
Lobachevskii Journal of Mathematics

http://ljm.ksu.ru

ISSN 1818-9962

Vol. 22, 2006, 27–34

c© N.Kehayopulu, M.Tsingelis

Niovi Kehayopulu and Michael Tsingelis

DECOMPOSITION OF COMMUTATIVE ORDERED

SEMIGROUPS INTO ARCHIMEDEAN COMPONENTS

(submitted by M.M.Arslanov)

Abstract. The decomposition of a commutative semigroup (with-

out order) into its archimedean components, by means of the division

relation, has been studied by Clifford and Preston. Exactly as in semi-

groups, the complete semilattice congruence “N” defined on ordered

semigroups by means of filters, plays an important role in the structure

of ordered semigroups. In the present paper we introduce the relation

”η” by means of the division relation (defined in an appropriate way for

ordered case), and we prove that, for commutative ordered semigroups,

we have η = N . As a consequence, for commutative ordered semigroups,

one can also use that relation η which has been also proved to be useful

for studying the structure of such semigroups. We first prove that in

commutative ordered semigroups, the relation η is a complete semilat-

tice congruence on S. Then, since N is the least complete semilattice

congruence on S, we have η = N . Using the relation η, we prove that the

commutative ordered semigroups are, uniquely, complete semilattices of

archimedean semigroups which means that they are decomposable, in a

unique way, into their archimedean components.
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1. Introduction-prerequisites

The relation ”N ” defined on semigroups (without order) by means of

filters, plays an important role in the structure, especially in the decom-

position of semigroups. In ordered semigroups the filters are naturally

defined with the help of order as well. Exactly as in semigroups, the rela-

tion ”N ” defined on ordered semigroups by means of filters, plays a basic

role in the structure of ordered semigroups. In particular, it plays an im-

portant role in the decompositions of such semigroups. An important

role in the structure of ordered semigroups is played by the pseudoorder

as well. For and ordered semigroup, the relation ”N ” is actually a com-

plete semilattice congruence on S, in particular, it is the least complete

semilattice congruence on S. In this paper we first introduce the division

relation for ordered semigroups. Then we prove that in commutative

ordered semigroups the relation ”N ” can be defined in terms of the divi-

sion relation as well. We prove that in commutative ordered semigroups,

”N ” is equal to the relation ”η” defined by aη b if and only if there exist

natural numbers m, n such that a|bm and b|an, where a|b is defined as

follows: a|b if there exists x ∈ S1 such that b ≤ ax. We first prove that

in commutative ordered semigroups, the relation η defined above is a

complete semilattice congruence on S. Then, since N is the least com-

plete semilattice congruence on S, we have η = N . As a consequence,

in studying the structure of commutative ordered semigroups, we can

also use that relation η (instead of N ) which has been also proved to

be useful for studying the structure of commutative ordered semigroups.

Using this relation η, we prove that the commutative ordered semigroups

are decomposable into their archimedean components, and the decompo-

sition is unique. The analogous problem in case of semigroups without

order has been studied by Clifford and Preston in [1]. They proved that

each semigroup can be decomposable into its archimedean components,

and the decomposition is uniquely defined. This has been proved in [1]

by means of the division relation of semigroups.

Let (S, .,≤) be an ordered semigroup. A subsemigroup F if S is called

a filter of S [2] if the following assertions are satisfied:

(1) If a, b ∈ S and ab ∈ F , then a ∈ F and b ∈ F .

(2) If a ∈ F and c ∈ S such that c ≥ a, then c ∈ F .

We denote by N(a) the filter of S generated by a (a ∈ S), and by N the

equivalence relation on S defined as follows:

N := {(a, b) | N(a) = N(b)} [3].



DECOMPOSITION OF ORDERED SEMIGROUPS 29

Let (S, .,≤) be an ordered semigroup. An equivalence relation σ on

S is called congruence if (a, b) ∈ σ implies (ac, bc) ∈ σ and (ca, cb) ∈ σ

for every c ∈ S. A congruence σ on S is called semilattice congruence if

(a, a2) ∈ σ and (ab, ba) ∈ σ for every a, b ∈ S [3]. A congruence σ on S is

called complete semilattice congruence [5] if the following conditions are

satisfied:

(1) (ab, ba) ∈ σ for each a, b ∈ S and

(2) If a ≤ b, then (a, ab) ∈ σ.

A relation σ on S is called pseudoorder [7] if we have the following:

(1) ≤⊆ σ.

(2) If (a, b) ∈ σ and (b, c) ∈ σ, then (a, c) ∈ σ.

(3) If (a, b) ∈ σ, then (ac, bc) ∈ σ and (ca, cb) ∈ σ for every c ∈ S.

An ordered semigroup S is called a semilattice of archimedean semi-

groups (resp. complete semilattice of archimedean semigroups) if there

exists a semilattice congruence (resp. complete semilattice congruence)

σ on S such that the σ-class (x)σ is an archimedean subsemigroup of S

for every x ∈ S (cf. also [4]).

An ordered semigroup S is a semilattice of archimedean semigroups if

and only if there exists a semilattice Y and a family {Sα | α ∈ Y } of

archimedean subsemigroups of S such that

(1) Sα ∩ Sβ = ∅ for each α, β ∈ Y , α 6= β.

(2) S =
⋃
{Sα | α ∈ Y }.

(3) SαSβ ⊆ Sαβ for each α, β ∈ Y (cf. also [4]).

An ordered semigroup S is a complete semilattice of archimedean semi-

groups if and only if there exists a semilattice Y and a family {Sα | α ∈
Y } of archimedean subsemigroups of S such that

(1) Sα ∩ Sβ = ∅ for each α, β ∈ Y , α 6= β.

(2) S =
⋃
{Sα | α ∈ Y }.

(3) SαSβ ⊆ Sαβ for each α, β ∈ Y.

(4) If α, β ∈ Y such that Sα ∩ (Sβ] 6= ∅, then α = αβ(= βα) [8].

For convenience, we use the notation S1 := S ∪ {1}, where 1 /∈ S,

1x := x1 := x for every x ∈ S, and 11: = 1. For each x ∈ S, we

define x0 = 1.

2. In commutative ordered semigroups, η = N

In this section we introduce the relation η by means of the division rela-

tion, and we prove that for commutative ordered semigroups the relation

η coincides with the usual relation N .
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Remark 2.1. Each complete semilattice congruence σ defined on an

ordered semigroup S, is a semilattice congruence on S. Indeed, if a ∈ S

then, since a ≤ a, we have (a, a2) ∈ σ.

Definition 2.2. Let (S, .,≤) be an ordered semigroup. For two elements

a, b of S we say that a divides b and write a|b if there exists x ∈ S1 such

that b ≤ ax.

Proposition 2.3. Let (S, .,≤) be an ordered semigroup. Then we have

the following:

(1) a|a for every a ∈ S.

(2) If a|b and b|c, then a|c.
(3) If a|b, then ca|cb for every c ∈ S.

In particular, if S is commutative, then

(4) If a|b, then ac|bc for every c ∈ S.

Proof. (1) Let a ∈ S. Since a ≤ a = a1, where 1 ∈ S1, we have a|a.

(2) Let a|b and b|c. Then there exist x, y ∈ S1 such that b ≤ ax and

c ≤ by. Since c ≤ (ax)y = a(xy), where xy ∈ S1, we have a|c.

(3) Let a|b and c ∈ S. Let x ∈ S1 such that b ≤ ax. Since cb ≤ (ca)x,

where x ∈ S1, we have ca|cb.

If S is commutative then, by (3), condition (4) also holds. 2

Remark 2.4. If S is an ordered semigroup, then for each a, b ∈ S, we

have a|ab. So a|a2 for each a ∈ S. Moreover, for each a ∈ S and b ∈ S1,

we have a|ab.

Proposition 2.5. Let (S, .,≤) be an ordered semigroup. If a ≤ b, then

b|a.

Proof. Let a ≤ b. Since a ≤ b = b1, where 1 ∈ S1, we have b|a.

Notation 2.6. We write aδb if and only if b|a.

By Proposition 2.5 and conditions (2)–(4) of Proposition 2.3, we have

the following:

Proposition 2.7. If (S, .,≤) is a commutative ordered semigroup, then

the relation δ is a pseudoorder on S.

Definition 2.8. Let (S, .,≤) be an ordered semigroup. Define a relation

η on S as follows:

aη b if and only if there exist m, n ∈ N such that a|bm and b|an.

(N = {1,2,3, ... } is the set of natural numbers).
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Proposition 2.9. Let (S, .,≤) be an ordered semigroup. For the relation

η on S, we have the following:

(1) η is reflexive.

(2) η is symmetric.

(3) If a ≤ b, then (a, ab) ∈ η.

Proof. (1) Let a ∈ S. By Proposition 2.3(1), we have a|a := a1, so

(a, a) ∈ η.

(2) This is clear.

(3) Let a ≤ b. Since a2 ≤ (ab)1, where 1 ∈ S1, we have ab|a2. On the

other hand, a|ab. Thus we have (a, ab) ∈ η. 2

Proposition 2.10. Let (S, .,≤) be a commutative ordered semigroup.

Then we have the following:

(1) If a|b, then am|bm for every m ∈ N .

(2) abm|(ab)m for every a, b ∈ S and every m ∈ N .

Proof. (1) Let a|b and m ∈ N . Suppose x ∈ S1 such that b ≤ ax. Then,

since S is commutative, we have bm ≤ (ax)m = amxm. Since x ∈ S1, we

have xm ∈ S1. Since bm ≤ amxm, where xm ∈ S1, we have am|bm.

(2) Let a, b ∈ S and m ∈ N . Since S is commutative, we have

(ab)m = ambm = abmam−1 (where am−1 := 1, if m = 1).

Then, since am−1 ∈ S1, we have abm|(ab)m. 2

Proposition 2.11. Let (S, .,≤) be a commutative ordered semigroup.

Then, for the relation η on S, we have the following:

(1) η is transitive.

(2) If (a, b) ∈ η, then (ca, cb) ∈ η for every c ∈ S.

(3) If (a, b) ∈ η, then (ac, bc) ∈ η for every c ∈ S.

(4) (ab, ba) ∈ η for all a, b ∈ S.

Proof. (1) Let (a, b) ∈ η and (b, c) ∈ η. Since (a, b) ∈ η, there exist

m, n ∈ N such that a|bm, b|an. Since (b, c) ∈ η, there exist t, h ∈ N such

that b|ct, c|bh. Since S is commutative, b|ct and m ∈ N , by Proposition

2.10(1), we have bm|ctm. Since a|bm and bm|ctm, by Proposition 2.3(2),

we have a|ctm, where tm ∈ N . In a similar way we prove that c|anh,

where nh ∈ N . Thus we get (a, c) ∈ η, and η is transitive.

(2) Let (a, b) ∈ η and c ∈ S. Then (ca, cb) ∈ η. Indeed:

Since (a, b) ∈ η, there exist m, n ∈ N such that a|bm, b|an. Since a|bm and

c ∈ S, by Proposition 2.3(3), we have ca|cbm. Since S is commutative,

c, b ∈ S and m ∈ N , by Proposition 2.10(2), we get cbm|(cb)m. Since

ca|cbm and cbm|(cb)m, by Proposition 3(2), we have ca|(cb)m, where m ∈
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N . In a similar way we prove that cb|(ca)n, where n ∈ N . Since ca|(cb)m

and cb|(ca)n, where m, n ∈ N , we have (ca, cb) ∈ η.

Condition (3) follows from (2), and (4) by Proposition 2.9(1). 2

By Propositions 2.9 and 2.11 we have the following:

Theorem 2.12. If S is a commutative ordered semigroup, then the re-

lation ”η” is a complete semilattice congruence on S.

Lemma 2.13. [5] For an ordered semigroup S, the relation ”N ” is the

least complete semilattice congruence on S.

Theorem 2.14. Let S be a commutative ordered semigroup. Then η =

N .

Proof. Let (a, b) ∈ η. Then there exist m, n ∈ N such that a|bm and

b|an. Since a|bm, there exists x ∈ S such that bm ≤ ax. Since b ∈ N(b),

we have bm ∈ N(b). Since N(b) 3 bm ≤ ax, we have ax ∈ N(b), then

a ∈ N(b), and N(a) ⊆ N(b). By b|an, by symmetry, we get N(b) ⊆ N(a).

Thus we have N(a) = N(b), and (a, b) ∈ N . So η ⊆ N . On the other

hand, by Theorem 2.12 and Lemma 2.13, we have N ⊆ η. Hence we

have η = N , and the proof is complete. 2

Proposition 2.15. Let S be an ordered semigroup and a|b. Then N(a) ⊆

N(b).

Proof. Suppose x ∈ S1 such that b ≤ ax. Since N(b) 3 b ≤ ax, we have

ax ∈ N(b), and a ∈ N(b). So N(a) ⊆ N(b). 2

Proposition 2.16. If S is an ordered semigroup, then δ ∩ δ−1 ⊆ N .

Proof. Let (a, b) ∈ δ ∩ δ−1. Since (a, b) ∈ δ, we have b|a. Then, by

Proposition 2.15, we have N(b) ⊆ N(a). Since (b, a) ∈ δ, by symmetry,

we have N(a) ⊆ N(b). Then N(a) = N(b), so (a, b) ∈ N . 2

Proposition 2.17. Let S be an ordered semigroup and a, b ∈ S. The

following are equivalent:

(1) There exists m ∈ N such that a|bm.

(2) There exist n ∈ N and y ∈ S such that bn ≤ ay.

Proof. (1) =⇒ (2). Suppose a|bm for some m ∈ N . Then there exists

x ∈ S1 such that bm ≤ ax. Then bm+1 ≤ a(xb). Since x ∈ S1, b ∈ S, we

have xb ∈ S (⊆ S1). So a|bm+1, where m + 1 ∈ N .

(2) =⇒ (1). It is obvious. 2
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3. Main results

In this section, using the relation η defined above, we prove that the

commutative ordered semigroups are, uniquely, complete semilattices of

archimedean semigroups. That is, they are decomposable into archimedean

semigroups and the decomposition is unique.

Definition 3.1. An ordered semigroup S is called archimedean of for

every a, b ∈ S there exist m, n ∈ N such that a|bm and b|an.

Equivalent Definition: S × S = η.

Proposition 3.2. Let S be a commutative ordered semigroup. Then the

η-class (x)η is an archimedean subsemigroup of S for every x ∈ S.

Proof. Let x ∈ S. Since η is a semilattice congruence on S, (x)η is a

subsemigroup of S (cf. also [6]). Let now a, b ∈ (x)η. Then there exist

m, n ∈ N and y, z ∈ (x)1
η such that bm ≤ ay and an ≤ bz, which means

that the η-class (x)η is archimedean. In fact:

Since (a, b) ∈ η, there exist t, h ∈ N such that a|bt and b|ah. Since a|bt, by

Proposition 2.17, there exist u ∈ N and s ∈ S such that bu ≤ as. Since

b|ah, there exist v ∈ N and k ∈ S such that av ≤ bk. Since bu ≤ as, we

have bu+1 ≤ asb = (bs)a, from which bs|bu+1. Besides, b|bs = (bs)1. Since

bs|bu+1 and b|(bs)1, we have (bs, b) ∈ η, then bs ∈ (b)η = (x)η. Thus we

have bu+1 ≤ a(bs), where u + 1 ∈ N and bs ∈ (x)η ⊆ (x)1
η. In a similar

way we prove that there exist n ∈ N and z ∈ (x)1
η such that an ≤ bz and

the proof is complete. 2

By Theorem 2.12 and Proposition 3.2, we have the following:

Theorem 3.3. If S is a commutative ordered semigroup, then S is a

complete semilattice of archimedean semigroups.

Proposition 3.4. Let (S, .,≤) be a commutative ordered semigroup and

ρ a complete semilattice congruence on S such that the ρ-class (x)ρ is an

archimedean subsemigroup of S for every x ∈ S. Then ρ = η.

Proof. Let (a, b) ∈ ρ. Then, since a, b ∈ (b)ρ and (b)ρ is archimedean,

there exist m, n ∈ N and y, z ∈ (b)1
ρ such that am ≤ by and bn ≤ az.

Then, since y, z ∈ S1, we have b|am and a|bn. Thus we have (a, b) ∈ η.

So ρ ⊆ η. By Lemma 2.13 and Theorem 2.14, η is the least semilattice

congruence on S, so η ⊆ ρ. Therefore we have ρ = η. 2

By Theorem 2.12 and Propositions 3.2 and 3.4, we have the following:

Theorem 3.5. If S is a commutative ordered semigroup then S is,

uniquely, a complete semilattice of archimedean semigroups.
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