞

i=−∞
ai+kYi for k ≥ 1 and Sn =

∑n
k=1 Vk for n ≥ 1. If

EY1 = 0, E|Y1|
2ν < ∞, 1 ≤ ν < 2, then

∞
∑

n=1

P
{

|Sn| > εn1/ν
}

< ∞ for all ε > 0.

The question of the rate of convergence of the moving average pro-

cess for other values of parameter β and in Banach space setting was

discussed in Ahmed, Giuliano Antonini, and Volodin (2002) and Chen,

Sung, and Volodin (2006). In this paper we are interested only in the

moving average process taking values in Banach space of Rademacher

type (technical definitions will be discussed in the next section), and

hence we will present only the following result. It contains the case

β > −1 from Corollary 4.2 of Ahmed, Giuliano Antonini, and Volodin

(2002) and the special case β = −1 from Corollary 3 of Chen, Sung, and

Volodin (2006).

Theorem C. Assume that {Yi,−∞ < i < ∞} is a doubly infinite se-

quence of independent mean zero random elements taking values in a

separable real Rademacher type p, 1 < p < 2, Banach space and is

stochastically dominated by a random variable X. Let {ai,−∞ < i <
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∞} be an absolutely summable sequence of real numbers and set Vi =
∑∞

k=−∞
ai+kYk, i ≥ 1 and Sn =

∑n
k=1 Vk for n ≥ 1. If E|X|(β+2)ν < ∞

where β ≥ −1 and 1 ≤ ν < p, then

∞
∑

n=1

nβP{||Sn|| > εn1/ν} < for all ε > 0.

We should mention that the proofs of the cases β > −1 from Corollary

4.2 of Ahmed, Giuliano Antonini, and Volodin (2002) and the special

case β = −1 from Corollary 3 of Chen, Sung, and Volodin (2006) are

completely different. The initial goal of the present investigation was to

find unified proof of Theorem C as it is stated, but it appears that a

stronger result can be obtained. Namely, in this paper we consider the

rate of complete convergence of maximums of partial sums for moving

average process.

The plan of the paper is as follows. In Section 2, we recall some well

known definitions relevant to the current work. In Section 3, we prove

Theorem D which presents a sufficient condition for the rate of complete

convergence of maximums of partial sums for moving average process. As

in Theorems B and C, Theorem D contains an assumption concerning

the geometry of the underlying Banach space, namely it is assumed that

it is of the Rademacher type p. In Section 4, we present a necessary

and sufficient result for almost sure convergence of the moving average

process. Finally, in Section 5, we provide an additional result for the

rate of complete convergence of supremums of normed partial sums for

moving average process.

2. Preliminaries

Let B be a real separable Banach space with norm ‖·‖ and {Ω,F , P} be

a probability space. A random element X taking values in B is defined

as a Borel measurable function from {Ω,F} into B with Borel sigma-

algebra. The expected value of a B-valued random variable X is defined

to be Bochner integral and is denoted by EX.

A Banach space is said to be of Rademacher type p, 1 ≤ p ≤ 2 if there

is a constant C > 0 such that

E‖
n
∑

i=1

Xi‖
p ≤ C

n
∑

i=1

E‖Xi‖
p

for all n ≥ 1 and each sequence {Xn, n ≥ 1} of independent mean zero

random elements taking values in B with finite pth moments.
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We know if B is of Rademacher type p > 1, then for each r, 1 ≤ r ≤ p,

B is of Rademacher type r. Every separable Hilbert space and finite

dimensional Banach space is of Rademacher type 2.

The interested reader can find the complete discussion of this and

subsequent notions connected with the geometry of Banach spaces in the

book by Ledoux and Talagrand (1991).

A double infinite sequence of random elements {Yi,−∞ < i < ∞} is

said to be stochastically dominated by a random variable X if there exists

a constant C such that

sup
−∞<i<∞

P{‖Yi‖ > x} ≤ CP{|CX| > x}

for all x > 0. In the following, C will be used to denote various positive

constants.

When B is of Rademacher type p, 1 < p ≤ 2, Shao (1988) showed the

following inequality for each sequence {Xn, n ≥ 1} of independent,mean

zero random elements taking values in B with finite qth moments (q ≥ p)

E max1≤m≤n ‖
∑m

i=1 Xi‖
q

≤ (96q)q
(

(C
∑n

i=1 E‖Xi‖
p)q/p + E max1≤i≤n ||Xi||

q
)

,
(2.1)

where C is as in the definition of Rademacher type p.

The following lemma (see Lemma 3 of Chow and Lai (1973)) is impor-

tant for the proof of our second result.

Lemma. Let {Wn} and {Zn} be two sequences of random variables such

that Wn + Zn → 0, a.s. Assume that {Fn} is a monotone increasing

sequence of σ-fields. For each n ≥ 1, W1, · · · , Wn are adapted to {Fn},

and Zn and {Fn} are independent. If Zn → 0 in probability, then both

Wn and Zn converge to zero almost surely.

3. Main Results

Theorem D. Let {Yi,−∞ < i < ∞} be a doubly infinite sequence of

independent means 0 random elements taking values in a separable real

Rademacher type p (1 < p ≤ 2) Banach space B. Assume that {Yi,−∞ <

i < ∞} is stochastically dominated by a real valued random variable

X. Let {ai,−∞ < i < ∞} be an absolutely summable sequence of real

numbers and set Vi =
∑∞

k=−∞
ai+kYk, i ≥ 1 and Sn =

∑n
k=1 Vk for n ≥ 1.

If

E|X|(β+2)ν < ∞, where 1 ≤ ν < p, ν(β + 2) 6= 1 and β ≥ −1,
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then

∞
∑

n=1

nβP{ max
1≤m≤n

‖Sm‖ > εn1/ν} < ∞ for all ε > 0.

Proof. Let b =
∑∞

i=−∞
ai. Note that

Sn =

n
∑

k=1

∞
∑

i=−∞

aiYi+k =

∞
∑

i=−∞

ai

i+n
∑

j=i+1

Yj

and

n−1/ν‖E
∞
∑

i=−∞

ai

i+n
∑

j=i+1

YjI(‖Yj‖

≤ n1/ν)‖ ≤ n−1/ν
∞
∑

i=−∞

|ai|‖E
i+n
∑

j=i+1

YjI(‖Yj‖ > n1/ν)‖

≤ n−1/ν

∞
∑

i=−∞

|ai|

i+n
∑

j=i+1

‖EYj‖I(‖Yj‖ > n1/ν)

≤ bn1−1/νE|X|I(|X| > n1/ν)

≤ bE|X|νI(|X| > n1/ν) → 0, as n → ∞.

Hence for sufficiently large n we have

n1/ν‖
∞
∑

i=−∞

ai

i+n
∑

j=i+1

EYjI(‖Yj‖ ≤ n1/ν)‖ < ε/4.

Let Ynj = YjI(‖Yj‖ ≤ n1/ν) − EYjI(‖Yj‖ ≤ n1/ν). Then according to

the inequality above, in order to prove the theorem it is enough to prove

that

I1 =
∞
∑

n=1

nβP{ max
1≤k≤n

‖
∞
∑

i=−∞

ai

i+k
∑

j=i+1

YjI(‖Yj‖ > n1/ν)‖ ≥ εn1/ν/2} < ∞

and

I2 =

∞
∑

n=1

nβP{ max
1≤k≤n

‖

∞
∑

i=−∞

ai

i+k
∑

j=i+1

Ynj‖ ≥ εn1/ν/4} < ∞.
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For I1 by Chebyshev inequality

I1 ≤ C

∞
∑

n=1

nβn−1/νE max
1≤k≤n

‖

∞
∑

i=−∞

ai

i+k
∑

j=i+1

YjI(‖Yj‖ > n1/ν)‖

≤ C
∞
∑

n=1

nβ−1/ν+1E|X|I(|X| > n1/ν)

= C
∞
∑

n=1

nβ−1/ν+1
∞
∑

m=n

E|X|I(m < |X|ν ≤ m + 1)

= C
∞
∑

m=1

E|X|I(m < |X|ν ≤ m + 1)
m
∑

n=1

nβ−1/ν+1

≤ C

∞
∑

m=1

mβ+2−1/νE|X|I(m < |X|ν ≤ m + 1)

≤ CE|X|(β+2)ν < ∞.

For I2, by Chebyshev and Hölder inequalities we have for q ≥ p

I2 ≤ C
∞
∑

n=1

nβ−q/νE max
1≤k≤n

‖
∞
∑

i=−∞

ai

i+k
∑

j=i+1

Ynj‖
q

≤ C

∞
∑

n=1

nβ−q/νE

(

∞
∑

i=−∞

|ai| max
1≤k≤n

‖

i+k
∑

j=i+1

Ynj‖

)q

≤ C

∞
∑

n=1

nβ−q/ν(

∞
∑

i=−∞

|ai|)
q−1

∞
∑

i=−∞

|ai|E max
1≤k≤n

‖

i+k
∑

j=i+1

Ynj‖
q.

For the case (β + 2)ν < p, let q = p. By (2.1)

I2 ≤ C
∞
∑

n=1

nβ−p/ν
∞
∑

i=−∞

|ai|
i+n
∑

k=i+1

E‖Ynk‖
p

≤ C
∞
∑

n=1

nβ−p/ν+1E|X|pI(|X| ≤ n1/ν)

= C

∞
∑

n=1

nβ−p/ν+1

n
∑

m=1

E|X|pI(m − 1 < |X|ν ≤ m)
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= C
∞
∑

m=1

E|X|pI(m − 1 < |X|ν ≤ m)
∞
∑

n=m

nβ−q/ν+1

≤ C
∞
∑

m=1

mβ−p/ν+2E|X|pI(m − 1 < |X|ν ≤ m)

≤ C

∞
∑

m=1

E|X|(β+2)νI(m − 1 < |X|ν ≤ m)

≤ CE|X|(β+2)ν < ∞.

For the case (β + 2)ν ≥ p, let q > β−1
(1/ν)−(1/p)

. By (2.1)

I2 ≤ C

∞
∑

n=1

nβ−q/ν

∞
∑

i=−∞

|ai|







(

i+n
∑

k=i+1

E‖Ynk‖
p

)q/p

+

i+n
∑

k=i+1

E‖Ynk‖
q







≤ C

∞
∑

n=1

nβ−q/ν+q/p(E|X|pI(|X| ≤ n1/ν))q/p

+ C

∞
∑

n=1

nβ−q/ν+1E|X|qI(|X| ≤ n1/ν).

Since E|X|pI(|X| ≤ n1/ν) < ∞, we have

∞
∑

n=1

nβ−q/ν+q/p(E|X|pI(|X| ≤ n1/ν))q/p ≤ C
∞
∑

n=1

nβ−q/ν+q/p < ∞

and by the same argument as I2 < ∞ in the case (β + 2)ν < 2,

∞
∑

n=1

nβ−q/ν+1E|X|qI(|X| ≤ n1/ν) < CE|X|(β+2)ν < ∞.

The proof of the theorem is completed. �

Corollary. Assume that {Yi,−∞ < i < ∞} is a doubly infinite sequence

of independent means 0 random elements taking values in a separable real

Rademacher type p (1 < p ≤ 2) Banach space B and is stochastically

dominated by a real valued random variable X. Let {ai,−∞ < i <

∞} be an absolutely summable sequence of real numbers and set Vi =
∑∞

k=−∞
ai+kYk, i ≥ 1 and Sn =

∑n
k=1 Vk for n ≥ 1. If E|X|ν < ∞, where

1 < ν < p, then

n−1/νSn → 0 a.s.
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Proof. If E|X|ν < ∞, then by Theorem D with β = −1

∞
∑

n=1

n−1P{ max
1≤m≤n

‖Sm‖ > εn1/ν} < ∞, for all ε > 0.

Hence for all ε > 0

∞ >
∞
∑

n=1

n−1P{ max
1≤m≤n

‖Sm‖ > εn1/ν}

=

∞
∑

k=1

2k

∑

n=2k−1

n−1P{ max
1≤m≤n

‖Sm‖ > εn1/ν}

≥ 1/2

∞
∑

k=1

P{ max
1≤m≤2k−1

‖ Sm‖ > ε2k/ν}.

By Borel-Cantelli Lemma,

2−k/ν max
1≤m≤2k

‖Sm‖ → 0 a.s.

which implies that n−1/νSn → 0 a.s. �

4. Necessary and Sufficient Condition

The following theorem gives us the necessary and sufficient for the

almost sure convergence of partial sums of moving average process.

Theorem E. Let {Y, Yi,−∞ < i < ∞} be a double infinite sequence

of independent identically distributed random elements taking values in

a separable real Rademacher type p (1 < p ≤ 2) Banach space B and

{ai,−∞ < i < ∞} be an absolutely summable sequence of real numbers

with
∑∞

i=−∞
ai 6= 0 and 1 < ν < p. Let Vi =

∑∞

k=−∞
ai+kYk, i ≥ 1 and

Sn =
∑n

k=1 Vk for n ≥ 1. Then n−1/νSn → 0 a.s. if and only if

EY = 0 and E||Y ||ν < ∞.

Proof. Note that the sufficiency was proved in the corollary. Hence, we

should prove only the necessity part.

Assume that n−1/νSn → 0 a.s. Then

n−1/νVn = n−1/νSn −

(

n − 1

n

)1/ν

(n − 1)−1/νSn−1 → 0, a.s., too.

Without loss of generality, we assume that a0 6= 0.

Let Y ′ and Y ′
i be independent copies of Y and Yi,−∞ < i < ∞, which

are also independent of each other. Set V ′
i =

∑∞

k=−∞
ai+kY

′
k, i ≥ 1, then
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n−1/νV ′
n → 0 a.s., and hence

n−1/ν(Vn − V ′
n) = n−1/ν

∞
∑

k=−∞

an+k(Yk − Y ′
k) → 0 a.s.

Set

Wn = n−1/ν

∞
∑

k=−n+1

an+k(Yk − Y ′
k), Zn = n−1/ν

−n
∑

k=−∞

an+k(Yk − Y ′
k).

Then Wn + Zn → 0 a.s., hence Wn + Zn → 0 in probability. By Lévy in-

equality, Zn → 0 in probability and it is easy to show that σ(W1, · · · , Wn)

and Zn are independent. By Lemma we have that Zn → 0 a.s. Repeating

the argument again, we have

n−1/νa0(Yn − Y ′
n) → 0 a.s.

Since a0 6= 0, by Borel-Cantelli lemma E||Y − Y ′||ν < ∞, that is

E||Y ||ν < ∞.

Because E||Y ||ν < ∞, by Theorem D (sufficiency part of the current

result), we obtain

n−1/νSn − n1−1/ν(
∞
∑

i=−∞

ai)EY → 0 a.s.

By n−1/νSn → 0 a.s. and
∑∞

i=−∞
ai 6= 0, we have that EY = 0. �

Remark. It is interesting to find a different proof of the fact that EY = 0

in the necessity part of Theorem E that is not based on the sufficiency

part. We expect that a geometry of the underlying Banach space does

not play any role in the necessity part.

5. One additional result.

The following theorem was proved in Baum and Katz (1965).

Theorem F. Let {Xn, n ≥ 1} be a sequence of independent identically

distributed random variables, Sn =
∑n

k=1 Xk, and 0 < q < 2. Then

the conditions E|X1|
(β+2)ν < ∞ and EX1 = 0 for the case ν ≥ 1, and

β > −1 are necessary and sufficient for

∞
∑

n=1

nβP

{

sup
k≥n

|Sk|/k
1/ν > ε

}

< ∞ for all ε > 0.

For β > −1, Theorem D provides the following extension of Theorem F

for the moving average process.

Theorem G. Assume that {Yi,−∞ < i < ∞} is a doubly infinite

sequence of independent means 0 random elements taking values in a
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separable real Rademacher type p (1 < p ≤ 2) Banach space B and

is stochastically dominated by a real valued random variable X. Let

{ai,−∞ < i < ∞} be an absolutely summable sequence of real num-

bers and set Vi =
∑∞

k=−∞
ai+kYk, i ≥ 1 and Sn =

∑n
k=1 Vk for n ≥ 1.

If

E|X|(β+2)ν < ∞, where 1 ≤ ν < p, ν(β + 2) 6= 1 and β > −1,

then
∞
∑

n=1

nβP

{

sup
k≥n

||Sk||/k
1/ν > ε

}

< ∞ for all ε > 0.

Proof. By Theorem D

∞
∑

n=1

nβP{ max
1≤m≤n

‖Sm‖ > εn1/ν} < ∞, for all ε > 0.

Next, we have the following estimations:

∞
∑

n=1

nβP

{

sup
k≥n

||Sk||/k
1/ν > ε

}

=
∞
∑

m=1

2m−1
∑

n=2m−1

nβP

{

sup
k≥n

||Sk||/k
1/ν > ε

}

≤ C
∞
∑

m=1

2m−1
∑

n=2m−1

2mβP

{

sup
k≥2m−1

||Sk||/k
1/ν > ε

}

≤ C
∞
∑

m=1

2m(β+1)P

{

sup
k≥2m−1

||Sk||/k
1/ν > ε

}

= C
∞
∑

m=1

2m(β+1)P

{

sup
l≥m

max
2l−1<k≤2l

||Sk||/k
1/ν > ε

}

≤ C
∞
∑

m=1

2m(β+1)
∞
∑

l=m

P

{

max
1≤k≤2l

||Sk|| > ε2(l−1)/ν

}

= C

∞
∑

l=1

P

{

max
1≤k≤2l

||Sk|| > ε2(l−1)/ν

} l
∑

m=1

2m(β+1)

= C
∞
∑

l=1

2lβP

{

max
1≤k≤2l

||Sk|| > ε2(l−1)/ν

}

(sinceβ > −1)

≤ C
∞
∑

n=1

nβP

{

max
1≤k≤n

||Sk|| > (ε/21/ν)n1/ν

}

< ∞.�
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