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ABSTRACT. In the present paper we establish a Stein-Weiss type
generalization of the Hardy type inequality with non-isotropic kernels
depending on A-distance for the spaces Lp(.)(Q) with variable exponent
p(z) in the case of bounded domains €2 in R™.

The A-distance between points z = (1, ...,x,) and ¥y = (y1, ..., Yn) is
defined by the following formula given in [1,7-9,11];

(Al

1 1 1A
[z = ylx = (o = + w2 — g2 + o+ | — >
where \ = ()\1,)\2, ...,)\n), )\k > %, k= 1,2, ., N, |)\| = )\1+)\2++)\n

Note that this distance has the following properties of homogeneity for
any positive t,

From this relation it follows that the A-distance is the a—homogeneous
function [1,7-11] where a = % So the non-isotropic A-distance has the
following properties:
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1 |z|,=0&2=46, §=(0,0,..,0)
1AL
2. ‘t)‘x}/\ = |t|~ |z|,
3. |z +yly < E(lz[y + [yl))

(13 )
where k=2 "™ " | Apin = min{ Ay, Ay, oo, An
Here we consider A-spherical coordinates by the following formulas :

2X\1 2Xn

1 = (pcos )™, ..., x, = (psingisings...sin @, 1)
2

We obtained that |z|) = p%. It can be seen that the Jacobian J,(p, ¢) of
this transformation is Jy(p, ¢) = p? =10\ (), where Q) (i) is the bounded
function, which only depend on angles @1, s, ..., p,_1. It is clear that if
A = %, 1t =1,...,n, then the A\-distance is Euclidean distance.

In [3], the classical Hardy inequality for fractional integrals states that

X
B—a fy)dy
L bf yP(z—y)l=2

< cllfllpop, 0<a<l1
LP(Ovb)

where a — % <fp< %, %D + % =1 and 0 < b < oco. Its generalization

S el Honf @) de < c [ o} [f(@)] do
Rn R™

for the following generalized Riesz potential with the non-isotropic kernel
depending on A-distance,

Turf(z) = / T~y F(y)dy, 0<a<n. 1)
J

where z € R". (1) equality is well-known the classical Riesz potential

for \; = %, 1 = 1,...,n. For classical Riesz potentials the Hardy type

inequality was investigated by [6]. Here particular importance of the non-
isotropic kernel is that it doesn’t have the classical triangle inequality.

1
2
For a positive r and any z € R™ we denote the open A\—ball By(z, )

In this paper we consider the case \; > =, i =1,...,n.

with radius r and a center x as
By(z,r)={yeR": |ly—xz|, <r }.

Let Q be an open bounded set in R, n > 1 and p(x) a function on Q
satisfying the conditions

1<py<plx) <P<oo, 2€9Q (2)
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1 —
, T,y € Q. (3)

and
_ < Z
“T y‘)\ =9

|p(93)—p(y)!§1n —

lz—yl
O
4 (4)

Let the weighted maximal function
B 1
T — Zoly SUpTE——
| ‘)\ >0 | Bx(z,r)] BA(zi)mQ |y—x0|§

Mpgyf(x) =

where 75 € Q. We write M = M, in the case where 8 = 0.
By L,y(2) we denote the space of measurable functions f(z) on

such that
L(f) = S{\f(a?)\p(x) dr < 0o.

This is a Banach space with respect to the norm
. f
1fll,, = inf{r>0: Ip(;) <1}

The Holder inequality holds in the form
JIf@g(@)de < K fll, gl
Q

with K = p%) + qio. The functional I,(f) and the norm [/ f||, are simul-

taneously greater than one and simultaneously less than 1 :
P .
1l < L) <Iflpey i [l <1

and
A2 < LG < A5, i 1l = 1

The imbedding
Ly@) € Lyzy, 1 <r(z) <plx) <P <oo

is valid if |©2] < co. In that case
(5)

1fllry S mAlfllyey > m=as+ (1 —a1)|Q

_ oer(@) _ r(z)
where a; = ;relsf; o) and ay = ilégp(x).
Lemma 1: Let 0 < o < n. Then there is the following inequality.
o=l for z,y,z € R”

Hx - Z|§_n — |z = y|?\t_n} <M |z —yly |z — 2[5
where |z — 2|, > 2|z —y|,, and M is a constant which does not depend

on x,y and z.
Lemma 1 is proved in [7]
Lemma 2: Let 0 < a < n. There is the following inequality
d —n
sup 2" / e < Clals
r>0 ly — x|}
|y\A<T
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where z,y € R™ A = (A, Aoy s An)y Ap > %, E=1,2,...n, |\ =
A1+ Ao+ ... + A\, and the constant C' is independent of z,y and 7.
Ispat: Passing to the A-spherical coordinates we obtain

:L‘\/\

a—n a—n — a—n+2|\
/ ly — 2§ dy = Qa(p) [ N dp = Ol

o\m‘

ly—aly <122
In case % > r, from Lemma 1 and the A—spherical coordinates we have
J ly—zT"dy < G [ |zl = [yl[TT dy
lyly<r lyly<r N 6
— 2|\
< 02 T 2RO, () (6)
= Oy |z]7".
In case % < r, we can write the following inequality
[ w-almay
\y\A<T

dy dy
/ (z_uy‘“ / y—al

hsr A2 <t
<oy [age [l
lyl\<r |y|)\<‘12|)\
= Cyr® M |23 + Calal T (7)
Thus, by (6), (7) we get
Colz|5", % >r

_2|)‘| f ‘ — |0{—1’L d < a—n+2|A|
r Y — Ty Yy = a—n || ||
lyla<r (03 o[+ Ci P — ), S <

< 02 |x‘i‘—” ) % >
- Cs |3, 2l

Now, for C'= max{Cy, Cs} we obtain

sup r— 2 / ly — |3 " dy < Claf37"
r>0
‘y|A<7”
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Theorem 1: Let p(z) satisfy conditions (2), (3). If

0<p< (8)

q(x0)’
then there is a following inequality

(Mo f" < c<1+m J )\f(y)|dy> (9)

By (z,r

for all f € Ly)(2) such that ||f[[,, < 1, where C' = C(p,3,]) is a
constant not depending on z,r and x.

Proof. We will adapt to our paper the proof given by Kokilashvili and
Samko [4] for classical Maximal operator. From (8) and the continuity
of p(z) we conclude that there exists a d > 0 such that

Bq(z) < nfor all |z — x|, <d (10)

without loss of generality we assume that d < 1. Let

pr(z) = min_ p(y)

|z _yb\

and =1- % From (8) it is easily seen that

1
ar(®) pr(z
. d d
Baq-(z) < n if \x—mo\/\ga and 0<r<-—.

4
In case |z — xo|, < % and 0 <r < %, applying the Holder inequality
with the exponents p,(z) and ¢.(z) to the integral on the right-hand side

of the equality

(@) p(x)
M f(y) ._C f(y)
P2\ — zo/? = 12I\/p(@) v — 70|
A B (z,r) A
and taking into account (10), we get
p(x)
M f(y)
Al ———3
ly — xO‘A
ey ne (1)
C pr() dy
< @ h/i [F)" dy L/j E;:i;?@i@f
B (z,r) B (z,r

From Lemma 2, we obtain

p(CC) C\x—m |*ﬁp(®) o (z pr(=)
2 () = < f |f<y>|"”dy) .
Bx(zr)

) Az
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Hence

[ wrPdy < [ dy+ [ @I dy

B (CC,T) B (I,T) By (I,T)
{y: [f(v)1=1}

since p,(z) < p(y) for y € By(z,r). Since p(x) is bounded, we see that

p(x)

p(x) Ol | 5P pri@)
< %(r“% I |f(y>\p(y)dy> .

) B (a.r)

Since r < % < = and the second term in the brackets is also less than or

equal to %, we

o Nl

rrive at the estimate

\Mﬁv\ﬂp(r) < %(7*2“4— f |f(y)|p(y)dy>

. pr(@) By (z,r)
2| 2oLz | ()
< Cr 7 1+ [ )P dy ).
By (z,r)

2@ ()

From here (10) follows, since r pr(@) < (O,
In case |z — xo|, > g and 0 <r < il. Then we have
d d d
ly — xol, > K1 |z — x|, — |z —yl,, > K‘1§ i 5(2K_1 —1). (12)

Thus |y — ol > (42K~ - 1))ﬂ. Since |x — x|} < (diam Q)° | it fol-
lows that Mg, f(x) < CM,f, and one may proceed as above for the case
3 =0 (the condition |z — zo|, < ¢ is not need in this case).

In case r > 2. Tt suffices to show that the left-hand side of (9) is

4
bounded. We have have

Mgaf(z) < SWiem@) o Jwdy 4o Sy

d
(D ly—aol3 ly—zol3

‘y_IO‘AS% Iy—z0|A2§

Here the first integral is estimated via the Holder inequality with expo-
nents
pa = min  p(y) and qa = |
8

|y_5’70|)\§%
as in (11), which is possible since aga < n. The estimate of the second
integral is same as (12) since |y — x|, > <.

Corollary: Let 0 < § < . If conditions (2), (3) are satisfied, then

M fP < (14 M [IFOF] @) (13)
for all f € Ly)(§2) such that [|f]|, ) < 1.
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Theorem 2: Let p(z) satisfy conditions (2), (3). The operator Mg \
with zo € Q is bounded in Ly;)(£2) if

< fB< )
p(zo) q(xo)
Proof. We have to show that
[Mafll,) <c
in some ball || f[|,, < R, which is equivalent to the inequality
I(Mgf) < c for ”pr(,) <R.
We observe that

|z — 20|37~ Jar — P (14)

in case p(z) satisfies the condition (3). Following the idea in [2] and so
from (14) we have the following inequality

Bp( p(z)
B(Maaf) < efle = a0l P |MEZ) | da

Bp(ao) | 3p(_tw) [P

< cf |z — o) M(‘y_zolﬁ) dzx.

Q A
For r(z) = %, we have the following inequality
rwo) | ¢t [\
Bt < e f (o=l 22 ") a
0

We will proof the theorem breaks up into two case <0 and 5 > 0.
Case 1. Let — < 3 < 0. Estimate (13) with 8 = 0 says that
[Myo(a)|"™ < C (14 M [¢V] (2)) (15)

for all ¢ € L,()(Q2) with [[¢]|, ) < 1. For ¢(z) = L@ e have

= 7
\x—rdA

H¢||r(.) < ao Hf”r(.) , ag = (diam Q)wa
where we took into account that # < 0. From imbedding (5) we obtain
191y < a0k [[fll,) < aokR.

Therefore we choose R =
From (15), we obtain

Then [|¢][,, < 1, so that (15) is applicable.

e

1
aok”

IP(MB,AJC> < Cf <‘x_x0|)\r(:co) |:1+M ( _fy)
Q

B
|y_$dA
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Thus we have

]p(Mﬁ,Af)
r(y) po
< 0/ {|x — o) + <|x—x0|;“(“>M <—|f<y>| — )>) }dx
o |y_$0|,\ ’
< O+C/MV (170r)" da
Q

where v = fr(zg) = %. As is know [5], the weighted maximal operator

M7 is bounded in L,, with a constant py if —pﬂo <7< which is

satisfied since — oy < (6 < 0. Therefore, we obtain

L(Mgrf) < C+C [1f(y)]"¥" dy
Q
< cteflfPY dy < oo.
Q

Case 2. Let 0 < <
the form

n
0

oy We represent the functional I,(Mp, f) in

IP(M@)\JC) = S{<|Mﬁ,)\f(x>|7“(x))7—dx

with r(z) = @ > 1, 7 > 1, where 7 will be chosen in the interval
1 < 7 < pp. From above similar estimate we have

(Mapf(2) @ < e(1+M(f0) (x))

if [[f]l,() < ¢ and
n
0 < ——.
[r (o))
The condition || f||, ) < ¢ is satisfied since r(z) < p(z). Condition (16) is
fulfilled if 7 < “=£p(x). Thus, under the choice

1 <7 < min <p0, - ﬁp(zo))
n

(16)

we have .
I,(Mgf) < C+0g‘M(‘fT(')m dx

< c¢4ecf <|f(x)|r(x)> dx
Q
by the boundedness of the maximal operator M in L,(€2), 7 > 1. Hence
L(Mspf) < c+ef|f(@)" da.
Q

This proves the theorem.
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Theorem 3: Let p(z) satisfy conditions (2), (3) and © be a bounded
domain in R™. Then the Hardy-type inequality is valid.

R

O ly—o|? |a—y|7 < c ”f”Lp(') , O<a<n (17)

Ly

for all 3 in the interval

a— (18)

plwo) ~ " qlwo)

Proof. For simplicity we take o = 0 € Q. We may consider non-
negative functions f and assume that f is continued as zero outside the
domain €.

We take
ffxf(x) = |$‘>\_a f 7ﬁ|f(y)|n—a dy.
’ Q |y\A|r—y|A

Hence we can split [ f \f as follow

]5)\f(x)
|f (W)l
B n—ao
ol kel lylx lz =yl
£ (W)l

B o
ottt lylx [z =yl

= |2l

+ |z

=J' 4+ 2

Since av + 2|A| > n with \; > %We obtain

]1 _ |x‘§—a Z / |f(y>|

i . [yl le = yl3 "
2=mE|z|y <|z—y|, <2=mH1k|z|,

2|A|— _
< 22\)\| ‘x‘f‘f‘ [Al "ka+2|)\| n

— - 1 /()]
> 2 m(a+2|A|—n) dy
mzzzl (27 |a] )" lylx

lz—yl <2~ mF1k|z|
Al=n 7.« —-n —m(a —-n
— 92\l |x|i\ =1 pat2|A] ZQ (at2[A| )M@,\f(x)
m=1
Therefore
JU < clx3NT Mg, () (19)

where ¢ = 2n—ofot2A-n
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On the other hand, it remains to prove the boundedness of the operator
J2. Obviously, |z — y|, > 2k|z|, implies that

\x - ?J|>\ < k(|x|>\ + ‘y‘x)

‘y|>\ > k! |x - y|>\ - ‘x|)\
|£E - y‘)\ <2k |y|)\'
Therefore we have

2 B— f 72
Jo = \x|>\ “ f Wdfy = Jj
|z—y|y\ <2K[yl, A A

The operator conjugate to J? has the form

T e
|e—y[y<2klz], T

which is nothing else but the operator of the familiar type J*.
According to (19) and Theorem 2 the operator JZ* is bounded in
conjugate space Lg)(€2) if and only if _TTB) <a-—0< ﬁ, that is
oa— ﬁ <f<a+ ﬁ. Therefore, the operator J7 is bounded in L, ()

and J? is bounded in this space.

Remark. Analysis of the proof of Theorem 3 shows that it is also

valid in the case when order « is variable as well, in the form

|x . xo‘f—a(wo) f Lf )l dy

a(zq)

<
[ e < el

Ly
for all 4 in the interval

a(zg) — m <fpB< e

if ingf2 a(x) > 0 and a(x) satisfies the same logarithmic condition as p(z)
TE

in (3)
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