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ABSTRACT. Using the notion of radially Clarke-Rockafellar subdif-
ferentiable functions (RCRS-functions), we characterize strictly pseudo-
convex functions with respect to the Clarke-Rockafellar subdifferential
in two different ways, and we study a maximization problem involving
RCRS-strictly pseudoconvex functions over a convex set.

1. INTRODUCTION

Generalized convexity has proved to be a good tool in the study of some
economic problems and in mathematical programming. Strict pseudo-
convexity is a kind of generalized convexity that appeared recently as an
important part of the class of pseudoconvex functions. The former class
has been characterized by many authors (see for instance [1, 2, 4, 7, 10]).
In this paper we will refine these results in section 2, using the Clarke
Rockafellar subdifferential. While, in section 3 we give a necessary and
sufficient condition for a point to be a maximum of a strictly pseudocon-
vex function over a convex set.

Let us recall some definitions and well known results in connection
with what we shall do in the sequel. By X we mean a Banach space and
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by X* its topological dual, while (.,.) is the duality pairing between X
and X*. For z and y in X, the closed segment [z,y] is the set [z,y] =
{z+t(y—=x); t €]0,1] }. By [z,y) we denote the set [z, y]\ {y}. Given a
lower semi-continuous (l.s.c.) function f : X — RU{+o00} whose domain

domf = {xEX; f(x)<+oo}

is nonempty. The Clarke-Rockafellar generalized directional derivative
fH(z,v) of f at x € domf along the direction v is defined by:

fl(a,v) = sup limsup inf 7 [f(y+tu) - f(y)], (1)
e>0 y—>fz,t\0 u€B(v,e)

where by y — ¢ , we mean y — = and f(y) — f(z). Here, by B(v,¢) we
denote the open ball centered at v with radius e. The Clarke-Rockafellar
subdifferential of f at x € domf is defined by

Of(x) = {z" € X*: (z",v) < fl(z,0) YveEX}.

We adopt the convention df(z) = () when x ¢ domf.
A function f is said to be quasiconvex if for any z,y € X and A € [0, 1]
we have

fx + (1= A)y) < max{ f(z), f(y) }- (2)

f is said to be strictly quasiconvex if the inequality (2) is strict when = #
y. [ is said to be pseudoconvex(with respect to the Clarke-Rockafellar
subdifferential) if for any z and y in X the following implication holds:

(Fz" €0f(x): (2" y—2) 20) = f(x) < [(y). (3)

The relation between pseudoconvexity and quasiconvexity has been de-
scribed in [2, 4, 7, 10] by the following result.

Theorem 1. Let f: X — RU{+o0} be a Ls.c. function. Consider
the propositions:

i) f is pseudoconvex.
ii) f is quasiconvex and (0 € 0f(x) = z is a global
minimum of f).
Then i) implies ii). If moreover, f is radially continuous, then ii) implies
i).
Generally, in generalized convexity, there is a close link between the
kind of convexity of a function and a corresponding kind of monotonicity

of its subdifferential. Recall that a multifunction 7" : X — X* is said to
be pseudomonotone if for any z,y € X, we have:

(A" eT(z): (" y—2x) >0 = WYy €T(y): (y',y—z)>0. (4
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We have the following classical result:

Theorem 2. [2,4,7, 11] Let f : X — RU{+oc} be a Ls.c. function.
Consider the propositions:

i) f is pseudoconvex.
ii) 0f is pseudomonotone.

Then i) implies ii). If moreover, f is radially continuous, then ii) implies
i).

In this paper, we want to characterize strictly pseudoconvex func-
tions with respect to the Clarke-Rockafellar subdifferential in two dif-
ferent ways. For this, we introduce the so what we call radially Clarke-
Rockafellar subdifferentiable functions (RCRS-functions).

Let f: X +— RU{+o0} be a Ls.c. function. We say that f is radially
Clarke-Rockafellar subdifferentiable if for all x,y € X with x # y, there
is kg € (x,y) such that df(xg) # 0. Recall that an extended-real valued
function f : X +— R U {+o0} is said to be radially continuous if for all
xz,y € X f is continuous on [z, y].

2. CHARACTERIZATION OF RCRS-STRICT PSEUDOCONVEX
FUNCTIONS

In this section, we get analogous results to theorem 1 and theorem 2
for RCRS-strictly pseudoconvex functions.

An extended-real valued function f : X — R U {+oo} is said to be
radially non constant if for all x,y € X with = # y, f # constant on

[z, y].
Definition 3. A function f : X — R U {400} is said to be strictly

pseudoconvex(with respect to the Clarke-Rockafellar subdifferential) if
for any different points =,y € X, the following implication holds:

(Fe* € df(x): (a",y —2) >0) = f(z) < f(y). (5)

We can check immediately that a strict pseudoconvex function is pseu-
doconvex while the converse is not true in general as we can see for
example for the function

Vx| -1 ifxe]l—o00,—1]UIL +o0],
flw) = { 0 if 2 € [~1,1]. (6)

We can describe the relation between strict pseudoconvexity and strict
quasiconvexity via the following result:
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Theorem 4. Let f: X — RU{+o0} be a Ls.c. function such that
f is radially Clarke-Rockafellar subdifferentiable. Consider the following
assertions:

i) f is strictly pseudoconvex.
ii) f is strictly quasiconvex and (0 € 0f(x) = x is a
strict global minimum of f).

Then i) implies ii). If moreover, f is radially continuous, then ii) implies
i).
Proof. Let f be a strictly pseudoconvex function, then by theorem 1,
f is quasiconvex. Let us prove now that f is strictly quasiconvex. Since
f is quasiconvex, then according to Diewert [5], it suffices to prove that
f is radially non constant. By the contrary, assume that there exists a
closed segment [z, y] (z # y) on which f is constant. Let z € (x,y). Then
applying the strict pseudoconvexity property on x and z, we deduce
V2t e 0f(z) (2,2 —2z) <O.
Using the same argument for z and y, we obtain
V2 e 0f(z) (2",y—=z) <O.
Therefore,
V€ df(z), (Zfx—y)<0 and (z",x—y)>0.

Consequently, for all z € (x,y) we have 9f(z) = (). But this contradicts
the fact that f is a RCRS-function. Thus, f is strictly quasiconvex. On
the other hand, f is pseudoconvex. Therefore,

0 € Of(x) = x is a strict global minimum of f.

Conversely, assume that f satisfies the condition ii) and f is radially
continuous. Then by theorem 1, f is pseudoconvex.

Let us prove now that f is strictly pseudoconvex. Assume by contra-
diction that there exist x # y in X and z* € df(x) such that

(z,y—x) >0 and  f(z) > f(y).
Then, It follows by pseudoconvexity property that
f(z) = f(y) and Vz € [z,y],  f(2) = f(z) = f(y).
On the other hand, f is quasiconvex. Therefore,
f(z) = f(x) = fly), Vze€lzy]

Consequently, f is not radially non constant on X. But this contradicts
the fact that f is strictly quasiconvex. Thus, we achieve the proof.



CLARKE-ROCKAFELLAR SUBDIFFERENTTAL 29

Analogously to pseudomonotone multioperators, we define strictly pseu-
domonotone multioperators as follows:

Definition 5. A multioperator 7' : X — X* is said to be strictly
pseudomonotone if for any different points x and y in X, the following
implication holds:

JrreT(x): (5y—x)y>0= Vy ' €T(y): (y,y—x)>0. (7)

We have also a relation between strict pseudoconvexity of functions
and strict monotonicity of their corresponding Clarke-Rockafellar subd-
ifferentials.

Theorem 6. Let f: X — RU {400} be a Ls.c. function such that
f is radially Clarke-Rockafellar subdifferentiable. Consider the following
assertions

i) f is strictly pseudoconvex.

ii) Of is strictly pseudomonotone.
Then i) implies ii). if moreover, f is radially continuous, then ii) implies
i).

Proof. The first implication can be easily proved, nevertheless we
include it here for completeness. Assume that f is strictly pseudoconvex.
Let us prove by the contrary that df is strictly pseudomonotone. Suppose
that there exist two different points z,y € X, x* € 0f(x) and y* € 9f (y)
such that

(x*;y—2x) >0 and (y*,xz—y)>0.

Since f is strictly pseudoconvex, then

fle) < fly) and  flz)> f(y).

Contradiction. Thus, 0f is strictly pseudomonotone.

Conversely, assume that f satisfies the condition ii) and f is radially
continuous. Let us prove that f is strictly pseudoconvex. By the contrary,
assume that there exist two different points z and y in X, and z* € df(z)
such that both inequalities

(", y—2) >0 and f(z) > f(y)

hold. Then
(*,z—x) >0  Vzelr,yl. (8)

By theorem 2, it follows that f is pseudoconvex. Therefore,

flx) < f(z) Vzelz,yl.
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By theorem 1, f is quasiconvex. Consequently, we can easily see that
f must be constant on [z,y]. On the other hand, by (8) and the strict
pseudomonotonicity of df, we have:

(z",z—1x) >0, Vz € (z,y) Vzx € Of(2). 9)

Pick zp € (z,y) such that Of(z) # 0 (such a z, exists since f is a RCRS-
function). Choose any z§ € 0f(z0). Then, (2,20 —x) > 0. Therefore,
(25,y — z0) > 0. Consequently, there is £ > 0 such that

(o5 —20) >0 Vy € B(y,e).

By the pseudoconvexity of f, it follows that y is a global minimum of f.
Hence, z is also a global minimum of f. Thus, 0 € df(zp) and this is in
contradiction with (9).

3. MAXIMA OF STRONGLY RCRS-STRICT PSEUDOCONVEX
FUNCTIONS

In this section, we study a maximization problem over a convex set
involving a certain class of RCRS-strictly pseudoconvex functions called
class of strongly RCRS-strictly pseudoconvex functions.

Let f: X +— RU{+o0} be a l.s.c. function. We say that f is strongly
radially Clarke-Rockafellar subdifferentiable if for all z,y € X with x # y
and for all ¢ : f(x) < ¢ < f(y), there is zy € (z,y) such that f(z¢) = ¢
and Of () # 0.

Let C' be a nonempty convex set of X. Consider the following maxi-
mization problem:

(P)  max f(x),

zeC
where the function f is assumed to be strictly pseudoconvex, l.s.c. and
strongly radially Clarke-Rockafellar subdifferentiable.

Theorem 7. Consider T € C such that
—o0 < iréff < f(@). (10)

Then T is a maximum of f over C' if and only if for all x € C such that
f(z) = f(z) and all z* € Of(x) we have:

(", y—x) <0  VyeC\{z}. (11)

Proof. Assume that T is a solution of the problem (P). Let z € X
such that f(z) = f(Z) and let 2* € df(x). Then

fly) < f(z), VyedC.
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Since f is strictly pseudoconvex, then
(v*,y —x) <0, VyeC\{z},

Conversely, suppose that there exists z € C such that f(z) > f(z). By
the hypotheses, there is zy € C such that f(z9) < f(z). Since f is
strongly radially Clarke-Rockafellar subdifferentiable, then there is some
zo € (20,2) such that f(zo) = f(Z) and Of(z9) # 0. Pick any xy* €
O0f(xo). Then

(xg, 2 —x0) <0 and  (x,20 — xo) < 0.

Which is impossible. To prove that (11) holds when Z is a maximum,
we use only the strict pseudoconvexity of f, the other conditions that
appear in theorem 7 are needed only to prove that (11) implies that Z is
a maximum. This result is a refinement of both theorem 2.1 of [8] where
the function was supposed to be convex continuous and of theorem 4.1
of [7] where the function was assumed to be pseudoconvex and radially
continuous.
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