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Abstract. The paper is a survey of the theory of Lagrangian systems

with non-holonomic constraints in jet bundles. The subject of the paper

are systems of second-order ordinary and partial differential equations

that arise as extremals of variational functionals in fibered manifolds.

A geometric setting for Euler-Lagrange and Hamilton equations, based

on the concept of Lepage class is presented. A constraint is modeled

in the underlying fibered manifold as a fibered submanifold endowed

with a distribution (the canonical distribution). A constrained system

is defined by means of a Lepage class on the constraint submanifold.

Constrained Euler-Lagrange equations and constrained Hamilton equa-

tions, and properties of the corresponding exterior differential systems,

such as regularity, canonical form, or existence of a constraint Legendre

transformation, are presented. The case of mechanics (ODEs) and field

theory (PDEs) are investigated separately, however, stress is put on a

unified exposition, so that a direct comparison of results and formulas

is at hand.

1. Introduction

Since the 30’s of the last century when the pioneer paper by Chetaev

was published [4], the study of non-holonomic constrained systems has

been of growing interest in mechanics, control theory and geometry.
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Namely during the past 15 years much effort has been devoted to develop-

ments of geometric methods and studies of geometric structures of non-

holonomic mechanics; among the many contributions to the subject, let

us mention here at least [3, 6, 9, 15, 17, 20, 26, 27, 28, 30, 31, 33, 34, 38],

and references therein. Recently, several authors have started to study

a more general situation of partial differential equations (field theories)

with constraints given by systems of first-order partial differential equa-

tions [2, 22, 25, 37]. Since the geometric origin of these constraints is the

same as in mechanics, it is natural also in this generalized situation to

call such constraints “non-holonomic”.

The papers investigating non-holonomic systems differ in approaches,

methods, geometric setting, kind of constraints studied, and many other

aspects. Usually (and this is in no case specific for constrained systems),

tools, structures and methods used in mechanics (i.e. ordinary diffe-

rential equations) and field theory (partial differential equations) are es-

sentially different. The aim of this paper is to present foundations of

a general geometric theory of non-holonomic systems as a part of the

calculus of variations on fibered manifolds. It is based on the theory of

Lepage equivalents of Lagrangians (Krupka [10, 12]) and of dynamical

forms (Krupková [14, 15, 16, 19]), and on study of exterior differential

systems associated with variational equations (Krupková [14, 16, 19, 21]).

It is also important to note that a constraint is modeled in the underly-

ing fibered manifold as a fibered submanifold endowed with a distribution

(called canonical distribution) [15, 22]. This structure plays a key role in

studying the geometry of non-holonomic constrained systems, and rep-

resents a correct mathematical realization of the physical d’Alembert’s

principle (that is ambiguous in case of velocity dependent constraints in

mechanics, and completely unclear in field theory). The setting of [15]
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and [22] brings a unified approach to mechanics and field theory, both

unconstrained and with constraints, and can be directly transferred to

higher-order situation [18].

There are basically two different approaches to systems with con-

straints:

• constrained system is modeled as a modified unconstrained system,

defined on the same manifold as the unconstrained system (in mechanics

this concerns so called “constraint forces” and dynamics governed by

equations with Lagrange multipliers),

• constrained system is modeled as a system defined on the constraint

submanifold (dynamics are modeled by the so called “reduced equations”,

without Lagrange multipliers).

As shown in [15] and [22], both these approaches are equivalent. In

this paper, however, we prefer the latter one, since it is more geometrical,

and enables us to study constrained systems by the same tools as uncon-

strained systems. We focus on variational systems, i.e. such that their

dynamics are given by differential equations that arise as equations for

extremals of Lagrangians (Euler–Lagrange equations). First, we recall

basic facts on unconstrained Lagrangian systems and their associated

Hamiltonian systems in jet bundles. Then we turn to the concept of

non-holonomic constraint structure. Finally we study Lagrangian sys-

tems subjected to non-holonomic constraints, namely constrained Euler–

Lagrange equations and constrained Hamilton equations, where we devote

our attention to such problems as regularity of constrained systems, or

existence of an appropriate “constraint Legendre transformation”. The

cases of mechanics (ordinary differential equations) and field theory (par-

tial differential equations) are investigated separately, however, stress is

put on a unified exposition, so that common features on one hand and

differences on the other hand are transparent and their geometric origin

becomes clear. We also tried to provide analogous results and formulas

in such a way that the reader could compare them directly.

This work is basically a review paper, however, it contains also new,

yet unpublished results (this concerns Sec. 4.5 and 4.6 on constrained

Hamilton–De Donder equations and constraint Legendre transformation

for general non-holonomic constraints in field theory).

2. Calculus in jet bundles

We start with a brief introduction of notations, basic structures and

the corresponding calculus to be used. For more details we refer to the
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books by Saunders [32] and Krupková [16], and the papers by Krupka

[10, 12].

We consider a fibered manifold π : Y → X with dimX = n ≥ 1,

dim Y = m + n, and its jet prolongations π1 : J1Y → X and π2 :

J2Y → X. All manifolds and mappings are smooth, and the summation

convention on repeated indices applies throughout.

A mapping γ : U → Y , where U ⊂ X is an open set, is called a section

of π if π ◦ γ = id U . We denote by J1γ and J2γ the first and the second

jet prolongation of γ, respectively. Note that J 1γ (resp. J2γ) is a section

of π1 (resp. π2). A section δ of π1 is called holonomic if δ = J1γ for a

section γ of π.

A vector field ξ on Y is called π-vertical if Tπ ·ξ = 0, and π-projectable

if Tπ · ξ = ξ0 ◦ π for a vector field ξ0 on X. Considering the projections

π1 : J1Y → X, π2 : J2Y → X, π1,0 : J1Y → Y , π2,1 : J2Y → J1Y

and π2,0 : J2Y → Y the concepts of the corresponding verticality and

projectability are obtained quite similarly. For the module of vector fields

(resp. πr-vertical vector fields) on J rY , r = 1, 2, we shall use the notation

X (JrY ) (resp. V(JrY )).

Denote by Ωq(J1Y ) the module of q-forms on J1Y . A form η ∈

Ωq(J1Y ) is called π1-horizontal (resp. π1,0-horizontal) if iξη = 0 for

every π1-vertical (resp. π1,0-vertical) vector field ξ on J1Y ; η ∈ Ωq(J1Y )

is called contact if J1γ∗η = 0 for every section γ of π [10]. A contact

form η ∈ Ωq(J1Y ) is called 1-contact if for every π1-vertical vector field

ξ the form iξη is π1-horizontal; it is called k-contact, where 2 ≤ k ≤ q,

if for every π1-vertical vector field ξ the form iξη is (k − 1)-contact [12].

We denote

• Ωq
X(J1Y ) the module of π1-horizontal q-forms on J1Y ,

• Ωq−i,i(J1Y ) the module of i-contact q-forms on J1Y ,

• Ωq−i,i
Y (J1Y ) the submodule of Ωq−i,i(J1Y ) consisting of π1,0-horizontal

forms.

It is important to mention that every form η ∈ Ωq(J1Y ) has a unique

decomposition into contact components as follows (Krupka [12]):

π∗
2,1η = hη + p1η + · · ·+ pq−1η + pqη, (2.1)

where h and pk (k ≥ 1) denotes the horizontalization and k-contactization

operators, respectively, assigning to η its horizontal (resp. k-contact,

1 ≤ k ≤ q) component.

Therefore, we shall also use the following notations:

• Ωq(≥k)(J1Y ) = Ωq−k,k(J1Y )⊕Ωq−k−1,k+1(J1Y )⊕· · ·⊕Ω0,q(J1Y ), i.e.

the module of q-forms on J1Y that are at least k-contact,
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• Ω
q(≥k)
Y (J1Y ) = Ωq−k,k

Y (J1Y )⊕Ωq−k−1,k+1
Y (J1Y )⊕· · ·⊕Ω0,q

Y (J1Y ), i.e.

π1,0-horizontal q-forms on J1Y that are at least k-contact.

We denote by (xi, yσ), where 1 ≤ i ≤ n, 1 ≤ σ ≤ m, local fibered

coordinates on Y , and by (xi, yσ, yσ
j ) and (xi, yσ, yσ

j , y
σ
jk), where 1 ≤ j ≤

k ≤ n, associated coordinates on J1Y and J2Y , respectively. We put

ω0 = dx1 ∧ · · · ∧ dxn, ωj = i∂/∂xjω0. (2.2)

In case that dimX = 1, we write (t, qσ), where 1 ≤ σ ≤ m, to denote

local fibered coordinates on Y , and (t, qσ, q̇σ) (resp. (t, qσ, q̇σ, q̈σ)) for

associated coordinates on J1Y (resp. J2Y ).

In calculations we use either a canonical basis of one forms, i.e. (dxi,

dyσ, dyσ
j ) on J1Y and (dxi, dyσ, dyσ

j , dy
σ
jl) on J2Y (alternatively, if dimX

= 1, (dt, dqσ, dq̇σ) and (dt, dqσ, dq̇σ, dq̈σ)), or better a basis adapted to

the contact structure, i.e. (dxi, ωσ, dyσ
j ) on J1Y and (dxi, ωσ, ωσ

j , dy
σ
jl),

on J2Y , where

ωσ = dyσ − yσ
i dx

i, ωσ
j = dyσ

j − yσ
ji dx

i (2.3)

are local canonical contact 1-forms. Alternatively, if dimX = 1, adapted

bases take the form (dt, ωσ, dq̇σ) and (dt, ωσ, ω̇σ, dq̈σ), where

ωσ = dqσ − q̇σ dt, ω̇σ = dq̇σ − q̈σ dt. (2.4)

In an adapted basis to the contact structure every k-contact component

pkη of a q-form η (where 1 ≤ k ≤ q) is expressed by means of a wedge

product containing exactly k of the canonical contact 1-forms above.

If f is a function on J1Y , we have by (2.1) the exterior derivative df

canonically splitted into the horizontal and contact component,

π∗
2,1df = hdf + pdf, (2.5)

with

hdf =
df

dxj
dxj, (2.6)

where d/dxj, 1 ≤ j ≤ n, denotes the j-th total derivative operator (also

called j-th formal derivative operator),

d

dxj
=

∂

∂xj
+ yσ

j

∂

∂yσ
+ yσ

ij

∂

∂yσ
i

. (2.7)

For convenience of notations we also use the ‘cut’ total derivative ope-

rators,

d′

dxj
=

∂

∂xj
+ yσ

j

∂

∂yσ
=

d

dxj
− yσ

ij

∂

∂yσ
i

, 1 ≤ j ≤ n. (2.8)
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If dimX = 1, these formulas take the following form:

hdf =
df

dt
dt, (2.9)

d

dt
=

∂

∂t
+ q̇σ ∂

∂qσ
+ q̈σ ∂

∂q̇σ
, (2.10)

d′

dt
=

∂

∂t
+ q̇σ ∂

∂qσ
=

d

dt
− q̈σ ∂

∂q̇σ
. (2.11)

Definition 2.1. 1-contact (n+1)-forms on J rY , horizontal with respect

to the projection πr,0, are called dynamical forms of order r [16].

Horizontal n-forms on J rY are called Lagrangians of order r [10]. By

a local Lagrangian (of order r) we shall mean a Lagrangian defined on

an open subset of JrY .

Definition 2.2. [10] Let λ be a Lagrangian on J1Y . An n-form ρ is

called Lepage equivalent of λ if hρ = λ and p1dρ is a dynamical form.

The form p1dρ is then called the Euler–Lagrange form of λ and denoted

by Eλ.

As proved in [12], every Lagrangian has a Lepage equivalent. For a

Lagrangian of order r Lepage equivalents are of order 2r − 1, and the

Euler–Lagrange form is of order 2r. It should be stressed that while

Lepage equivalent of a Lagrangian need not be unique, the Euler–Lagrange

form always is unique.

3. Mechanical systems with constraints

Throughout this section we consider a fibered manifold π : Y → X,

dimX = 1, and we assume dim Y = m + 1, where m ≥ 1. Main sources

for our exposition are the following: [1, 8, 11, 12, 35, 36] for the inverse

variational problem, [15, 16, 21] for a geometric approach to variational

ordinary differential equations, [7, 10, 12, 14, 16] for (unconstrained)

Lagrangian and Hamiltonian mechanics in jet bundles, [15, 28] for the

model of the non-holonomic constraint structure, and [3, 4, 6, 9, 15,

17, 20, 27, 28, 29, 30, 31, 33, 38] for non-holonomic Lagrangian and

Hamiltonian systems.

3.1. Dynamical forms. Let E be a dynamical form on J 2Y . A section

γ of π is called a path of E if

E ◦ J2γ = 0. (3.1)

In fibered coordinates E reads

E = Eσω
σ ∧ dt, (3.2)
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where Eσ are functions of (t, qν, q̇ν, q̈ν), and the equation for paths of

E takes the form of a system of m second-order ordinary differential

equations for the components (γν) of γ as follows:

Eσ

(

t, γν(t),
dγν

dt
,
d2γν

dt2

)

= 0, 1 ≤ σ ≤ m. (3.3)

We stress that these equations need not be “solvable with respect to

the second derivatives”, meaning that they need not be expressible in a

normal form,
d2γσ

dt2
= F σ

(

t, γν(t),
dγν

dt

)

. (3.4)

Equations for paths of dynamical forms can be represented by means of

exterior differential systems locally generated by 1-forms [14].

Proposition 3.1. Let E be a dynamical form on J 2Y . A section γ of π

is a path of E if and only if

J2γ∗iξα = 0 ∀ξ ∈ V(J2Y ), (3.5)

where α is any 2-form such that p1α = E.

Proof. By a direct computation we immediately obtain that (3.1) is equi-

valent with the condition J2γ∗iξE = 0 ∀ξ ∈ V(J2Y ). Now, since con-

traction by vertical vector fields is compatible with the decomposition of

forms to contact components (2.1), and prolongations of sections annihi-

late contact forms, we can see that adding to E (which is 1-contact) any

2-contact form F gives us

J2γ∗iξ(E + F ) = J2γ∗iξE + J2γ∗iξF = J2γ∗iξE ∀ξ ∈ V(J2Y ). (3.6)

�

Definition 3.1. [15] Let E ∈ Ω2
Y (J2Y ) be a dynamical form. The equi-

valence class of 2-forms (on an open subset U ⊂ J 2Y ) defined by

α1 ∼ α2 iff p1α1 = p1α2 = E|U (3.7)

is called Lepage class of E on U . The family of all local Lepage classes

of E will be referred to as Lepage class of E and will be denoted by [α]E,

or simply [α].

By the above proposition, the equation for paths of E (on U) coincides

with equations for holonomic integral sections of the distribution

∆α = annih {iξα | ∀ξ ∈ V(J2Y )} = span {ζ ∈ X (J2Y ) | iζα = 0}, (3.8)

where α is any representative of the Lepage class of E (on U).
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Definition 3.2. [15] Let [α] be a Lepage class of E. Every representative

α ∈ [α] is called a Hamiltonian system associated with E. The distri-

bution ∆α is called a dynamical distribution of E. Equations for (all)

integral sections of ∆α are called Hamilton equations associated with E.

In what follows we shall be interested in dynamical forms that can be

represented by first-order Lepage classes. This means that the dynamics

are described by dynamical distributions defined on (open subsets of)

J1Y .

Proposition 3.2. Let E be a dynamical form on J 2Y . The following

conditions are equivalent:

(1) Around each point in J1Y there exists a Lepage class of E.

(2) In every fibered chart, E takes the form (3.2), where the functions

Eσ are affine in the second derivatives, i.e.,

Eσ = Aσ(t, qν, q̇ν) +Bσρ(t, q
ν, q̇ν)q̈ρ. (3.9)

Proof. We have

α = E+F=Eσω
σ∧ dt+Fσνω

σ∧ ων + F 01
σνω

σ∧ ω̇ν + F 11
σν ω̇

σ ∧ ω̇ν

= (Eσ−2Fσν q̇
ν−F 01

σν q̈
ν)dqσ ∧ dt+ (F 01

νσ q̇
σ−2F 11

σν q̈
ν)dq̇σ ∧ dt

+Fσνdq
σ ∧ dqν + F 01

σνdq
σ ∧ dq̇ν + F 11

σνdq̇
σ ∧ dq̇ν.

(3.10)

Hence, α is projectable onto an open subset of J 1Y iff Fσν and F 01
σν do

not depend on q̈ρ, F 11
σν = 0, and

∂Eσ

∂q̈ρ
= F 01

σρ ; (3.11)

consequently,

∂2Eσ

∂q̈ρ∂q̈ν
= 0. (3.12)

The first-order Lepage class is represented by 2-forms

α = Aσω
σ ∧ dt+Bσνω

σ ∧ dq̇ν + Fσνω
σ ∧ ων, (3.13)

where Fσν are arbitrary functions of (t, qρ, q̇ρ). �

Definition 3.3. A dynamical form on J2Y that has a Lepage class

around each point of J1Y is called J1Y -pertinent, or, a first-order me-

chanical system.

Finally, we recall the concept of a regular dynamical form.
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Definition 3.4. [14, 15] A first-order mechanical system (respectively, a

J1Y -pertinent dynamical form) E is called regular if around each point

of J1Y there exists a dynamical distribution ∆α, α ∈ [α]E such that

rank ∆α = 1.

Proposition 3.3. [14, 15] The following conditions are equivalent:

(1) A first-order mechanical system E is regular.

(2) The following condition holds:

det
(∂Eσ

∂q̈ν

)

= det(Bσν) 6= 0. (3.14)

(3) Equations for paths of E have an equivalent normal form (3.4)

where F σ = −BσνAν .

3.2. Variational ODE’s and related Hamiltonian systems. A dy-

namical form E ∈ Ω2
Y (J2Y ) is called (globally) variational if there exists

a Lagrangian λ such that (possibly up to a projection), E = Eλ. E is

called locally variational if it is variational in a neighborhood of every

point in J2Y [11, 12]. In fibered coordinates this means that the compo-

nents Eσ of E take the form of Euler–Lagrange expressions of λ = Ldt,

i.e.

Eσ =
∂L

∂qσ
−

d

dt

∂L

∂q̇σ
(3.15)

if λ is a first order Lagrangian.

It is known that a locally variational form need not be globally vari-

ational [35]: obstructions come from the topology of the manifold Y .

Every (globally) variational form on J 2Y possesses a global second-

order Lagrangian. This Lagrangian is locally equivalent with first-order

Lagrangians (we say that it can be locally reduced to first-order La-

grangians).

A dynamical form E ∈ Ω2
Y (J2Y ) is locally variational if and only if its

components Eσ, 1 ≤ σ ≤ m, satisfy the Helmholtz conditions [8]

∂Eσ

∂q̈ν
−
∂Eν

∂q̈σ
= 0,

∂Eσ

∂q̇ν
+
∂Eν

∂q̇σ
− 2

d

dt

∂Eν

∂q̈σ
= 0,

∂Eσ

∂qν
−
∂Eν

∂qσ
+

d

dt

∂Eν

∂q̇σ
−

d2

dt2
∂Eν

∂q̈σ
= 0.

(3.16)

Local (second-order) Lagrangians then can be constructed using the fol-

lowing formula [36]

L = qσ

∫ 1

0

Eσ(t, uqν, uq̇ν, uq̈ν)du. (3.17)
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Notice that from the Helmholtz conditions one easily gets that every

second-order locally variational form is J 1Y -pertinent, i.e., defines a first-

order mechanical system; it is called a first-order Lagrangian system.

Recall that every representative α of the Lepage class of E is called a

Hamiltonian system associated with E.

As shown in [10], every first-order Lagrangian λ has a unique first-order

Lepage equivalent, the Cartan form, denoted by Θλ. Consequently, local

first-order Lepage classes of E are represented by 2-forms

α = dΘλ + F, (3.18)

where F is an arbitrary 2-contact form on the domain of definition of

dΘλ. Hence, if λ is (any) Lagrangian for E on U ⊂ J 1Y , the Lepage

class of E on U is given by [α]|U = [dΘλ]. To simplify notations, we

write with an obvious inaccuracy,

[α] = [dΘλ] = dΘλ mod Ω0,2
Y (J1Y ). (3.19)

Moreover, we have the following stronger result:

Theorem 3.1. (Krupková [14, 15]). Every first-order Lepage class of E

has a unique closed representative, defined on J 1Y .

The unique closed 2-form mentioned above is denoted by αE and called

the Lepage equivalent of E [14]. If λ is a Lagrangian for E (possibly local,

of order r ≥ 1) then (up to a projection) αE|U = dΘλ; here U denotes

the domain of definition of dΘλ.

In fibered coordinates, where E = Eσω
σ ∧ dt and λ = Ldt, we have

αE = Eσω
σ ∧ dt+

1

2

∂Eσ

∂q̇ν
ωσ ∧ ων +

∂Eσ

∂q̈ν
ωσ ∧ ω̇ν, (3.20)

Θλ = Ldt+
∂L

∂q̇σ
ωσ, (3.21)

and, on the domain of definition of λ,

E = Eλ = p1dΘλ = Eσdq
σ ∧ dt where Eσ =

∂L

∂qσ
−

d

dt

∂L

∂q̇σ
. (3.22)

Since the functions Eσ are affine in the q̈’s, we write

Eσ = Aσ +Bσν q̈
ν, (3.23)

where Aσ and Bσν are functions of (t, qσ, q̇σ),

Bσν = −
∂2L

∂q̇σ∂q̇ν
, Aσ =

∂L

∂qσ
−

∂2L

∂t ∂q̇σ
−

∂2L

∂qν∂q̇σ
q̇ν. (3.24)
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Remark 3.1. In what follows we shall always assume that E is defined

on J2Y and is everywhere nontrivially of order 2. This means that (Bσν)

in (3.23) is everywhere a non-zero matrix, or, equivalently, for every

Lagrangian λ the Cartan 2-form dΘλ is everywhere nontrivially of order

one.

Definition 3.5. Paths of a locally variational form are called extremals.

Equations for paths of a locally variational form (respectively, equations

for holonomic integral sections of associated dynamical distributions) are

called Euler–Lagrange equations. Equations for integral sections of the

dynamical distributions are called Hamilton equations, their integral sec-

tions are then called Hamilton extremals. The dynamical distribution

∆αE
is called the Euler–Lagrange distribution.

Note that locally for every Lagrangian λ of E, ∆αE
= ∆dΘλ

.

A principal question in the theory of Lagrangian systems on fibered

manifolds is the relationship between Hamilton equations on one side

and Euler–Lagrange equations on the other side [13]. It is clear that

every extremal prolonged to J1Y is a Hamilton extremal. The converse,

however need not hold: a Hamilton extremal need not be a solution of

the Euler–Lagrange equations.

The problem of equivalence between the set of extremals and Hamilton

extremals is solved by the following theorem.

Theorem 3.2. (Krupková [15]). If E is regular then the dynamical dis-

tributions ∆α, where α belongs to the first-order Lepage class of E, co-

incide on the common domain of definition (and their rank equals to

1). Consequently, if E is regular then for every α ∈ [α]E the Hamilton

equations are equivalent with the Euler–Lagrange equations.

Notice that if E is regular then every dynamical distribution is locally

spanned by the following semispray:

ζ =
∂

∂t
+ q̇σ ∂

∂qσ
− BσρAρ

∂

∂q̇σ
, (3.25)

where (Bσρ) is the inverse matrix to (Bρν).

Definition 3.6. A Lagrangian λ is called regular if its Euler–Lagrange

form Eλ is regular [14].

Proposition 3.3 and Theorem 3.1 easily imply that we have the follow-

ing equivalent characterizations of a regular Lagrangian:

(1) rank ∆dΘλ
= corank dΘλ = 1.
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(2) If λ is a first-order Lagrangian,

det

(

∂2L

∂q̇σ∂q̇ν

)

6= 0. (3.26)

In view of Theorem 3.1 and a theorem on a canonical form of the

Lepage equivalent of E ([14]) one obtains the following result:

Proposition 3.4. Let E be regular. Then in a neighborhood of eve-

ry point in J1Y there is a local coordinate transformation (t, qσ, q̇σ) →

(t, qσ, pσ) such that every α belonging to the first-order Lepage class of E

takes the canonical form

α = −dH ∧ dt+ dpσ ∧ dqσ + F, (3.27)

where F is a 2-contact π1,0-horizontal 2-form.

This transformation is called Legendre transformation.

Functions H and pσ above can be expressed in terms of a first-order

Lagrangian λ for E; it holds

pσ =
∂L

∂q̇σ
, H = −L + pσq̇

σ. (3.28)

In Legendre coordinates Hamilton equations take the “canonical form”

d(pσ ◦ δ)

dt
= −

∂H

∂qσ
,

d(qσ ◦ δ)

dt
=
∂H

∂pσ
. (3.29)

Summarizing, for a regular Lagrangian system (represented by a re-

gular locally variational form E on J2Y ), all related Hamiltonian sys-

tems are (locally) equivalent and Hamilton equations are equivalent with

Euler–Lagrange equations. Hamilton extremals coincide with prolonga-

tions of extremals, and are solutions of the canonical equations (3.29).

3.3. Nonholonomic constraints. Let us introduce the non-holonomic

constraint structure in J1Y , as defined in [15].

Definition 3.7. By a constraint submanifold or a non-holonomic con-

straint in J1Y we shall understand a submanifold Q ⊂ J1Y , fibered over

Y , precisely speaking, a surjective submersion π1,0|Q : Q→ Y .

We denote by k the codimension of Q and assume that 1 ≤ k ≤ m−1.

A nonholonomic constraint Q in J1Y of codimension k can be locally

expressed by equations

fa(t, qσ, q̇σ) = 0, 1 ≤ a ≤ k, (3.30)
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where

rank

(

∂f a

∂q̇σ

)

= k, (3.31)

or, equivalently, by equations in a normal form,

q̇m−k+a − ga(t, qσ, q̇1, . . . , q̇m−k) = 0, 1 ≤ a ≤ k. (3.32)

A section γ of π defined on an open set W ⊂ X is called a holonomic

path in Q if for every x ∈ W

J1γ(x) ∈ Q. (3.33)

Given a constraint submanifold Q in J1Y there naturally arise the

following local distributions, defined on the domain U of definition of the

functions f a:

(1) DU = annih {df a, 1 ≤ a ≤ k}; rankDU is constant on U due to

(3.31) and equal to 2m+ 1 − k.

(2) C̃U = annih {φa, 1 ≤ a ≤ k}, where

φa = f adt+
∂f a

∂q̇σ
ωσ, 1 ≤ a ≤ k. (3.34)

(3) CU = annih {φa, df a, 1 ≤ a ≤ k}.

C̃U is called extended constraint distribution; it has a constant rank

equal to 2m + 1 − k. CU is called constraint distribution related to the

constraint submanifold Q on U , and its rank equals to 2m+ 1 − 2k.

The following assertions hold ([15]):

Proposition 3.5. Q ∩ U is an integral submanifold of DU . For every

point x ∈ Q, the forms df a(x), 1 ≤ a ≤ k, annihilate the tangent space

TxQ to the manifold Q at x, i.e. along Q, D = annih {df a, 1 ≤ a ≤ k} =

TQ.

Corollary 3.1. Let Q be a non-holonomic constraint of codimension k

in J1Y , and let f a = 0 and f̄a = 0, where 1 ≤ a ≤ k, be two sets of

equations of Q on an open set U ⊂ J1Y . Then there are functions γa
j on

U such that at each point of U , (γa
j ) is a regular matrix, and df̄a = γa

j df
j.

In particular, at each point x ∈ Q ∩ U ,

∂f̄a

∂q̇σ
= γa

j

∂f j

∂q̇σ
. (3.35)

Proposition 3.6. CU is a subdistribution of both C̃U and DU . At the

points of Q ∩ U , the distributions CU and C̃U ∩ D coincide, and define a

distribution of corank k on Q ∩ U .
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Theorem 3.3. Let Q be a non-holonomic constraint in J 1Y , let ι : Q→

J1Y be the canonical embedding of the submanifold Q into J 1Y . Put

ϕ̄a = ι∗φa, 1 ≤ a ≤ k. (3.36)

Then

C = annih {ϕ̄a, 1 ≤ a ≤ k} (3.37)

is a distribution of corank k on Q.

Note that in fibered coordinates

ϕ̄a =
(∂f a

∂q̇σ
◦ ι
)

ω̄σ = ω̄m−k+a −
∂ga

∂q̇l
ω̄l (3.38)

where we have denoted

ω̄σ = ι∗ωσ = dqσ − (q̇σ ◦ ι)dt, (3.39)

i.e.,

ω̄l = dql − q̇ldt, 1 ≤ l ≤ m− k,

ω̄m−k+a = dqm−k+a − gadt, 1 ≤ a ≤ k.
(3.40)

Definition 3.8. [15] The distribution C (3.37) on Q is called canonical

distribution. 1-forms belonging to the annihilator C0 of C, are called

canonical constraint 1-forms. The ideal in the exterior algebra of diffe-

rential forms on Q generated by C0 is called canonical constraint ideal,

and denoted by I(C0); its homogeneous component of degree p is denoted

by Ip(C0). Elements of the ideal I(C0) are called canonical constraint

forms.

One can show by a direct computation that the canonical distribution

can be equivalently locally spanned by the following system of vector

fields:

∂c

∂t
≡

∂

∂t
+

k
∑

a=1

(

ga −
∂ga

∂q̇l
q̇l
) ∂

∂qm−k+a
,

∂c

∂qs
≡

∂

∂qs
+

k
∑

a=1

∂ga

∂q̇s

∂

∂qm−k+a
, 1 ≤ s ≤ m− k,

∂

∂q̇s
, 1 ≤ s ≤ m− k.

(3.41)
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For the sake of simplicity we shall also use the following notations:

dc

dt
=

∂

∂t
+ q̇l ∂

∂ql
+ ga ∂

∂qm−k+a
+ q̈l ∂

∂q̇l
=
∂c

∂t
+ q̇l ∂c

∂ql
+ q̈l ∂

∂q̇l
,

d′c
dt

=
∂

∂t
+ q̇l ∂

∂ql
+ ga ∂

∂qm−k+a
=
∂c

∂t
+ q̇l ∂c

∂ql

=
dc

dt
− q̈l ∂

∂q̇l
=
d′

dt
◦ ι.

(3.42)

In general, the canonical distribution is not completely integrable.

There are two interesting particular cases of non-holonomic constraints

as follows:

Definition 3.9. [15] A non-holonomic constraint Q is called

(1) simple if the canonical distribution C is projectable onto a distri-

bution on Y ,

(2) semiholonomic if the canonical distribution C is completely inte-

grable.

It can be proved [15] that every semiholonomic constraint is simple.

Consequently it can be equivalently modeled as either

• a fibered submanifold Q ⊂ J1Y with the canonical distribution C

completely integrable (i.e., the canonical constraint ideal I(C0) closed),

or

• a completely integrable, nowhere vertical distribution on the total

space Y .

Another result shows [15] that a non-holonomic constraint is simple if

and only if it is locally defined by equations affine in velocities. Conse-

quently, a simple non-holonomic constraint can be equivalently modeled

as either

• a fibered submanifold Q ⊂ J1Y with the canonical distribution C

projectable onto a distribution on Y , or

• a nowhere vertical distribution on Y , which need not be completely

integrable.

3.4. Constrained Lagrangian systems. Let us consider a Lagrangian

system on J1Y . Recall that it is defined by a locally variational form E

on J2Y , as the first-order Lepage class [α] of E (see (3.19))

[α] = [dΘλ] = dΘλ mod Ω0,2
Y (J1Y ). (3.43)

If ι : Q → J1Y is a non-holonomic constraint and I(C0) the corre-

sponding canonical constraint ideal, we have another equivalence, de-

noted by ≈, on 2-forms on Q (with the same domain of definition):

η1 ≈ η2 iff η1 − η2 = F̄ + ϕ, (3.44)
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where F̄ is a (local) 2-contact 2-form on Q, and ϕ is a constraint 2-

form. We denote by [[η]] the class of η. If [α] is a Lepage class on J 1Y

associated with a locally variational form E ∈ Ω2(J2Y ) then for any of

its two elements defined on the same subset of J1Y ,

α1 ∼ α2 ⇒ ι∗α1 ≈ ι∗α2. (3.45)

Definition 3.10. [15, 20] Let [α] = [dΘλ] be a Lagrangian system on

J1Y . By the associated constrained Lagrangian system we mean the

class [[ι∗α]] = [[ι∗dΘλ]]. Each form ι∗dΘλ + ϕ, where ϕ ∈ I2(C0), is

called constrained Cartan 2-form of λ.

Note that every element of [[ι∗dΘλ]] is of the form

ᾱ = ι∗dΘλ + F̄ + ϕ, (3.46)

where F̄ ∈ Ω0,2
Y (Q) and ϕ ∈ I2(C0).

In fibered coordinates, where Q is given by (3.32) and the Euler–

Lagrange form of λ is represented by (3.23), (3.24), we have [15, 20]

ᾱ = Ālω̄
l ∧ dt+ B̄lsω̄

l ∧ dq̇s + F̄ls ω̄
l ∧ ω̄s + ϕ, (3.47)

where ω̄l = ι∗ωl, ϕ ∈ I2(C0), F̄ls are arbitrary, and

Āl=

(

Al+Am−k+i
∂gi

∂q̇l
+

(

Bl,m−k+i+Bm−k+j,m−k+i
∂gj

∂q̇l

)

d′gi

dt

)

◦ ι,

B̄ls=

(

Bls+Bl,m−k+i
∂gi

∂q̇s
+Bs,m−k+i

∂gi

∂q̇l
+Bm−k+i,m−k+j

∂gi

∂q̇l

∂gj

∂q̇s

)

◦ ι,
(3.48)

and summations run over l, s = 1, 2, . . . , m − k and i, j = 1, 2, . . . , k.

Since (Bσν) is a symmetric matrix, the above formula gives us that the

matrix (B̄ls) is symmetric.

Definition 3.11. [15] The constraint dynamical distribution related with

a 2-form ᾱ, denoted by ∆ᾱ, is defined to be the subdistribution of the

canonical distribution C, annihilated by the 1-forms iξᾱ, where ξ runs

over all π1-vertical vector fields on Q belonging to C. This means that

∆ᾱ = annih {ϕ̄a, 1 ≤ a ≤ k, iξᾱ, ∀ξ ∈ V(J1Y ) ∩ C}. (3.49)

In particular, the constraint dynamical distribution related with a con-

strained Cartan 2-form is called constraint Euler–Lagrange distribution.

Definition 3.12. [15, 20] Let [[ι∗dΘλ]] be a constrained Lagrangian sys-

tem. Then for any representative ᾱ of the class [[ι∗dΘλ]], equations for

holonomic integral sections of the constraint dynamical distribution ∆ᾱ,

i.e., the equations

J1γ∗iξᾱ = 0 for every π1-vertical vector field ξ ∈ C, (3.50)
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where γ : W → Y , J1γ(W ) ⊂ Q, are called constrained Euler–Lagrange

equations. Solutions of constrained Euler–Lagrange equations are called

constrained extremals.

We note that (locally) constrained Euler–Lagrange equations do not

depend upon the choice of a representative ᾱ of the class [[ι∗dΘλ]]. This

means that with help of a (local, possibly higher-order) Lagrangian λ for

E we can write the constrained Euler–Lagrange equations in the form

J1γ∗iξ(ι
∗dΘλ) = 0 for every π1-vertical vector field ξ ∈ C, (3.51)

where γ : W → Y , J1γ(W ) ⊂ Q.

For λ = Ldt denote

L̄ = L ◦ ι, L̄a =
∂L

∂q̇m−k+a
◦ ι, 1 ≤ a ≤ k, (3.52)

and

Θι∗λ = L̄ dt+
m−k
∑

s=1

∂L̄

∂q̇s
ω̄s. (3.53)

We get the following relation between the forms ι∗Θλ and Θι∗λ:

Proposition 3.7. [20]

ι∗Θλ = Θι∗λ + L̄a ϕ̄
a. (3.54)

For convenience we shall use the notation

µs =
∂c

∂qs
−
dc

dt

∂

∂q̇s
, µ′

s =
∂c

∂qs
−
d′c
dt

∂

∂q̇s
(3.55)

for the so called C-modified Euler–Lagrange operator and cut C-modified

Euler–Lagrange operator, respectively.

In fibered coordinates constrained Euler–Lagrange equations take the

form a mixed system of m− k second-order and k first-order ODE’s for

sections γ of π as follows:

Theorem 3.4. [15, 20] Let [dΘλ] be a Lagrangian system on J1Y , Q ⊂

J1Y a non-holonomic constraint. A section γ : W → Y of π is a con-

strained extremal if and only if it satisfies J 1γ(W ) ⊂ Q, i.e.

fa ◦ J1γ = 0, 1 ≤ a ≤ k, (3.56)

and the constrained Euler–Lagrange equations (3.51) . The latter take

one of the following equivalent coordinate forms:

(1) By means of L,

(Āl + B̄lsq̈
s) ◦ J2γ = 0, 1 ≤ l ≤ m− k, (3.57)

where Āl, B̄ls are given by (3.24), (3.48).
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(2) By means of L̄ and L̄a,
(

µl(L̄) − L̄a µl(g
a)
)

◦ J2γ = 0, 1 ≤ l ≤ m− k. (3.58)

Consequently, the functions Āl, B̄ls are equivalently expressed as follows:

Āl = µ′
l(L̄) − L̄a µ

′
l(g

a), B̄ls = −
∂2L̄

∂q̇l∂q̇s
+ L̄a

∂2ga

∂q̇l∂q̇s
. (3.59)

Definition 3.13. The operator

EC
s (L̄, L̄a) = µs(L̄) − L̄a µs(g

a), 1 ≤ s ≤ m− k (3.60)

is called the constraint Euler–Lagrange operator.

The definition of a regular constrained system is quite similar to the

unconstrained case.

Definition 3.14. [15] A constrained Lagrangian system [[ι∗dΘλ]] is called

regular if around each point of Q there exists a constraint dynamical dis-

tribution ∆ᾱ such that rank ∆ᾱ = 1.

Regular constrained systems are characterized as follows (see [15, 38]):

Theorem 3.5. Let [[ι∗dΘλ]] be a constrained Lagrangian system. The

following conditions are equivalent:

(1) [[ι∗dΘλ]] is regular.

(2) The (m− k) × (m− k)-matrix (B̄sl) is regular, i.e.,

det(B̄sl) 6= 0. (3.61)

(3) Every first-order Lagrangian λ = Ldt satisfies the regularity con-

dition

det

((

∂2L

∂q̇l∂q̇s
+

∂2L

∂q̇m−k+a ∂q̇s

∂ga

∂q̇l
+

∂2L

∂q̇m−k+a ∂q̇l

∂ga

∂q̇s

+
∂2L

∂q̇m−k+a∂q̇m−k+b

∂ga

∂q̇l

∂gb

∂q̇s

)

◦ ι

)

6= 0.
(3.62)

(4) Every first-order Lagrangian λ = Ldt satisfies the regularity con-

dition

det

(

∂2L̄

∂q̇l∂q̇s
−

(

∂L

∂q̇m−k+a
◦ ι

)

∂2ga

∂q̇l∂q̇s

)

6= 0, (3.63)

where L̄ = L ◦ ι.

(5) Every constraint dynamical distribution is locally spanned by the

following constraint semispray:

ζ =
∂

∂t
+

m−k
∑

l=1

q̇l ∂

∂ql
+

k
∑

a=1

ga ∂

∂qm−k+a
−

m−k
∑

l,s=1

B̄lsĀs
∂

∂q̇l
, (3.64)



DIFFERENTIAL EQUATIONS WITH CONSTRAINTS 113

where (B̄ls) is the inverse matrix to (B̄ls).

(6) The constrained Euler–Lagrange equations have an equivalent form

q̇m−k+a = ga(t, qσ, q̇1, . . . , q̇m−k), 1 ≤ a ≤ k,

q̈l = −B̄lsĀs, 1 ≤ l ≤ m− k.
(3.65)

We stress that, as one can see from any of the above equivalent regu-

larity conditions, a constrained system arising from a regular Lagrangian

system need not be regular.

Corollary 3.2. If Q ⊂ J1Y is a simple non-holonomic constraint then

the regularity condition reads

det

(

∂2L̄

∂q̇l∂q̇s

)

6= 0, (3.66)

where L̄ = L ◦ ι.

3.5. Constrained Hamilton equations. Constrained Hamiltonian sys-

tems were studied in detail in [3, 9, 38].

Let [α] = [dΘλ] be a Lagrangian system on J1Y , ι : Q → J1Y a non-

holonomic constraint, [[ι∗α]] = [[ι∗dΘλ]] the corresponding constrained

system. For every ᾱ = ι∗α ∈ [[ι∗dΘλ]] we have the constraint dynamical

distribution ∆ᾱ defined on the domain of definition of ᾱ, say U ⊂ Q.

Directly from the definition of constraint dynamical distribution we

can see that if ᾱ1 and ᾱ2 differ by a constraint form, their constraint

dynamical distributions ∆ᾱ1
and ∆ᾱ2

coincide.

Definition 3.15. [38] Let [dΘλ] be a Lagrangian system on J1Y . For

every α ∈ [dΘλ] the equivalence class

ᾱI = ι∗α mod I2(C0) (3.67)

is called constrained Hamiltonian system related with α and the con-

straint Q.

Equations for integral sections of the corresponding constraint dyna-

mical distribution ∆ᾱ, i.e.

δ∗ϕ̄a = 0, 1 ≤ a ≤ k, δ∗iξᾱ = 0 ∀ξ ∈ V(Q) ∩ C, (3.68)

where ᾱ ∈ ᾱI and δ is a section of π1|Q : Q → X, are called constrained

Hamilton equations.

Note that for every ᾱ ∈ [[ι∗dΘλ]] on U , holonomic integral sections of

∆ᾱ coincide with prolongations of constrained extremals in U .
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Theorem 3.6. [38] Let [[ι∗dΘλ]] be a regular constrained Lagrangian

system. Then for any two its Hamiltonian systems ᾱ1I , ᾱ2I on an open

subset U their constrained dynamical distributions coincide, i.e. ∆ᾱ1
=

∆ᾱ2
.

Corollary 3.3. If the regularity condition (3.61) is satisfied then con-

strained Euler–Lagrange equations are equivalent with (any) constrained

Hamilton equations.

For regular constrained systems we can introduce a constraint Legendre

transformation.

Theorem 3.7. [38] Let ι : Q → J1Y be a non-holonomic constraint,

[[ι∗dΘλ]] a constrained Lagrangian system. Let x ∈ Q be a point. Suppose

that in a neighborhood of x,

∂B̄ls

∂q̇r
=
∂B̄lr

∂q̇s
, 1 ≤ l, r, s ≤ m− k. (3.69)

Then there exists a neighborhood U ⊂ Q of x, and, on U , functions Pl,

1 ≤ l ≤ m − k, and a 1-form η, such that the class [[ι∗dΘλ]] has a

representative of the form

ᾱ′ = η ∧ dt+ dPl ∧ dq
l. (3.70)

If, moreover, the constrained system [[ι∗dΘλ]] is regular, then (t, qσ, q̇l) →

(t, qσ, Pl) is a coordinate transformation on U .

Proof. In a neighborhood of x, let us consider the elements of the equiva-

lence class [[ι∗dΘλ]] in the form (3.47). By assumption, from the Poincaré

Lemma we get a neighborhood U ⊂ Q of x and functions Pl, 1 ≤ l ≤

m− k, on U such that

B̄ls = −
∂Pl

∂q̇s
. (3.71)
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Hence, in the class [[ι∗dΘλ]] there is a local representative of the form

ᾱ = Āl ω̄
l ∧ dt +

∂Pl

∂q̇s
dq̇s ∧ ω̄l

= Ālω̄
l ∧ dt+ dPl ∧ ω̄

l −
∂Pl

∂t
dt ∧ ω̄l −

∂Pl

∂qs
dqs ∧ ω̄l

−
∂Pl

∂qm−k+a
dqm−k+a ∧ ω̄l

=

(

Āl +
∂Pl

∂t

)

dql ∧ dt+ dPl ∧ dq
l − q̇l dPl ∧ dt

−
∂Pl

∂qs
(ω̄s + q̇sdt) ∧ ω̄l −

∂Pl

∂qm−k+a
(ω̄m−k+a + gadt) ∧ ω̄l

=

(

Āl +
∂Pl

∂t
+
∂Pl

∂qs
q̇s +

∂Pl

∂qm−k+a
ga

)

dql ∧ dt− q̇ldPl ∧ dt

+ dPl ∧ dq
l +

∂Pl

∂qs
ω̄l ∧ ω̄s −

∂Pl

∂qm−k+a
ω̄m−k+a ∧ ω̄l.

(3.72)

This means that we also have a representative

ᾱ′ =

(

Āl +
∂Pl

∂t
+
∂Pl

∂qs
q̇s +

∂Pl

∂qm−k+a
ga

)

dql ∧ dt− q̇sdPs ∧ dt

+ dPl ∧ dq
l

=

(

Āl +
∂Pl

∂t
+

(

∂Pl

∂qs
−
∂Ps

∂ql

)

q̇s +
∂Pl

∂qm−k+a
ga

)

dql ∧ dt

−
∂Ps

∂qm−k+a
q̇sdqm−k+a ∧ dt−

∂Ps

∂q̇l
q̇sdq̇l ∧ dt+ dPl ∧ dq

l.

(3.73)

We can write it in the form ᾱ′ = η ∧ dt+ dPl ∧ dq
l with

η = η̄0dt+ η̄ldq
l + η̄m−k+adq

m−k+a + η̃ldq̇
l, (3.74)

where η̄0 is an arbitrary function on U , and

η̄l = Āl +
∂Pl

∂t
+

(

∂Pl

∂qs
−
∂Ps

∂ql

)

q̇s +
∂Pl

∂qm−k+a
ga,

η̃l = −
∂Ps

∂q̇l
q̇s, η̄m−k+a = −

∂Pl

∂qm−k+a
q̇l.

(3.75)

Finally, the regularity condition for the transformation (t, qσ, q̇l) → (t, qσ,

Pl) coincides with (3.61). �

Remark 3.2. Condition (3.69) rewritten in terms of a first-order La-

grangian reads
(

∂

∂q̇r

(

∂L

∂q̇m−k+a
◦ ι

))

∂2ga

∂q̇l∂q̇s
=

(

∂

∂q̇s

(

∂L

∂q̇m−k+a
◦ ι

))

∂2ga

∂q̇l∂q̇r
. (3.76)
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The integrability condition for the B̄sl’s ((3.69), (3.76)) ensures that

one can express functions Pl explicitly. To this purpose we consider a

mapping χ : [0, 1]×W →W defined by (u, t, qσ, q̇l) → (t, qσ, uq̇l), where

W ⊂ Q is an appropriate open set. Then Poincaré Lemma gives us a

solution [38]

Pl = −q̇s
∫ 1

0
(B̄ls ◦ χ) du

=
∂L̄

∂q̇l
− q̇s

∫ 1

0

((

∂L

∂q̇m−k+a
◦ ι

)

∂2ga

∂q̇l∂q̇s

)

◦ χ du.
(3.77)

Definition 3.16. [38] We call the above functions Pl, 1 ≤ l ≤ k, con-

straint momenta, and the corresponding coordinate transformation con-

straint Legendre transformation. The 1-form η in (3.70) is called a con-

straint energy 1-form.

The 1-form η is determined up to a constraint 1-form, and need not be

closed. In constraint Legendre coordinates we can write

ηI = η0 dt+ ηl dq
l + ηl dPl mod I1(C0). (3.78)

Corollary 3.4. If the Lagrangian system [[ι∗dΘλ]] is regular, then the

constraint Euler–Lagrange equations are equivalent with constraint Hamil-

ton equations. In constraint Legendre coordinates Hamilton equations

take the following canonical form

d

dt
(Pl ◦ δ) = ηl,

d

dt
(ql ◦ δ) = −ηl,

d

dt
(qm−k+a ◦ δ) = ga, (3.79)

where 1 ≤ l ≤ m− k, 1 ≤ a ≤ k. Constraint Hamilton equations depend

upon the choice of a representative α ∈ [dΘλ], rather than on a particular

Lagrangian λ.

For simple non-holonomic constraints, which, as we have seen in Sec.

3.3, can be modeled by a distribution on Y , and are given by (3.30) (resp.

(3.32)) where the functions f a (resp. ga) are affine in the velocities) the

situation essentially simplifies:

Theorem 3.8. Assume that Q is a simple non-holonomic constraint.

Then (3.69) is fulfilled identically and the constraint momenta are defined

by

Pl =
∂L̄

∂q̇l
, 1 ≤ l ≤ m− k. (3.80)

Regularity condition takes the form

det

(

∂2L̄

∂q̇l∂q̇s

)

6= 0. (3.81)
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Moreover, if the constraint Q is semiholonomic then the family of energy

1-forms (3.78) contains a closed 1-form equal to −dH̄, where

H̄ = −L̄ + Plq̇
l. (3.82)

3.6. Holonomic Lagrangian systems. The case of Lagrangian sys-

tems subjected to holonomic constraints can be considered as a special

case of the nonholonomic theory (see [15]).

Definition 3.17. Let π : Y → X be a fibered manifold, dimX = 1,

dim Y = m + 1, m > 1. By a holonomic constraint in Y we mean a

fibered submanifold π0 : Q0 → X of π.

If X = R and Y = R ×M where M is a manifold of dimension m,

we also speak about a rheonomic constraint. If a rheonomic constraint

is of the form Q0 = R × N where N is a submanifold of M , it is called

skleronomic.

We denote by ι0 : Q0 → Y the canonical inclusion of Q0 into Y , and

assume codim Q0 = k, where 1 ≤ k < m. The constraint Q0 is locally

defined by a system of algebraic equations

ua(t, qσ) = 0, 1 ≤ a ≤ k, (3.83)

where the functions ua satisfy the rank condition

rank

(

∂ua

∂qσ

)

= k. (3.84)

Hence, around every point x ∈ Q0 there is a fibered chart (U, χ) on Y ,

adapted to the submanifold Q0, i.e. χ = (t, q1, . . . , qm−k, u1, . . . , uk).

The fibered submanifold Q0 can be prolonged to J1Q0 ⊂ J1Y , codim

J1Q0 = 2k, locally defined by the equations

ua = 0,
dua

dt
= 0, 1 ≤ a ≤ k. (3.85)

J1Q0 is a submanifold of the manifold Q ⊂ J1Y , defined by the equations

fa ≡
dua

dt
= 0, 1 ≤ a ≤ k. (3.86)

We can see that Q is a semiholonomic constraint in J 1Y , codimQ = k.

The only admissible holonomic paths in Q are sections γ of the fibered

manifold Q0 → X, i.e. such that J1γ ∈ J1Q0. This means that for a

Lagrangian system [dΘλ] on J1Y , the corresponding constrained system

[[ι∗dΘλ]] can be restricted to J1Q0.
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Proposition 3.8. Let Q0 ⊂ Y be a holonomic constraint, Q the semi-

holonomic constraint related with Q0. Let C be the canonical distribution

on Q. Then for every x ∈ J1Q0

C(x) = TxJ
1Q0. (3.87)

Equivalently, the annihilator C0 of the canonical distribution on J1Q0 is

trivial, C0(x) = {0}.

Corollary 3.5. Let Q0 be a holonomic constraint in Y , Q ⊂ J1Y the

associated semiholonomic constraint. Then the canonical distribution C

on Q is completely integrable and projects onto a (completely integrable)

distribution on Y . Along J1Q0 the canonical distribution coincides with

the tangent bundle to J1Q0 and projects onto the tangent bundle TQ0 →

Q0.

Proposition 3.9. Let ι0 : Q0 → Y be a holonomic constraint, [dΘλ] a

Lagrangian system on J1Y . Then for every α ∈ [dΘλ]

(J1ι∗0 α)I = J1ι∗0 α. (3.88)

Moreover, for every first-order Lagrangian λ

J1ι∗0 Θλ = ΘJ1ι∗
0

λ. (3.89)

This means that the corresponding constrained system on J 1Q0 satisfies

[[J1ι∗0 dΘλ]] = [J1ι∗0 dΘλ] = J1ι∗0 [dΘλ] = [dΘJ1ι∗
0

λ]

≡ dΘJ1ι∗
0

λ mod Ω0,2
Y (J1Q0).

(3.90)

For simplicity of notations we write

λ̄ = J1ι∗0 λ, L̄ = L ◦ J1ι0 (3.91)

for the restricted Lagrangian.

By the above propositions, contrary to the non-holonomic case, holo-

nomic constraints represent no constraints in the tangent bundle to the

constraint submanifold. Consequently, holonomic constrained systems

are treated in the same way as unconstrained systems on fibered mani-

folds. Simply, instead of a Lagrangian λ and a constraint Q0 in Y one

can consider the restricted Lagrangian λ̄ on J1Q0.

Let us summarize some of the main properties of holonomic systems:

Corollary 3.6. The holonomic constraint Euler–Lagrange form satisfies

EC
λ = Eλ̄, (3.92)
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and constraint Euler–Lagrange equations become simply equations for sec-

tions γ of the fibered manifold π0 : Q0 → X as follows:

J1γ∗iξdΘλ̄ = 0 ∀ξ ∈ V(J1Q0), (3.93)

or, in adapted fibered coordinates,

∂L̄

∂ql
−

d

dt

∂L̄

∂q̇l
= 0, 1 ≤ l ≤ m− k. (3.94)

Hamilton equations are then equations for sections of the prolonged ma-

nifold (π0)1 : J1Q0 → X,

δ∗iξdΘλ̄ = 0 ∀ξ ∈ V(J1Q0). (3.95)

The regularity condition reads

det
( ∂2L̄

∂q̇l∂q̇s

)

6= 0.

The class (3.90) has the canonical form

−dH̄ ∧ dt+ dPl ∧ dq
l mod Ω0,2

Y (J1Q0), (3.96)

where the Hamiltonian and momenta take the form

H̄ = −L̄ + Plq̇
l, Pl =

∂L̄

∂q̇l
, 1 ≤ l ≤ m− k. (3.97)

The holonomic Hamilton equations then take the canonical form

d

dt
(Pl ◦ δ) = −

∂H̄

∂ql
,

d

dt
(ql ◦ δ) =

∂H̄

∂Pl
. (3.98)

3.7. Example: A sleigh on an inclined plane. Let us consider an

example of a nonholonomic motion. The situation is presented on the

following picture:

α

β

There is an object on the inclined plane and a cutting knife. The

center of mass of the object lies on the straight line along the knife edge

at a distance a from the point (x, y) of contact of the knife and the plane
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and β measures the angle between the straight line along the knife edge

and x axis, see [29].

This mechanical system is modeled on the fibered manifold π : R ×

S1 × R
2 → R, (t, β, x, y) are coordinates on R × S1 × R

2.

We introduce “generalized coordinates”

q1 = β, q2 = x, q3 = y, (3.99)

β ∈ (−π
2
, π

2
).

The Lagrange function L of the system consists of three parts, the first

one represents the energy of rotation, the second one characterizes the

kinetic energy of translation of the mechanical system and the third one

is the potential energy of the system.

Because the center of mass C does not coincide with the point of

contact, the energy of rotation has to be modified. At first we write

down the formulas for angular velocities associated with Euler angles

which represent rotational motion of this system,

ω′
x = 0,

ω′
y = 0,

ω′
z = β̇,

(3.100)

for β̄ = β, Θ̄ = 0, ψ̄ = 0. Then

T rot =
1

2
Jβ̇2 +mvtr(ω

′ ×R′), (3.101)

where ω′ is the angular velocity vector, R′ = (x′, y′, z′) is the position

vector between point of contact and the center of mass and vtr is the

velocity vector of a translation. The following identities hold

ω′ × R′ = (ω′
x, ω

′
y, ω

′
z) × (x′, y′, z′)

= (ω′
yz

′ − ω′
zy

′,−ω′
xz

′ + ω′
zx

′, ω′
xy

′ − ω′
yx

′)

= (−β̇y′, β̇x′, 0) = (−β̇a sin β, β̇a cos β, 0).

(3.102)

The second term of (3.101) now can be expressed as follows

mvtr(ω
′ × R′) = m(ẋ, ẏ, ż)(ω′ ×R′) = maβ̇(ẏ cos β − ẋ sin β). (3.103)

The kinetic energy of translation and the potential energy take the form

T tr =
1

2
m(ẋ2 + ẏ2), V = −mgx sinα, (3.104)

where angle α represents an inclination of the plane.

Finally the Lagrange function L of this mechanical system is expressed

by

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Jβ̇2 +maβ̇(ẏ cos β − ẋ sin β)−mgx sinα, (3.105)
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g is the gravitational acceleration. For the variations of dx and dy we

obtain

dy = tanβdx. (3.106)

This is equivalent to

ẏ = ẋ tan β. (3.107)

Then constraint function f1 is expressed by

f1 = ẏ − g1 = ẏ − ẋ tan β. (3.108)

With respect to (3.24) we have

A1 = 0,

A2 = −mg sinα+maβ̇2 cos β,

A3 = maβ̇2 sin β,

(3.109)

and

Bσν =





−J ma sin β −ma cos β

ma sin β −m 0

−ma cos β 0 −m



 . (3.110)

The matrix Bσν is regular, det(Bσν) 6= 0. The Euler–Lagrange equations

are then

β̈ = −
amg sinα sin β

J −ma2
,

ẍ = −
Jg sinα−Jaβ̇2 cos β−ma2g sinα cos2 β+ma3β̇2 cos β

J −ma2
,

ÿ =
a sin β(mag sinα cos β + Jβ̇2 −ma2β̇2)

J −ma2
.

(3.111)

Let us return to the constrained case. Now a = 1, k = 1. The rank

condition (3.31) is satisfied. Indeed,

rank

(

∂f 1

∂q̇σ

)

= rank
(

0, − tan β, 1
)

= 1. (3.112)

So, constraint (3.108) generates a constraint submanifold Q ⊂ J 1Y by

Q =
{

(t, β, x, y, β̇, ẋ, ẏ); ẏ = ẋ tan β
}

. (3.113)

The constraint distribution on Q is annihilated by one 1-form ϕ̄1 = ι∗φ1,

where

φ1 = dy − tan βdx. (3.114)

The constraint distribution in not completely integrable, i.e. there does

not exist any 1-form µ such that

dϕ̄1 = µ ∧ ϕ̄1. (3.115)
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Indeed,

dϕ̄1 = d(dy − tanβdx) = −
1

cos2 β
dβ ∧ dx. (3.116)

The constraint is affine in the velocities, i.e. the constraint is simple

and it can be equivalently represented by a (non-integrable) distribution

on Y , generated by φ1.

From (3.48) we get

Ā1 = −
maβ̇ẋ

cos β
,

Ā2 = −
m(g sinα cos3 β − aβ̇2 cos2 β + β̇ẋ sin β)

cos3 β
,

(3.117)

and

B̄ =

(

−J 0

0 −m−m tan2 β

)

. (3.118)

The determinant of B̄ is non-zero, so the constrained system is regular.

Constrained Euler–Lagrange equations (3.65) consist of two equations

of the second order

β̈ = −
maβ̇ẋ

J cos β
,

ẍ = −g sinα cos2 β + aβ̇2 cos β − β̇ẋ tan β,

(3.119)

and of one equation of the first order

ẏ = ẋ tan β. (3.120)

The “constraint Lagrangian” L̄ = L ◦ ι is expressed by

L̄ =
1

2

mẋ2

cos2 β
+

1

2
Jβ̇2 −mgx sinα, (3.121)

and we can check by a direct computation that the same equations are

obtained from the functions L̄ and

L̄1 = mẋ tan β +maβ̇ cos β (3.122)

using Euler–Lagrange equations in the form (3.58).

The constraint Legendre transformation is given by

(t, β, x, y, β̇, ẋ) → (t, β, x, y, Pβ, Px), (3.123)

where constraint momenta (3.77) take the form

Pβ = Jβ̇,

Px =
mẋ

cos2 β
.

(3.124)



DIFFERENTIAL EQUATIONS WITH CONSTRAINTS 123

The class of constraint energy 1-forms is then expressed in constraint

Legendre coordinates by

ηI = η̄0dt

−
aPβPx cos β

J
dβ+

(

−mg sinα +
maP 2

β

J2 cos β
+
PβPx sin β

J cos β

)

dx

−
Pβ

J
dPβ −

Px cos2 β

m
dPx mod I1(C0).

(3.125)

Hence, constrained Hamilton equations consist of four first-order equa-

tions which, in simplified notation, can be written as follows:

Ṗβ = −
aPβPx cos β

J
,

Ṗx = −mg sinα +
maP 2

β

J2 cos β
+
PβPx sin β

J cos β
,

β̇ =
Pβ

J
,

ẋ =
Px cos2 ϕ

m
,

(3.126)

and of the equation of the constraint ẏ = ẋ tan β.

4. Fields with differential constraints

In the sequel we consider a fibered manifold π : Y → X where

dimX = n, and its jet prolongations. As above, m denotes the fiber

dimension (i.e. dimY = m + n), and we assume m > 1.

First, we summarize main concepts from the theory of unconstrained

Lagrangian and Hamiltonian systems, then we turn to the constraint

structure in J1Y , and finally we are interested in Lagrangian and Hamil-

tonian constrained field equations. Main sources for this section are

[7, 10, 12, 13, 19, 21] for the unconstrained theory, [22] for the non-

holonomic constraint structure, and [2, 22, 37, 38], for the nonholonomic

constrained systems. In this section we also present new results concern-

ing constrained Hamilton–De Donder systems. We study constrained

Hamilton–De Donder equations, regularity, and existence of constraint

Legendre transformation.

4.1. Dynamical forms and locally variational forms. Let E be a

dynamical form on J2Y . In fibered coordinates,

E = Eσω
σ ∧ ω0, (4.1)

where Eσ are functions of (xi, yν, yν
i , y

ν
ij), and ω0 denotes the local volu-

me element (2.2). The coordinate form of the equation for paths of E
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(3.1) is a system of m second-order partial differential equations for the

components (γν) of sections γ of π as follows:

Eσ

(

xi, γν(xi),
∂γν

∂xi
,
∂2γν

∂xi∂xj

)

= 0, 1 ≤ σ ≤ m. (4.2)

Again, equations for paths of dynamical forms can be represented by

means of exterior differential systems; now, however, locally generated

by n-forms.

Proposition 4.1. [19] Let E be a dynamical form on J 2Y . A section γ

of π is a path of E if and only if

J2γ∗iξα = 0 ∀ξ ∈ V(J2Y ), (4.3)

where α is any (n+ 1)-form such that p1α = E.

Proof of this statement is the same as that of Proposition 3.1.

In the “PDE situation” we can proceed in full analogy with the case of

mechanics, and consider Lepage classes and corresponding Hamiltonian

systems:

Definition 4.1. [22] Let E ∈ Ωn+1
Y (J2Y ) be a dynamical form. The

equivalence class of (n+ 1)-forms (on an open subset U ⊂ J 2Y ) defined

by

α1 ∼ α2 iff p1α1 = p1α2 = E|U (4.4)

is called Lepage class of E on U . The family of all local Lepage classes

of E is referred to as Lepage class of E and is denoted by [α]E, or simply

[α].

By the above proposition, the equation for paths of E (on U) coincides

with equations for holonomic integral sections of the exterior differential

system Hα, generated by the following system of n-forms

iξα ∀ξ ∈ V(J2Y ), (4.5)

where α is any representative of the Lepage class of E (on U).

Definition 4.2. [19, 22] Let [α] be a Lepage class of E. Every repre-

sentative α ∈ [α] is called a Hamiltonian system associated with E. The

exterior differential system Hα is called a Hamiltonian EDS related to E.

Equations for (all) integral sections of Hα are called Hamilton equations

associated with E.

Let us turn to locally variational dynamical forms. By definition this

means that around each point E = Eλ, for a local Lagrangian λ (recall

that a Lagrangian of order r is defined to be a horizontal n-form on J rY ).
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In fibered coordinates, the components Eσ of E take the form of Euler–

Lagrange expressions of λ = Lω0. Necessary and sufficient conditions

for a (second-order) dynamical form to be locally variational read [1, 11]

∂Eσ

∂yν
ij

−
∂Eν

∂yσ
ij

= 0,

∂Eσ

∂yν
i

+
∂Eν

∂yσ
i

− 2
d

dxj

∂Eν

∂yσ
ij

= 0,

∂Eσ

∂yν
−
∂Eν

∂yσ
+

d

dxi

∂Eν

∂yσ
i

−
d

dxi

d

dxj

∂Eν

∂yσ
ij

= 0,

(4.6)

and the corresponding Tonti Lagrangian for E is

L = yσ

∫ 1

0

Eσ(xi, uyν, uyν
i , uy

ν
ij)du. (4.7)

Notice that, contrary to the case of ordinary differential equations,

variationality conditions (4.6) do not imply that the locally variational

form E should be affine in the second derivatives. Moreover, second-order

locally variational forms need not come from Lagrangians of the first

order. This means that Tonti Lagrangian need not be reducible to a first-

order Lagrangian. (From the formula for Euler–Lagrange expressions we

can see immediately that a necessary condition for reducibility is that

Eσ should be affine in the second derivatives yν
ij).

Let us summarize basic definitions:

Definition 4.3. The Lepage class [α] of a locally variational form E is

called Lagrangian system. Every element α ∈ [α] is called a Hamiltonian

system associated with E. Paths of a locally variational form E are called

extremals. Equations for paths of a locally variational form (respectively,

equations for holonomic integral sections of associated Hamiltonian EDS)

are called Euler–Lagrange equations. Equations for integral sections of

the Hamiltonian EDS are called Hamilton equations, their integral sec-

tions are then called Hamilton extremals.

4.2. Euler–Lagrange and Hamilton–De Donder equations in first-

order field theory. In what follows we shall be concerned merely with

locally variational forms that arise from local first-order Lagrangians.

Such dynamical forms, among others, have the following properties:

• Around each point in J2Y it holds E = Eλ, where λ is a Lagrangian

defined on an open subset of J1Y . In fibered coordinates where λ = Lω0,

Eλ = Eσω
σ ∧ ω0, Eσ =

∂L

∂yσ
−

d

dxj

∂L

∂yσ
j

. (4.8)
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This means that the Euler–Lagrange equations in fibered coordinates take

the familiar form
(

∂L

∂yσ
−

d

dxj

∂L

∂yσ
j

)

◦ J2γ = 0, 1 ≤ σ ≤ m. (4.9)

• In every fibered chart, components Eσ of E are affine in the second

derivatives, i.e.

Eσ = Aσ +Bij
σν y

ν
ij = Aσ +B(ij)

σν yν
ij, (4.10)

where Aσ and Bij
σν are functions of (xi, yρ, yρ

l ) that in terms of a first-order

Lagrangian for E take the form

Bij
σν = −

∂2L

∂yν
i ∂y

σ
j

,

Aσ =
∂L

∂yσ
−

d′

dxj

∂L

∂yσ
j

=
∂L

∂yσ
−

∂2L

∂xj ∂yσ
j

−
∂2L

∂yν∂yσ
j

yν
j .

(4.11)

Note that the Bij
σν need not be symmetric in the upper indices. B

(ij)
σν

denotes the symmetric part in the i, j.

• Every first-order Lagrangian for E has a first-order Lepage equivalent

that is not unique. Lepage equivalents of λ take the form

ρ = Θλ + dν + µ, (4.12)

where

Θλ = Lω0 +
∂L

∂yσ
j

ωσ ∧ ωj, (4.13)

µ is an arbitrary at least 2-contact n-form, and ν is an arbitrary contact

(n− 1)-form. Θλ is called the Poincaré–Cartan form associated with λ.

It is the unique at most 1-contact n-form such that hΘλ = λ and p1dΘλ is

π1,0-horizontal. This means that the Euler–Lagrange form Eλ of λ is also

unique, since by (4.12) it does not depend upon the choice of a Lepage

equivalent ρ of λ:

Eλ = p1dρ = p1dΘλ. (4.14)

Note that contrary to mechanics, one generally has dΘλ1
6= dΘλ2

for

equivalent Lagrangians λ1, λ2.

• E can be locally represented by a first-order Lepage class that is

called Lagrangian system associated with the locally variational form E.

With a similar inaccuracy as in Sec. 3, in order to simplify notations, we

write

[α] = [dΘλ] = dΘλ mod Ωn+1,(≥2)(J1Y ). (4.15)

Consequently, extremals and Hamilton extremals are described by Hamil-

tonian exterior differential systems defined on (open subsets of) J 1Y .



DIFFERENTIAL EQUATIONS WITH CONSTRAINTS 127

Remark 4.1. In the sequel we shall again assume that E, defined on

J2Y , is everywhere nontrivially of order 2. This means that (Bij
σν) in

(4.10) is everywhere a non-zero matrix, or, equivalently, for every first-

order Lagrangian λ the Poincaré–Cartan (n+1)-form dΘλ is everywhere

nontrivially of order one.

As we can see, the Euler–Lagrange and Hamilton equations in first-

order field theory now have the following EDS formulation:

Proposition 4.2. Let [α] be a Lagrangian system on J 1Y , E the corres-

ponding locally variational form.

A section γ of π is an extremal of E (on an open set W ⊂ X in dom γ)

if and only if

J1γ∗iξα = 0 ∀ξ ∈ V(J1Y ), (4.16)

where α is any (n+1)-form belonging to the class [α] (defined on π−1
1 (W )).

A section δ of π1 is a Hamilton extremal of E, related with the Hamil-

tonian system α ∈ [α] (defined in π−1
1 (dom δ)) if and only if

δ∗iξα = 0 ∀ξ ∈ V(J1Y ). (4.17)

The concept of regularity of a Lagrangian system is, similarly as in

mechanics, related with the properties of the associated Hamiltonian

exterior differential systems. The situation in field theory is, however,

much more rich and interesting than that in mechanics: the reason is the

non-uniqueness of the Poincaré–Cartan form Θλ of a Lagrangian λ. For

more details we refer to [19, 23, 24]. In this paper we shall study the

most simple case related just to the properties of the Hamiltonian differ-

ential systems HdΘλ
related with the forms dΘλ (Hamilton–De Donder

equations [5, 7]).

To this end, let us recall the following definition [25].

Definition 4.4. Let [α] (on J1Y ) be a Lagrangian system related with

a locally variational form E. An element α of the class [α] is called

Hamilton–De Donder system related with E if

α = dΘλ + F, (4.18)

where λ is a Lagrangian for E and F ∈ Ω
n+1,(≥2)
Y (J1Y ). The correspon-

ding Hamilton equations, i.e.

δ∗iξ(dΘλ + F ) = 0 ∀ξ ∈ V(J1Y ) (4.19)

are called Hamilton–De Donder equations.

It is easy to see that Hamilton–De Donder systems can be locally

expressed in the so-called canonical form as follows:
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Proposition 4.3. Let α = dΘλ + F be a Hamilton–De Donder system

on an open set U ⊂ J1Y ; we may assume that U is endowed with fibered

coordinates (xi, yσ, yσ
j ). Then there exist functions H and pi

σ, 1 ≤ σ ≤ m,

1 ≤ i ≤ n, such that

α = −dH ∧ ω0 + dpi
σ ∧ dyσ ∧ ωi + F. (4.20)

H and pi
σ are defined by

pi
σ =

∂L

∂yσ
i

, H = −L + pj
νy

ν
j , (4.21)

where Lω0 is a first-order Lagrangian whose Poincaré–Cartan (n + 1)-

form coincides with dΘλ.

Definition 4.5. Functions H and pi
σ, 1 ≤ σ ≤ m, 1 ≤ i ≤ n, defined by

formula (4.20) are called a Hamiltonian and momenta of the Hamilton–

De Donder system α.

Note that the family of a Hamiltonian and momenta (4.21) of a Hamil-

ton–De Donder system is non-unique and depends upon the choice of

a Lagrangian for the form dΘλ. On the other hand, in the following

subclass of the equivalence class (4.15),

[α]Y = [dΘλ]Y ≡ dΘλ mod Ω
n+1,(≥2)
Y (U), (4.22)

all elements posses the same families of momenta&Hamiltonian. This is

due to the fact that if α1, α2 ∈ [α]|U are such that α1 = dΘλ1
+ F1 and

α2 = dΘλ2
+ F2 where dΘλ1

6= dΘλ2
and F1, F2 ∈ Ω

n+1,(≥2)
Y (U), then α1

and α2 are not equivalent in the sense of (4.22), and vice versa (see [25],

Proposition 3.1 and its proof).

Let us turn to the concept of regularity of a Hamilton–De Donder

system ([19]).

Definition 4.6. A Hamilton–De Donder system α is called regular if Hα

contains all the canonical contact n-forms

ωσ ∧ ωi, 1 ≤ σ ≤ m, 1 ≤ i ≤ n. (4.23)

A Lagrangian system [α] is called De Donder regular if around each point

in J1Y there exists a related regular Hamilton–De Donder system.

Proposition 4.4. Let α be a regular Hamilton–De Donder system. Then

every integral section of Hα is holonomic. Consequently, Hamilton–De

Donder equations of α are equivalent with the Euler–Lagrange equations

of [α].
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Proof. If a Hamilton–De Donder system α is regular then for every inte-

gral section δ of Hα,

δ∗(ωσ ∧ ωi) =
(

∂(yσ◦δ)
∂xi − (yσ

i ◦ δ)
)

ω0 = 0,

1 ≤ σ ≤ m, 1 ≤ i ≤ n,
(4.24)

meaning that δ = J1γ for a section γ of π. �

Theorem 4.1. Let α = dΘλ +F be a Hamilton–De Donder system. The

following conditions are equivalent:

(1) The Hamilton–De Donder system α is regular.

(2) A system of generators of Hα has maximal rank (i.e. equal to

m+mn).

(3) Every Lagrangian λ for dΘλ satisfies the regularity condition

det

(

∂2L

∂yσ
i ∂y

ν
j

)

6= 0. (4.25)

Proof. Computing explicitly generators of Hα we obtain the following

system of m+mn differential n-forms:

Aσω0+
(

2F j
σν +

∂2L

∂yσ∂yν
j

−
∂2L

∂yν∂yσ
j

)

ων∧ ωj +Bij
σν dy

ν
j ∧ ωi+µσ,

Bij
σν ω

ν ∧ ωj,

(4.26)

where 1 ≤ σ ≤ m, 1 ≤ i ≤ n, Aσ and Bij
σν are given by (4.11), and µσ are

at least 2-contact (precisely, µσ is the at least 2-contact part of i∂/∂yσF ).

This means that the matrix of generators of Hα is the following matrix

with m+mn rows (and 1 +mn +mn2 + · · · columns):




Aσ 2F j
σν +

∂2L

∂yσ∂yν
j

−
∂2L

∂yν∂yσ
j

Bij
σν · · ·

0 Bij
σν 0 0



 . (4.27)

First, we prove the equivalence of (1) and (2).

If α is regular then all the generators Bij
σν ω

ν ∧ ωj are independent,

meaning that the matrix (Bij
σν) is regular. Consequently, all rows of

(Bij
σν) (labelled by (σ, i)) are linearly independent, for every fixed i. Then,

however, the matrix (Bij
σν) with m rows labelled by σ, and mn columns

labelled by (ν, j), has the maximal rank, m, and the rank of the matrix

(4.27) is equal to m+mn, as desired.

Conversely, if the rank of the matrix (4.27) is maximal then its square

submatrix (Bij
σν) (with rows labelled by (σ, i)) is regular. This means

that all the forms ωσ ∧ ωi are independent. Hence α is regular.



130 O. KRUPKOVÁ AND P. VOLNÝ

The equivalence of (3) and (2) is now clear: by the above, Hα has

maximal rank iff the matrix (Bij
σν) is regular, However, in terms of the

Lagrangian λ for α,

Bij
σν = −

∂2L

∂yσ
i ∂y

ν
j

. (4.28)

This completes the proof. �

Theorem 4.2. If dΘλ+F is a regular Hamilton–De Donder system then

every form α ∈ [dΘλ]Y is regular. Consequently,

(1) For every α ∈ [dΘλ]Y , all Hamilton extremals are holonomic.

(2) For every α ∈ [dΘλ]Y , the Hamilton equations are equivalent with

the Euler–Lagrange equations of λ.

(3) For every α ∈ [dΘλ]Y , every Hamilton extremal of α is a prolon-

gation of an extremal of λ.

(4) Hamilton equations of all elements in the class [dΘλ]Y are equi-

valent.

Proof. Looking at the generators (4.26) we can see immediately that

regularity does not depend upon the choice of functions F j
σν , i.e., upon

the choice of α ∈ [dΘλ]Y .

The rest of the proof is elementary. �

Corollary 4.1. Let α = dΘλ + F be a regular Hamilton–De Donder

system. Then momenta pj
σ, 1 ≤ σ ≤ m, 1 ≤ j ≤ n, of α are independent,

and (xi, yσ, pj
σ) are local coordinates on J1Y , called Legendre coordinates.

The Hamiltonian differential system Hα has generators that in Legendre

coordinates take the form (since ων ∧ ωi ∈ Hα, ∀ν, i),

∂H

∂yσ
ω0 + dpj

σ ∧ ωj + µσ,
∂H

∂pj
σ

ω0 − dyσ ∧ ωj, (4.29)

where µσ = i∂/∂yσF ∈ Ω
n(≥2)
Y (J1Y ). Hamilton equations of α in Legendre

coordinates then read

∂pj
σ

∂xj
= −

∂H

∂yσ
,

∂yσ

∂xj
=
∂H

∂pj
σ

, (4.30)

where the appearing functions are considered along sections δ of π1.

4.3. Non-holonomic constraints in field theory. The aim of the sec-

tion is to present the concept of the non-holonomic constraint structure

[22].

Non-holonomic constraints in the case dimX > 1 are defined in the

same way as for one independent variable:
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Definition 4.7. By a constraint submanifold or a non-holonomic con-

straint in J1Y we shall understand a submanifold Q ⊂ J1Y , fibered over

Y , precisely speaking, a surjective submersion π1,0|Q : Q→ Y .

Put codimQ = κ and assume 1 ≤ κ ≤ mn − 1. Locally Q can be

expressed by a system of first-order partial differential equations

fα(xi, yσ, yσ
j ) = 0, 1 ≤ α ≤ κ, (4.31)

such that

rank

(

∂fα

∂yσ
j

)

= κ, where α labels rows and σ, j columns. (4.32)

Definition 4.8. LetQ be a non-holonomic constraint in J 1Y , codimQ =

κ, 1 ≤ κ ≤ mn− 1. If

rank

(

∂fα

∂yσ
j

)

= k, where α, j label rows and σ columns, (4.33)

for some k, 1 ≤ k ≤ m − 1, we say that Q is a regular non-holonomic

constraint of corank (κ, k).

It can be shown that the above definition is correct (coordinate inde-

pendent) [22].

Given a regular non-holonomic constraint Q in J 1Y there naturally

arise the following local distributions, defined on the domain U of defi-

nition of the functions fα:

(1) DU = annih {dfα, 1 ≤ α ≤ κ}; rankDU is constant on U due to

(4.32) and equal to m+ n+mn− κ.

(2) C̃U = annih {φαj}, where

φαj = fαdxj +
1

n

∂fα

∂yσ
j

ωσ, 1 ≤ α ≤ κ, 1 ≤ j ≤ n. (4.34)

The forms (4.34) are not linearly independent, however, due to rank

condition (4.33), there exist functions caαj, 1 ≤ a ≤ k, 1 ≤ α ≤ κ,

1 ≤ j ≤ n, on U , such that the (k ×m)-matrix

M = (Ma
σ ), where Ma

σ =
1

n
caαj

∂fα

∂yσ
j

, (4.35)

has maximal rank equal to k. Thus,

φa = caαjφ
αj = caαjf

αdxj +
1

n
caαj

∂fα

∂yσ
j

ωσ = caαjf
αdxj +Ma

σω
σ,

1 ≤ a ≤ k,
(4.36)
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are linearly independent at each point in U . Hence, the distribution C̃U

has constant corank equal to k, i.e. rank C̃U = m+ n +mn− k.

(3) CU = annih {φa, dfα, 1 ≤ a ≤ k, 1 ≤ α ≤ κ}.

The following results have been obtained in [22]:

Proposition 4.5. Q ∩ U is an integral submanifold of DU . Hence, for

every x ∈ Q, the forms dfα(x), 1 ≤ α ≤ κ, annihilate the tangent space

TxQ to the manifold Q at x, i.e., along Q, D = annih {dfα, 1 ≤ α ≤

κ} = TQ.

Corollary 4.2. Let Q be a constraint of codimension κ in J 1Y , and let

fα = 0 and f ′α = 0, where 1 ≤ α ≤ κ, be two sets of equations of Q

on an open set U ⊂ V1 ⊂ J1Y . Then there are functions γα
β on U such

that at each point of U , (γα
β ) is a regular matrix, and df ′α = γα

βdf
β. In

particular, at each point x ∈ Q ∩ U ,

∂f ′α

∂yσ
j

= γα
β

∂fβ

∂yσ
j

. (4.37)

Proposition 4.6. CU is a subdistribution of both C̃U and DU . At the

points of Q ∩ U , the distributions CU and C̃U ∩ D coincide, and define a

distribution of corank k on Q ∩ U .

The local distributions on Q mentioned above unite into a (global)

distribution on Q:

Theorem 4.3. Let Q be a regular non-holonomic constraint in J 1Y of

corank (κ, k), let ι : Q → J1Y be the canonical embedding of the sub-

manifold Q into J1Y . If φa, 1 ≤ a ≤ k, are independent 1-forms (4.36),

put

ϕa = ι∗φa = (Ma
σ ◦ ι) ι∗ωσ, 1 ≤ a ≤ k. (4.38)

Then

C = annih {ϕa, 1 ≤ a ≤ k} (4.39)

is a distribution of corank k on Q.

The proof of the theorem can be found in [22].

Definition 4.9. The distribution C (4.39) on Q is called canonical distri-

bution. 1-forms belonging to the annihilator, C0, of C, are called canonical

constraint 1-forms. The ideal in the exterior algebra of differential forms

on Q generated by C0 is called canonical constraint ideal, and denoted

by I(C0); its homogeneous component of degree p is denoted by Ip(C0).

Elements of the ideal I(C0) are called canonical constraint forms.
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Theorem 4.4. The canonical distribution C on Q is locally spanned by

the following vector fields:

∂c

∂xi
≡

∂

∂xi
+

k
∑

a=1

(F a
i ◦ ι)

∂

∂ym−k+a
, 1 ≤ i ≤ n,

∂c

∂ys
≡

∂

∂ys
+

k
∑

a=1

(Ga
s ◦ ι)

∂

∂ym−k+a
, 1 ≤ s ≤ m− k,

∂

∂zJ
, 1 ≤ J ≤ nm− κ,

(4.40)

where (xi, yσ, zJ , fα), 1 ≤ i ≤ n, 1 ≤ σ ≤ m, 1 ≤ J ≤ nm − κ,

1 ≤ α ≤ κ, denote fibered coordinates adapted to the submanifold ι :

Q → J1Y , the functions Ga
s represent (at each point) a fundamental

system of solutions of the system of independent homogeneous algebraic

equations for m unknowns Ξσ, 1 ≤ σ ≤ m,

Ma
σ Ξσ = 0, 1 ≤ a ≤ k, (4.41)

and, for every i = 1, 2, . . . , n, the F a
i are solutions of the equations

Ma
σ F

σ
i = Ma

σy
σ
i − fαcaαi, 1 ≤ a ≤ k, (4.42)

(where yσ
j are considered as functions of zJ , fβ) corresponding to the

choice of all the parameters equal to zero.

A section γ of π defined on an open set W ⊂ X is called a holonomic

path in Q if for every x ∈ W

J1γ(x) ∈ Q. (4.43)

Remark 4.2. We shall use the following notations and objects, adapted

to the constraint structure, introduced in [22].

(i) Conventions concerning notation of indices:

1 ≤ i, j, l ≤ n, 1 ≤ α, β, γ ≤ κ, 1 ≤ J ≤ nm− κ,

1 ≤ σ, ν, ρ ≤ m, 1 ≤ a, b, c ≤ k, 1 ≤ p, r, s ≤ m− k.
(4.44)

(ii) Taking into account that the matrix (4.35) in (4.36) has maximal

rank, k, one can express k of the contact 1-forms ωσ by means of the

constraint forms φa, 1 ≤ a ≤ m, and the remaining ων’s. Without loss of

generality we may suppose that this concerns the forms ωm−k+a, where

1 ≤ a ≤ k. In an adapted basis (xi, yσ, zJ , fα), and in the notations of

the above theorem it holds

ωm−k+a = µa
b(φ

b −M b
s ω

s − cbαjf
αdxj)

= µa
bφ

b +Ga
s ω

s + (F a
j +Ga

sy
s
j − ym−k+a

j )dxj,
(4.45)
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where (µa
b ) is an appropriate regular matrix. Here and in what follows, yσ

j

are considered as functions of the coordinates (xi, yσ, zJ , fα). Similarly,

the rank condition (4.32) guarantees that one can express the forms dzα

by means of (dfβ, dxi, dyσ, dzJ). Thus, we have on J1Y the following

bases of 1-forms, adapted to the constraint structure:

(dxi, dys, φa, dzJ , dfα), or (dxi, ωs, φa, dzJ , dfα); (4.46)

Consequently, with obvious notations we may write

ω̄m−k+a ≡ ι∗ωm−k+a = ϕ̄a + Ḡa
s ω̄

s, (4.47)

where ω̄s = ι∗ωs, and ϕ̄a = ι∗(µa
bφ

b) = (µa
b ◦ ι)ϕ

b. We can see that, on

Q, instead of a canonical basis (dxi, dyσ, dzJ), or a basis (dxi, ω̄σ, dzJ)

adapted to the induced contact structure, it is worth to work with bases

adapted to the constraint structure, where the canonical constraint 1-

forms appear:

(dxi, dys, ϕ̄a, dzJ), (dxi, ω̄s, ϕ̄a, dzJ). (4.48)

(iii) Keeping the above notations we can express the functions Ga
s and

F a
j appearing in (4.40) as follows:

Ga
s = µa

bM
b
s , F a

j = ym−k+a
j −Ga

sy
s
j − µa

bc
b
αjf

α. (4.49)

We also put

yσ
j ◦ ι = gσ

j . (4.50)

With this notation,

Ḡa
s = (µa

bM
b
s ) ◦ ι, F̄ a

j = gm−k+a
j − Ḡa

sg
s
j , (4.51)

i.e.

gm−k+a
j = F̄ a

j + Ḡa
s g

s
j . (4.52)

(iv) The vector fields ∂c/∂x
i and ∂c/∂y

s on Q defined by (4.40) are

called constraint partial derivative operators. We put

d′c
dxi

=
∂c

∂xi
+ gs

i

∂c

∂ys
,

dc

dxi
=

∂c

∂xi
+ gs

i

∂c

∂ys
+ zJ

i

∂

∂zJ
=

d′c
dxi

+ zJ
i

∂

∂zJ
,

(4.53)

and call the above operators the i-th cut constraint total derivative ope-

rator and i-th constraint total derivative operator, respectively.

(v) The exterior derivative of a function f on Q is expressed as follows:

df =
d′cf

dxj
dxj +

∂cf

∂ys
ω̄s +

∂f

∂ym−k+a
ϕ̄a +

∂f

∂zJ
dzJ . (4.54)
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(vi) Next, denote

Ca
Jj = Ḡa

s

∂gs
j

∂zJ
−
∂gm−k+a

j

∂zJ
= −

∂F̄ a
j

∂zJ
−
∂Ḡa

s

∂zJ
gs

j , Cai
js = Ca

Jj

∂zJ

∂ys
i

. (4.55)

(vii) For dϕ̄a we have

dϕ̄a =

(

Ḡa
s

d′cg
s
j

dxi
−
d′cg

m−k+a
j

dxi

)

dxi ∧ dxj

+

(

Ḡa
s

∂cg
s
j

∂yr
+
d′cḠ

a
r

dxj
−
∂cg

m−k+a
j

∂yr

)

ω̄r ∧ dxj

+Ca
Jjdz

J ∧ dxj −
∂cḠ

a
s

∂yr
ω̄r ∧ ω̄s −

∂Ḡa
s

∂zJ
dzJ ∧ ω̄s

+

(

Ḡa
s

∂gs
j

∂ym−k+b
−
∂gm−k+a

j

∂ym−k+b

)

ϕ̄b ∧ dxj −
∂Ḡa

s

∂ym−k+b
ϕ̄b ∧ ω̄s.

(4.56)

There are several interesting particular cases of regular non-holonomic

constraints in field theory. We wish to mention here very briefly the

following ones (precise definitions and further properties can be found in

[22]:

• Constraints whose canonical distribution is projectable onto a dis-

tribution on Y , i.e. constraints that can be modeled by a distribution or

codistribution on Y .

• Constraints whose canonical distribution is completely integrable;

these constraints are called semiholonomic, and can be equivalently mod-

eled by a completely integrable, nowhere vertical distribution on Y .

• Lagrangian constraints: these are characterized by the property that

the codistributions C̃0
U can be generated by a system of (independent)

Lepage 1-forms; for Lagrangian constraints it holds

Ca
Jj = 0, Cai

js = 0 (4.57)

for all values of indices. In this context it is interesting to note that for

dimX = 1 (mechanics) all non-holonomic constraints are Lagrangian.

• π-adapted constraints: can be locally represented by equations “in

normal form”,

ym−k+a
j = ga

j (x
i, yσ, ys

l ), 1 ≤ j ≤ n, 1 ≤ a ≤ k. (4.58)

These constraints are Lagrangian.

Lagrangian and Hamiltonian systems subjected to π-adapted constraints

are studied in detail in [25].

• Holonomic constraints, defined as fibered submanifolds of π, can

again be easily treated in terms of the theory of regular non-holonomic
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constraints as a (very) particular case. The situation is completely anal-

ogous to that in mechanics (for details see [22]).

4.4. Constrained Lagrangian systems. The aim of the section is to

introduce the concept of the constrained Lagrangian systems. For more

details and the proofs of the assertions we refer to [22].

Let us consider a Lagrangian system on J1Y . Recall from Sec. 4.2

that it is defined to be a first-order Lepage class. We write it in the form

[α] = [dΘλ] = dΘλ mod Ωn+1,(≥2)(J1Y ). (4.59)

If ι : Q → J1Y is a regular non-holonomic constraint and I(C0) the

corresponding canonical constraint ideal, we have another equivalence,

denoted by ≈, on (n+1)-forms onQ (with the same domain of definition):

η1 ≈ η2 iff η1 − η2 = F̄ + ϕ, (4.60)

where F̄ is a (local) at least 2-contact (n + 1)-form on Q, and ϕ is a

constraint (n + 1)-form. We denote by [[η]] the class of η. If [α] is a

Lepage class on J1Y then for any of its two elements defined on the same

subset of J1Y ,

α1 ∼ α2 ⇒ ι∗α1 ≈ ι∗α2. (4.61)

Definition 4.10. Let [α] = [dΘλ] be a Lagrangian system on J1Y and

ι : Q → J1Y a regular non-holonomic constraint. By the associated

constrained Lagrangian system we mean the class [[ι∗α]] = [[ι∗dΘλ]]. Each

form ι∗dΘλ + ϕ, where ϕ ∈ In+1(C0), is called constrained Poincaré-

Cartan (n+ 1)-form of λ.

Note that every element of [[ι∗dΘλ]] is of the form

ᾱ = ι∗dΘλ + F̄ + ϕ, (4.62)

where F̄ ∈ Ωn+1,(≥2)(Q) and ϕ ∈ In+1(C0).

Definition 4.11. Consider the following system of forms on dom ᾱ ⊂ Q:

iξᾱ ∀ξ ∈ V(Q) ∩ C, ϕ ∈ C0. (4.63)

The exterior differential system generated by (4.63) is called constraint

Hamiltonian EDS related with ᾱ, and is denoted by Hᾱ.

Definition 4.12. Let [[ι∗dΘλ]] be a constrained Lagrangian system.

Then for any representative ᾱ of the class [[ι∗dΘλ]], equations for holo-

nomic integral sections of the constraint Hamiltonian exterior differential

system Hᾱ, i.e., the equations

J1γ∗iξᾱ = 0 for every π1-vertical vector field ξ ∈ C, (4.64)
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where γ : W → Y , J1γ(W ) ⊂ Q, are called constrained Euler–Lagrange

equations. Solutions of constrained Euler–Lagrange equations are called

constrained extremals.

We note that (on an open subset of Q) constrained Euler–Lagrange

equations do not depend upon the choice of a representative ᾱ of the

class [[ι∗dΘλ]]. This means that with help of a local Lagrangian λ for E

we can write the constrained Euler–Lagrange equations in the form

J1γ∗iξ(ι
∗dΘλ) = 0 for every π1-vertical vector field ξ ∈ C, (4.65)

where γ : W → Y , J1γ(W ) ⊂ Q.

For λ = Lω0 denote

L̄ = L ◦ ι, L̄j
a =

∂L

∂ym−k+a
j

◦ ι, (4.66)

considered as functions of adapted fibered coordinates (xi, yσ, zJ) on Q,

and put

Θι∗λ = L̄ ω0 +
∂L̄

∂ys
j

ω̄s ∧ ωj = L̄ ω0 +
∂L̄

∂zJ

∂zJ

∂ys
j

ω̄s ∧ ωj. (4.67)

In keeping with notations in Remark 4.2 we can easily find the following

relation:

Proposition 4.7.

ι∗Θλ = Θι∗λ + L̄i
aC

aj
is ω̄

s ∧ ωj + L̄j
a ϕ̄

a ∧ ωj. (4.68)

For convenience of notations let us introduce the C-modified Euler–

Lagrange operator and cut C-modified Euler–Lagrange operator, respec-

tively:

µs =
∂c

∂ys
−

dc

dxi

(

∂

∂ys
i

)

−
∂cg

r
j

∂ys

∂

∂yr
j

=
∂c

∂ys
−

dc

dxi

(

∂zJ

∂ys
i

∂

∂zJ

)

−
∂cg

r
j

∂ys

∂zJ

∂yr
j

∂

∂zJ
,

µ′
s =

∂c

∂ys
−

d′c
dxi

(

∂

∂ys
i

)

−
∂cg

r
j

∂ys

∂

∂yr
j

=
∂c

∂ys
−

d′c
dxi

(

∂zJ

∂ys
i

∂

∂zJ

)

−
∂cg

r
j

∂ys

∂zJ

∂yr
j

∂

∂zJ
.

(4.69)

Theorem 4.5. Let λ be a Lagrangian in J1Y , Q ⊂ J1Y a regular non-

holonomic constraint. Denote by γ local sections of the fibered manifold

π : Y → X such that J1γ(W ) ⊂ Q. In adapted fibered coordinates, the

constrained Euler–Lagrange equations take one of the following equivalent



138 O. KRUPKOVÁ AND P. VOLNÝ

forms:

(1) By means of L,

(As + B i
sJ z

J
i ) ◦ J2γ = 0, (4.70)

where As, B
i

sJ are given by

As = Ās + Ām−k+aḠ
a
s + (B̄ji

sν + B̄ji
m−k+a νḠ

a
s)
d′cg

ν
j

dxi
,

Bi
sJ = (B̄ji

sν + B̄ji
m−k+a νḠ

a
s)
∂gν

j

∂zJ
,

(4.71)

where (cf. (4.11))

Āσ = ε′σ(L) ◦ ι, B̄ij
σν = −

(

∂2L

∂yσ
i ∂y

ν
j

)

◦ ι (4.72)

(2) By means of L̄ and L̄j
a,

(

µs(L̄) − L̄j
a µs(g

m−k+a
j ) − Cai

js

dcL̄
j
a

dxi

)

◦ J2γ = 0, (4.73)

meaning that the functions As, B
i

sJ are equivalently expressed as follows:

As = µ′
s(L̄) − L̄j

a µ
′
s(g

m−k+a
j ) − Cai

js

d′cL̄
j
a

dxi
,

B i
sJ = −

∂

∂zJ

(

∂L̄

∂zK

∂zK

∂ys
i

)

+ L̄i
a

∂

∂zJ
(Ḡa

sδ
j
i − Caj

is ) − Cai
js

∂L̄j
a

∂zJ

= −
∂

∂zJ

(

∂L̄

∂zK

∂zK

∂ys
i

)

+ L̄j
a

∂

∂zJ

(

∂gm−k+a
j

∂zK

∂zK

∂ys
i

)

− Cai
js

∂L̄j
a

∂zJ
.

(4.74)

Definition 4.13. The operator defined by (4.73), i.e.

EC
s (L̄, L̄j

a) = µs(L̄) − L̄j
a µs(g

m−k+a
j ) − Cai

js

dcL̄
j
a

dxi
(4.75)

is called the constraint Euler–Lagrange operator.

Remark 4.3. Lagrangian and semiholonomic constraints. Recall

that if the constraint Q in J1Y is Lagrangian, then

Cai
js = 0, Ca

Jj = 0 (4.76)

for all values of indices. Consequently, formulas become much simpler.

In particular,

ι∗Θλ = Θι∗λ + L̄j
a ϕ̄

a ∧ ωj, (4.77)

and the constraint Euler–Lagrange operator reads

EC
s (L̄, L̄j

a) = µs(L̄) − L̄j
a µs(g

m−k+a
j ). (4.78)
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If, moreover, Q is a semiholonomic constraint, i.e., if dϕ̄a ∈ I(C0) for all

a, we get

ι∗dΘλ = dΘι∗λ + a constraint form. (4.79)

This means that dΘι∗λ ≈ ι∗dΘλ, and even that dΘι∗λ is a constrained

Poincaré–Cartan (n + 1)-form of λ. Then, of course, the constrained

Euler–Lagrange equations (4.65) have the equivalent form

J1γ∗iξdΘι∗λ = 0 for every π1-vertical vector field ξ ∈ C. (4.80)

Since in this case κ = kn, we have on Q local coordinates (xi, yσ, ys
j), and

all formulas take a much simpler form (cf. e.g. [22, 25]).

4.5. Constrained Hamilton–De Donder equations. Let [α] = [dΘλ]

be a Lagrangian system on J1Y , ι : Q → J1Y a regular non-holonomic

constraint of corank (κ, k), [[ι∗α]] = [[ι∗dΘλ]] the corresponding con-

strained system on Q. For every ᾱ = ι∗α ∈ [[ι∗dΘλ]] we have the con-

straint Hamiltonian exterior differential system Hᾱ defined on the domain

of definition of ᾱ, say U ⊂ Q, and generated by the system of n-forms

and 1-forms (4.63).

Directly from the definition of constraint Hamiltonian EDS we can see

that if ᾱ1 and ᾱ2 differ by a constraint form, then Hᾱ1
= Hᾱ2

.

Definition 4.14. Let [dΘλ] be a Lagrangian system on J1Y . For every

α ∈ [dΘλ] the equivalence class

ᾱI = ι∗α mod In+1(C0) (4.81)

is called constrained Hamiltonian system related with α and the con-

straint Q.

Equations for integral sections of Hᾱ, i.e.

δ∗iξᾱ = 0 ∀ξ ∈ V(Q) ∩ C, δ∗ϕ̄a = 0, 1 ≤ a ≤ k, (4.82)

where ᾱ ∈ ᾱI and δ is a section of π1|Q : Q → X, are called constrained

Hamilton equations.

Integral sections of Hᾱ are called constrained Hamilton extremals of

[[ι∗dΘλ]].

Similarly as in the unconstrained case, in what follows, we will be

interested in constrained Hamiltonian systems that can be completely

characterized by constrained Poincaré–Cartan (n+ 1)-forms:

Definition 4.15. Let [α] be a Lagrangian system on J 1Y , ι : Q →

J1Y a regular non-holonomic constraint of corank (κ, k). A constrained
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Hamiltonian system ᾱI defined on U ⊂ Q is called constrained Hamilton–

De Donder system of [α] if there exists a Lagrangian λ for [α] such that

for every ᾱ ∈ ᾱI ,

ᾱ = ι∗dΘλ + F̄ , where F̄ ∈ Ω
n+1,(≥2)
Y (U). (4.83)

The corresponding constrained Hamilton equations, i.e.

δ∗iξ(ι
∗dΘλ + F̄ ) = 0 ∀ξ ∈ V(Q) ∩ C, δ∗ϕ̄a = 0, 1 ≤ a ≤ k, (4.84)

are called constrained Hamilton–De Donder equations.

Definition 4.16. A constrained Hamilton–De Donder system ᾱI is called

regular if Hᾱ contains all the canonical contact n-forms

ι∗ωσ ∧ ωi, 1 ≤ σ ≤ m, 1 ≤ i ≤ n. (4.85)

A constrained Lagrangian system is called De Donder regular if around

each point in Q there exists an associated regular constrained Hamilton–

De Donder system.

Proposition 4.8. Let [α] be a Lagrangian system on J 1Y , ι : Q→ J1Y

a regular non-holonomic constraint of corank (κ, k), ᾱI an associated

regular constrained Hamilton–De Donder system. Then (for all ᾱ ∈ ᾱI)

every integral section of Hᾱ is holonomic. Consequently, constrained

Hamilton–De Donder equations of ᾱI are equivalent with the constrained

Euler–Lagrange equations.

Proof. Let δ be an integral section of Hᾱ. If ᾱ is regular then, by defini-

tion,

δ∗(ω̄σ ∧ ωi) = 0, 1 ≤ σ ≤ m, 1 ≤ i ≤ n. (4.86)

This implies, however, that for all σ, δ∗ω̄σ = 0, meaning that δ is a

holonomic section in Q. �

Theorem 4.6. Let ᾱI = ι∗dΘλ+F̄ mod In+1(C0), where F̄ ∈ Ω
n+1,(≥2)
Y (Q),

be a constrained Hamilton–De Donder system. The following conditions

are equivalent:

(1) For every ᾱ ∈ ᾱI , ᾱ is regular.

(2) For every ᾱ ∈ ᾱI , a system of generators of Hᾱ has maximal rank

(equal to (n+ 1)(m− k) + k).

(3) Every first-order Lagrangian λ for dΘλ satisfies the constraint

regularity condition

rank (Bi
sJ) = n(m− k), (4.87)

where Bi
sJ are given in terms of λ = Lω0 by (4.71) or (4.74).
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Proof. We can write

ᾱ = Asω̄
s ∧ ω0 + Bi

sJ ω̄
s ∧ dzJ ∧ ωi + F + ϕ, (4.88)

where As and Bi
sJ are given in terms of a first-order Lagrangian λ for

dΘλ by (4.71) or (4.74), F is the sum of F̄ and the 2-contact part of

ι∗dΘλ, and ϕ ∈ In+1(C0). Denote

F = F i
lsω̄

l ∧ ω̄s ∧ ωi + ν, where F i
ls = −F i

sl. (4.89)

Computing generators of Hᾱ, we obtain a mixed system of k (linearly

independent) 1-forms

ϕ̄a = ω̄m−k+a −
m−k
∑

s=1

Ḡa
sω̄

s, 1 ≤ a ≤ k, (4.90)

and m− k+mn−κ n-forms (that, in general, need not be independent)

as follows:
Asω0 + 2F i

slω̄
l ∧ ωi + Bi

sJdz
J ∧ ωi + µs,

Bi
sJ ω̄

s ∧ ωi,
(4.91)

1 ≤ s ≤ m− k, 1 ≤ J ≤ mn− κ, where µs = i∂/∂ysν.

Suppose that ᾱI is regular. Then Hᾱ is generated by the forms ϕ̄a and

Asω0 + Bi
sJdz

J ∧ ωi + µs, ω̄s ∧ ωi, (4.92)

which means that the matrix B1 = (Bi
sJ) with mn − κ rows labelled by

J and n(m − k) columns labelled by i, s, has rank n(m − k). Now, the

rank of the system of generators of Hᾱ is > n(m − k). Let us compute

the rank of the matrix B2 = (Bi
sJ) with m − k rows labelled by s and

n(nm−κ) columns labelled by i, J . By the above we can see that for every

fixed i, the matrix B1 has m− k linearly independent columns (labelled

by s). Consequently, B2 has for every fixed i the submatrix (B•
sJ) with

m − k independent rows labelled by s (equal to transposed submatrix

of B2 with the corresponding values of indices), hence rankB2 = m− k.

Summarizing, we have obtained that the forms (4.91) (resp. (4.92)) are

independent, meaning that the rank of the system of generators of Hᾱ

(for all ᾱ ∈ ᾱI) is maximal and equal to n(m − k) + m − k + k =

(n + 1)(m− k) + k, as desired.

Next, suppose that the rank of Hᾱ is maximal. Then the forms (4.91)

are independent, meaning that the constrained regularity condition (4.87)

holds.

Finally, if (4.87) holds, then the forms Bi
sJ ω̄

s ∧ ωi in (4.91) are inde-

pendent, i.e. the forms ω̄s ∧ ωi, 1 ≤ i ≤ n, 1 ≤ s ≤ m− k, belong to Hᾱ.
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By definition of Hᾱ also all the n-forms ϕ̄a ∧ωi ∈ Hᾱ. Hence, for all a, i,

we have ωm−k+a ∧ ωi = ϕ̄a ∧ ωi + Ḡa
sω̄

s ∧ ωi ∈ Hᾱ, and we are done. �

Corollary 4.3. Let

ᾱI = ι∗dΘλ + F̄ mod In+1(C0), where F̄ ∈ Ω
n+1,(≥2)
Y (Q),

be a regular constrained Hamilton–De Donder system. Then Hamilton

extremals of ᾱI (i.e. integral sections of (4.90) and (4.92)) do not depend

upon the choice of F̄ . This means that Hamilton–De Donder equations

of all elements in the class

ι∗dΘλ mod Ω
n+1,(≥2)
Y (Q) + In+1(C0) (4.93)

are equivalent.

From the proof of Theorem 4.6 we can conclude that if ᾱI is regular

then the matrix B1 has nm−κ rows and n(m−k) columns where nm−κ ≥

n(m− k). This means that κ ≤ nk, and we get the following result:

Corollary 4.4. Let [α] be a Lagrangian system on J 1Y , ι : Q→ J1Y a

regular non-holonomic constraint of corank (κ, k). A necessary condition

for the constrained Lagrangian system [[ι∗α]] be De Donder regular is

κ ≤ nk. (4.94)

4.6. Constraint Legendre transformation.

Theorem 4.7. Let ι : Q → J1Y be a regular non-holonomic constraint

of corank (κ, k), [[ᾱ]] a constrained Lagrangian system. Let x ∈ Q be a

point. Suppose that in a neighborhood of x,

∂Bi
sJ

∂zK
=
∂Bi

sK

∂zJ
, 1 ≤ i ≤ n, 1 ≤ s ≤ m−k, 1 ≤ J,K ≤ mn−κ. (4.95)

Then there exists a neighborhood U ⊂ Q of x, and, on U , functions P i
s,

1 ≤ i ≤ n, 1 ≤ s ≤ m − k, and a n-form η, such that the class [[ᾱ]] is

represented by the (n + 1)-form

ᾱ = η ∧ ω0 + dP i
s ∧ dy

s ∧ ωi. (4.96)

Proof. As we have seen in Sec. 4.4, around each point in Q, the con-

strained Lagrangian system [[ᾱ]] has a representative

Asω̄
s ∧ ω0 + Bi

sJ ω̄
s ∧ dzJ ∧ ωi, (4.97)

where As and Bi
sJ are defined by (4.71) or (4.74). Assume that the

given Lagrangian system [ᾱ] has a Lagrangian λ = Lω0 defined around

x such that for the corresponding functions Bi
sJ integrability conditions

(4.95) are satisfied. Applying the Poincaré Lemma we get a neighborhood
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U ⊂ Q of x and functions P i
s, 1 ≤ i ≤ n, 1 ≤ s ≤ m− k, on U that are

given by

Bi
sJ = −

∂P i
s

∂zJ
. (4.98)

Hence, in the class [[ᾱ]] on U we can find the following representatives,

equivalent with ι∗dΘλ, where λ is the above mentioned Lagrangian:

Asω̄
s ∧ ω0 +

∂P i
s

∂zJ
dzJ ∧ ω̄s ∧ ωi

≈ Asω̄
s ∧ ω0 + dP i

s ∧ ω̄
s ∧ ωi −

d′cP
i
s

dxj
dxj ∧ ω̄s ∧ ωi

=

(

As +
d′cP

i
s

dxi

)

dys ∧ ω0 − gs
i dP

i
s ∧ ω0 + dP i

s ∧ dy
s ∧ ωi

≈

(

As +
d′cP

i
s

dxi
− gl

i

∂cP
i
l

∂ys

)

dys ∧ ω0

−gs
i

∂P i
s

∂zJ
dzJ ∧ ω0 + dP i

s ∧ dy
s ∧ ωi.

(4.99)

In this way we have obtained a representative

ᾱ =

(

As +
d′cP

i
s

dxi
− gr

i

∂cP
i
r

∂ys

)

dys ∧ ω0

−gs
i

∂P i
s

∂zJ
dzJ ∧ ω0 + dP i

s ∧ dy
s ∧ ωi.

(4.100)

Let us denote

ᾱ = η ∧ ω0 + dP i
s ∧ dy

s ∧ ωi, (4.101)

with

η = η̃jdx
j + η̄sdy

s + η̄Jdz
J , (4.102)

where η̃j, 1 ≤ j ≤ n, are arbitrary functions on U , and

η̄s = As +
d′cP

i
s

dxi
− gr

i

∂cP
i
r

∂ys
, 1 ≤ r, s ≤ m− k,

η̄J = −gs
i

∂P i
s

∂zJ
, 1 ≤ s ≤ m− k, 1 ≤ J ≤ mn− κ.

(4.103)

This completes the proof. � �

Corollary 4.5. The class

ᾱI = η ∧ ω0 + dP i
s ∧ dy

s ∧ ωi mod In+1(C0) (4.104)

constructed in the above Theorem is a constrained Hamilton–De Donder

system, corresponding to the Lagrangian λ = Lω0.

Proof. It is sufficient to check the computations to see that that ᾱ−ι∗dΘλ

is (up to a constraint form) a 2-contact form, horizontal with respect to

the projection onto Y . �
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Note that η in (4.104) is determined up to a constraint form. In this

way, for a constrained Hamilton–De Donder system we have to consider

the class

ηI = η mod In(C0). (4.105)

It should be stressed that in the class ηI there need not exist a closed

representative.

Remark 4.4. Integrability condition (4.95) can be rewritten in terms of

a Lagrangian λ = Lω0 giving rise to the functions Bi
sJ using (4.71) or

(4.74). For example, with help of (4.74) it takes the form

∂L̄j
a

∂zK

∂

∂zJ

(

∂gm−k+a
j

∂zI

∂zI

∂ys
i

)

−
∂Cai

js

∂zK

∂L̄j
a

∂zJ

=
∂L̄j

a

∂zJ

∂

∂zK

(

∂gm−k+a
j

∂zI

∂zI

∂ys
i

)

−
∂Cai

js

∂zJ

∂L̄j
a

∂zK
.

(4.106)

Let us find an explicit formula for the functions P i
s .

Proposition 4.9. Let x ∈ U , and consider a mapping χ : [0, 1] ×W →

W , defined by

(u, xi, yσ, zJ) → (xi, yσ, uzJ), (4.107)

where W ⊂ U ⊂ Q is an appropriate neighborhood of x. Then for

arbitrary functions ψi
s(x

j, yν) (resp. ψ̃i
s(x

j, yν) ), 1 ≤ s ≤ m−k, 1 ≤ i ≤

n, the functions

P i
s = −zJ

∫ 1

0

(

Bi
sJ ◦ χ

)

du+ ψi
s(x

j, yν)

=
∂L̄

∂zK

∂zK

∂ys
i

+zJ

∫ 1

0

(

Cai
js

∂L̄j
a

∂zJ
−L̄j

a

∂

∂zJ

(

∂gm−k+a
j

∂zK

∂zK

∂ys
i

))

◦ χdu

+ ψ̃i
s(x

j, yν),

(4.108)

are solutions of (4.98).

Proof. Integrability condition (4.95) guarantees that in a neighborhood

of any point of U one can find solutions of (4.98) using Poincaré Lemma.

Put

P i
s = −zJ

∫ 1

0

(

Bi
sJ ◦ χ

)

du+ ψi
s(x

j, yν). (4.109)

Then with help of (4.95)

∂P i
s

∂zJ
= −

∫ 1

0

(

Bi
sJ ◦ χ

)

du− zK

∫ 1

0

(

∂Bi
sK

∂zJ
◦ χ

)

u du

= −

∫ 1

0

d(u(Bi
sJ ◦ χ)) = −Bi

sJ ,

(4.110)



DIFFERENTIAL EQUATIONS WITH CONSTRAINTS 145

as desired.

Using formula (4.74) and (4.109) we get

P i
s = zJ

∫ 1

0

(

∂

∂zJ

(

∂L̄

∂zK

∂zK

∂ys
i

)

+ Cai
js

∂L̄j
a

∂zJ

−L̄j
a

∂

∂zJ

(

∂gm−k+a
j

∂zK

∂zK

∂ys
i

))

◦ χdu+ ψi
s(x

j, yν)

=
∂L̄

∂zK

∂zK

∂ys
i

+zJ

∫ 1

0

(

Cai
js

∂L̄j
a

∂zJ
−L̄j

a

∂

∂zJ

(

∂gm−k+a
j

∂zK

∂zK

∂ys
i

))

◦ χdu

+ψ̃i
s(x

j, yν),

(4.111)

since
∫ 1

0

d

(

∂L̄

∂zK

∂zK

∂ys
i

◦ χ

)

=

[

∂L̄

∂zK

∂zK

∂ys
i

◦ χ

]u=1

u=0

=
∂L̄

∂zK

∂zK

∂ys
i

− hi
s(x

j, yν)

=

∫ 1

0

d

du

(

∂L̄

∂zK

∂zK

∂ys
i

◦ χ

)

du = zJ

∫ 1

0

(

∂

∂zJ

(

∂L̄

∂zK

∂zK

∂ys
i

))

◦ χdu.

This completes the proof. � �

Keeping the above notations we can introduce the following concepts:

Definition 4.17. The local representative ᾱ (4.96) of the constrained

Lagrangian system is called a representative in canonical form. Functions

P i
s are called constraint momenta, and (any) 1-form η in (4.104) is called

energy 1-form associated with the corresponding Hamilton–De Donder

system ᾱI .

By the next theorem, constraint Legendre transformation, associated

with a regular constrained Hamilton–De Donder system is defined. It is

a local coordinate transformation on the constraint submanifold Q.

Theorem 4.8. Let [[ᾱ]] be a De Donder regular constrained Lagrangian

system on Q, let ᾱI be a corresponding regular Hamilton–De Donder

system on a coordinate neighborhood U ⊂ Q, P i
s, 1 ≤ i ≤ n, 1 ≤ s ≤

m − k, its associated constraint momenta. Then the set of functions

(xi, yσ, P i
s) can be completed to coordinates on U . In particular, the set

of nm−κ indices labelled by J has a subset labelled by B, n(m−k)+1 ≤

B ≤ nm− κ, such that

(xi, yσ, zJ) → (xi, yσ, P i
s, z

B) (4.112)

is a coordinate transformation on U .

Proof. By assumption, the matrix (Bi
sJ) = (∂P i

s/∂z
J ) has maximal rank

(equal to n(m − k)). This means that it has a regular submatrix with
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n(m − k) linearly independent rows: we can label them by A, where

1 ≤ A ≤ n(m − k). The remaining rows will be labelled by B, i.e.

n(m−k)+1 ≤ B ≤ nm−κ. Now, the map (xi, yσ, zJ) → (xi, yσ, P i
s, z

B)

is regular, i.e. is a coordinate transformation on U . � �

Finally, let us find the expression of constrained Hamilton–De Donder

equations in constraint Legendre coordinates. First, we have up to a

constraint form,

η = ηjdx
j + ηsdy

s + ηs
i dP

i
s + ηBdz

B, (4.113)

hence,

η = ηidx
i+ ηsdy

s+ ηs
i

(

d′cP
i
s

dxj
dxj+

∂cP
i
s

∂yr
ω̄r+

∂P i
s

∂zJ
dzJ

)

+ ηBdz
B

=

(

ηj + ηs
i

d′cP
i
s

dxj
− ηs

i

∂cP
i
s

∂yr
gr

j

)

dxj +

(

ηr + ηs
i

∂cP
i
s

∂yr

)

dyr

+ ηs
i

∂P i
s

∂zA
dzA +

(

ηs
i

∂P i
s

∂zB
+ ηB

)

dzB.

(4.114)

Comparing with (4.102), (4.103) we obtain

η̄r = ηr + ηs
i

∂cP
i
s

∂yr
= Ar +

d′cP
i
r

dxi
− gs

i

∂cP
i
s

∂yr
,

η̄A = ηs
i

∂P i
s

∂zA
= −gs

i

∂P i
s

∂zA
,

η̄B = ηs
i

∂P i
s

∂zB
+ ηB = −gs

i

∂P i
s

∂zB
.

(4.115)

The second relation gives us

(ηs
i + gs

i )
∂P i

s

∂zA
= 0, i.e. ηs

i = −gs
i (x

j, yν, P j
l , z

B), (4.116)

since the matrix

(

∂P i
s

∂zA

)

is regular. The first and third relation above

then read

ηr = η̄r + gs
i

∂cP
i
s

∂yr
= Ar +

d′cP
i
r

dxi
, ηB = 0. (4.117)

Next, we can see that the vertical subbundle of the canonical distri-

bution is in Legendre coordinates generated by the vector fields ∂c/∂y
s,

∂/∂P i
s , and ∂/∂zB . Computing contractions of a representative ᾱ of

(4.104) by these vector fields, we get the constrained Hamilton–De Don-

der equations δ∗iξᾱ = 0, δ∗ϕ̄a = 0 in the following “canonical form”:
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Theorem 4.9. Constrained Hamilton–De Donder equations (4.84) in

constraint Legendre coordinates take the form

∂(P i
s ◦ δ)

∂xi
= ηs ◦ δ,

∂(ys ◦ δ)

∂xi
= −ηs

i ◦ δ,

1 ≤ s ≤ m− k, 1 ≤ i ≤ n,
(4.118)

∂(ym−k+a ◦ δ)

∂xi
= gm−k+a

i ◦ δ, 1 ≤ a ≤ k, 1 ≤ i ≤ n. (4.119)

Remark 4.5. In view of Theorem 4.8 we can see that for a regular

constrained Lagrangian system one has on Q local adapted coordinates

(xi, yσ, ys
j , z

B), where 1 ≤ i ≤ n, 1 ≤ σ ≤ m, 1 ≤ s ≤ k, n(m −

k) + 1 ≤ B ≤ nm − κ, and corresponding adapted bases of 1-forms

(dxi, dys, ϕ̄a, dys
j , dz

B), respectively, (dxi, ω̄s, ϕ̄a, dys
j , dz

B). In these coor-

dinates many formulas simplify, since zA = ys
j (hence ∂zB/∂ys

j = 0).

The results on constrained Hamilton–De Donder systems can be easily

reformulated for special cases of constraints. Let us recall the properties

of semiholonomic constraints, that are quite similar to the unconstrained

case [25].

Theorem 4.10. Let Q be a semiholonomic constraint in J 1Y (i.e. κ =

kn and dI(C0) ⊂ I(C0)), ᾱI a constrained Hamilton–de Donder system.

Then the integrability condition (4.95) is satisfied identically and the re-

gularity condition reads

det

(

∂2L̄

∂yl
i∂y

s
j

)

6= 0. (4.120)

Constrained momenta are given by the formula

P i
s =

∂L̄

∂ys
i

, (4.121)

the class of energy 1-forms ηI contains a closed form dH̄, where

H̄ = −L̄ + P i
sy

s
i , (4.122)

and constraint Legendre transformation is a local diffeomorphism

(xi, yσ, ys
j) → (xi, yσ, P j

s ) (4.123)

on the submanifold Q ⊂ J1Y .
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[5] Th. De Donder, Théorie Invariantive du Calcul des Variations, Gauthier–Villars

Paris, (1930).

[6] G. Giachetta, Jet methods in nonholonomic mechanics, J. Math. Phys. 33 (1992),

1652–1665.

[7] H. Goldschmidt and S. Sternberg, The Hamilton–Cartan formalism in the calcu-

lus of variations, Ann. Inst. Fourier, Grenoble 23 (1973) 203–267.
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[22] O. Krupková, Partial differential equations with differential constraints, J. Dif-

ferential Equations, 220 (2006) 354- -395.
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[25] O. Krupková, P. Volný, Euler–Lagrange and Hamilton equations for non-

holonomic systems in field theory, in: J. Phys. A: Math. Gen. 38 (2005) 8715-

8745.

[26] M. de León and D.M. de Diego, On the geometry of non-holonomic Lagrangian

systems, J. Math. Phys. 37 (1996) 3389–3414.

[27] M. de León, J.C. Marrero and D.M. de Diego, Non-holonomic Lagrangian systems

in jet manifolds, J. Phys. A: Math. Gen. 30 (1997) 1167–1190.

[28] E. Massa and E. Pagani, A new look at classical mechanics of constrained sys-

tems, Ann. Inst. Henri Poincaré 66 (1997) 1–36.
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