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Abstract. Let SH denote the class of functions f = h+ g which are

harmonic univalent and sense preserving in the unit disk U. Al-Shaqsi

and Darus[7] introduced a generalized Ruscheweyh derivatives operator

denoted by Dn
λ where Dn

λf(z) = z+
∞
∑

k=2

[1 + λ(k − 1)]C(n, k)akzk, where

C(n, k) =
(

k+n−1

n

)

. The authors, using this operators, introduce the

class Hn
λ of functions which are harmonic in U . Coefficient bounds,

distortion bounds and extreme points are obtained.

1. Introduction

A continuous functions f = u + iv is a complex valued harmonic func-

tion in a complex domain C if both u and v are real harmonic in C. In

any simply connected domain D ⊂ C we can write f(z) = h+g, where h

and g are analytic in D. We call h the analytic part and g the co-analytic

part of f . A necessary and sufficient condition for f to be locally univa-

lent and sense-preserving in D is that |h′(z)| > |g′(z)| in D. See Clunie

and Sheil-Small (see [2]).
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Denote by SH the class of functions f = h + g that are harmonic

univalent and sense-preserving in the unit disk U = {z : |z| < 1} for

which f(0) = h(0) = fz(0) − 1 = 0. For f = h + g ∈ SH we may express

the analytic functions h and g as

h(z) = z +
∞
∑

n=2

anzn, g(z) =
∞
∑

n=1

bnzn |b1| < 1. (1.1)

Observe that SH reduces to S , the class of normalized univalent analytic

functions, if the co-analytic part of f is zero.

The class T is defined as the subclass of SH consisting of all functions

f = h + g where h and g are given by

h(z) = z −
∞
∑

n=2

|an|z
n, g(z) = −

∞
∑

n=1

|bn|z
n. (1.2)

In 1984 Clunie and Sheil-Small [2] investigated the class SH as well as its

geometric subclasses and obtained some coefficient bounds. Since then,

there has been several related papers on SH and its subclasses such that

Silverman [3], Silverman and Silvia [4] and, Jahangiri [5] studied the

harmonic univalent functions.

We denote by Hn
λ the class of all function of the form (1.1) that satisfy

the condition

<(Dn
λf(z))′ > 0, z ∈ U. (1.3)

where Dn
λf(z) = Dn

λh(z) + Dn
λg(z), and Dn

λ denotes the operator intro-

duced by Al-Shaqsi and Darus[7] and is given by

Dn
λf(z) = z +

∞
∑

k=2

[

1 + λ(k − 1)
]

C(n, k)akz
k, λ ≥ 0, (1.4)

where

C(n, k) =

(

k + n − 1

n

)

=

k−1
∏

j=1

(j + n)

(k − 1)!
, k ≥ 2. (1.5)

Note that when λ = 0, we get Ruscheweyh differential operator (see[1]).

Also note that the class H0
λ ≡ HP (α) the class of harmonic univalent

functions studied by Yalçin and Öztürk [6]. We further denote by T Hn
λ

the subclass of Hn
λ, where T Hn

λ = T ∩ Hn
λ.
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2. Coefficients Bounds

Theorem 2.1. Let f = h + g with h and g are given by (1.1). Let

∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)
(

|an| + |bn|
)

≤ 2, (2.1)

where a1 = 1 and λ ≥ 0. Then f is harmonic univalent sense preserving

in U and f ∈ Hn
λ.

Proof. For |z1| ≤ |z2| < 1, we have by (2.1),

|f(z1) − f(z2)|

≥ |h(z1) − h(z2)| − |g(z1) − g(z2)|

=

∣

∣

∣

∣

∣

(z1 − z2) +
∞
∑

k=2

ak(z
k
1 − zk

2 )

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∞
∑

k=1

bk(z
k
1 − zk

2 )

∣

∣

∣

∣

∣

≥ |z1 − z2|

(

1 − |b1| −

∞
∑

k=2

k|z2|
k−1

)

≥ |z1 − z2|

(

1 − |b1| − |z2|

∞
∑

k=2

k
[

1 + λ(k − 1)
]

C(n, k)[|ak| + |bk|]

)

≥ |z1 − z2|(1 − |b1|)(1 − |z2|) > 0.

Consequently, f is univalent in U. We note that f is sense preserving in

U. This is because

|h′(z)| ≥ 1 −
∞
∑

k=2

k|ak||z|
k−1 > 1 −

∞
∑

k=2

k|ak|

≥ 1 −
∞
∑

k=2

k
[

1 + λ(k − 1)
]

C(n, k)|ak||z|

≥

∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)|bk| >

∞
∑

k=1

k|bk||z|
k−1 ≥ |g′(z)|.

Now we show that f ∈ Hn
λ. Using the fact that <w > 0 if and only if

|1 + w| ≥ |1 − w|, it suffices to show that

∣

∣

∣

∣

1 + (Dn
λh(z))′ + (Dn

λh(z))′
∣

∣

∣

∣

−

∣

∣

∣

∣

1 − (Dn
λh(z))′ − (Dn

λh(z))′
∣

∣

∣

∣

=
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∣

∣

∣

∣

2+
∞
∑

k=2

k
[

1 + λ(k − 1)
]

C(n, k)anzn−1+
∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)bnzn−1

∣

∣

∣

∣

−

∣

∣

∣

∣

−

∞
∑

k=2

k
[

1 + λ(k − 1)
]

C(n, k)anzn−1−

∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)bnzn−1

∣

∣

∣

∣

≥ 2 −

∞
∑

k=2

k
[

1 + λ(k − 1)
]

C(n, k)|an||z|
n−1

−

∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)|bn||z|
n−1−

∞
∑

k=2

k
[

1 + λ(k − 1)
]

C(n, k)|an||z|
n−1

−

∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)|bn||z|
n−1

= 2 − 2
∞
∑

k=2

k
[

1 + λ(k − 1)
]

C(n, k)|an||z|
n−1

− 2
∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)|bn||z|
n−1 ≥

2

{

1−

(

∞
∑

k=2

k
[

1 + λ(k − 1)
]

C(n, k)|an|+
∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)|bn|

)}

≥ 0, by(2.1).

The harmonic mappings

f(z) = z +
∞
∑

k=2

xk

k
[

1 + λ(k − 1)
]

C(n, k)
zk

+
∞
∑

k=1

yk

k
[

1 + λ(k − 1)
]

C(n, k)
zk

where
∞
∑

k=2

|xk| +
∞
∑

k=1

|yk| = 1, show that the coefficient bound given by

(2.1) is sharp.

The functions of the form (2.2) are in Hn
λ because

∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)
(

|ak| + |bk|
)

= 1 +

∞
∑

k=2

|xk| +

∞
∑

k=1

|yk| = 2.

The restriction placed in Theorem 2.1 on the moduli of the coefficients of

f = h+ g enables us to conclude for arbitrary rotation of the coefficients

of f that the resulting functions would still be harmonic univalent and

f ∈ Hn
λ. We next show that the condition (2.1) is also necessary for
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functions in T Hn
λ.

Theorem 2.2. Let f = h + g with h and g are given by (1.2). Then

f ∈ T Hn
λ if and only if

∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)
(

|bk| + |bk|
)

≤ 2, (2.2)

where a1 = 1 and λ ≥ 0.

Proof. We first suppose that f ∈ T Hn
λ, then by (1.3) we have

<
{

(Dn
λh(z))′ + (Dn

λg(z))′
}

= <

{

1 −
∞
∑

k=2

k
[

1 + λ(k − 1)
]

C(n, k)|ak|z
n−1

−

∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)|bk|z
n−1

}

> 0.

If we choose z to be real and let z → 1−, we get

1 −
∞
∑

k=2

k
[

1 + λ(k − 1)
]

C(n, k)|ak| −
∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)|bk| ≥ 0,

which is precisely the assertion (2.3) of Theorem 2.2.

Conversely, suppose that the inequality (2.3) holds true. Then we find

from the definition (1.3) that

<
{

(Dn
λh(z))′ + (Dn

λg(z))′
}

= <

{

1 −
∞
∑

k=2

k
[

1 + λ(k − 1)
]

C(n, k)|ak|z
n−1

−
∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)|bk|z
n−1

}

≥ 2 −
∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)
(

|bk| + |bk|
)

zn−1

> 2 −

∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)
(

|bk| + |bk|
)

≥ 0.

provided that the inequality (2.3) is satisfied.
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3. Distortion Bounds and Extreme Points.

In this section, we shall obtain distortion bounds for functions in T Hn
λ

and also provide extreme points for the class T Hn
λ.

Theorem 3.1. If f ∈ T Hn
λ, for λ ≥ 0 and |z| = r > 1, then

|f(z)| ≤ (1 + b1)r + (1 − b1)r +
1 − |b1|

2(1 + λ)(n + 1)
r2,

and

|f(z)| ≥ (1 − b1)r − (1 − b1)r +
1 − |b1|

2(1 + λ)(n + 1)
r2.

Proof. We only prove the second inequality. The argument for first

inequality is similar and will be omitted. Let f ∈ T Hn
λ. Taking the

absolute value of f , we obtain

|f(z)| ≥ (1 − b1)r −

∞
∑

k=2

(|an| + |bn|)r
n

≥ (1 − b1)r −

∞
∑

k=2

(|an| + |bn|)r
2

= (1 − b1)r −
1

2(1 + λ)(n + 1)

∞
∑

k=2

2(1 + λ)(n + 1)(|an| + |bn|)r
2

≥ (1 − b1)r −
1

2(1 + λ)(n + 1)

∞
∑

k=2

k
[

1 + λ(k − 1)
]

C(n, k)(|an| + |bn|)r
2

≥ (1 − b1)r −
1

2(1 + λ)(n + 1)
[1 − |b1|]r

2.

The bounds given in Theorem 3.1 for the functions f = h + g of

the form (1.2) also hold for functions of the form (1.1) if the coefficient

condition (2.1) is satisfied. The functions

f(z) = z + |b1|z −
1 − |b1|

2(1 + λ)(n + 1)
z2

and

f(z) = (1 − |b1|)z −
1 − |b1|

2(1 + λ)(n + 1)
z2

for |b1| < 1 show that the bounds given Theorem 3.1 are sharp.

The following covering result follows from the second inequality in

Theorem 3.1.
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Corollary 3.2. If f ∈ T Hn
λ, then

{

w : |w| <
1

2(1 + λ)(n + 1)
[(1 − |b1|)(2(1 + λ)(n + 1) − 1)]

}

⊂ f(U).

Theorem 3.3. f ∈ T Hn
λ if and only if f can be expressed as

f(z) =
∞
∑

k=1

(γkhk + µkgk) (3.1)

where z ∈ U,

h1(z) = z, hk(z) = z −
1

k
[

1 + λ(k − 1)
]

C(n, k)
zk, (k = 2, 3, ...),

gk(z) = z −
1

k
[

1 + λ(k − 1)
]

C(n, k)
zk, (n = 1, 2, ...),

∞
∑

k=1

(γk + µk) = 1, γk ≥ 0 and µk ≥ 0.

In particular, the extreme points of T Hn
λ are {hk} and {gk}.

Proof. Note that for f we may write

f(z) =
∞
∑

k=1

(γkhk + µkgk)

=
∞
∑

k=1

(γk + µk)z −
∞
∑

k=2

1

k
[

1 + λ(k − 1)
]

C(n, k)
γkz

k

−
∞
∑

k=1

1

k
[

1 + λ(k − 1)
]

C(n, k)
µkz

k.

Now the first part of the proof is complete, since by Theorem 2.2

∞
∑

k=2

k
[

1 + λ(k − 1)
]

C(n, k)
γk

k
[

1 + λ(k − 1)
]

C(n, k)

−

∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)
µk

k
[

1 + λ(k − 1)
]

C(n, k)

=

∞
∑

k=1

(γk + µk) − γ1 = 1 − γ1 ≤ 1.
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Conversely, suppose that f ∈ T Hn
λ . Then

∞
∑

k=1

k
[

1 + λ(k − 1)
]

C(n, k)(|ak| + |bk|) ≤ 2.

Setting

γk = k
[

1 + λ(k − 1)
]

C(n, k)|ak|, 0 ≤ γk ≤ 1, (k = 2, 3, ...),

µk = k
[

1 + λ(k − 1)
]

C(n, k)|bk|, 0 ≤ µk ≤ 1, (k = 1, 2, 3, ...),

and µ1 = 1 − γ1 −
∞
∑

k=2

(γk + µk) we obtain

f(z) =
∞
∑

k=1

(γkhk + µkgk) as required.
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