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Abstract. We have developed a new common method to inves-

tigate geometrically fast approximation problems. Fisher-Micchelli’s,

Bernstein-Walsh’s and Batirov-Varga’s well known results are obtained

as applications.

Introduction: Fisher-Micchelli’s & Bernstein-Walsh’s type

problems

Let K be a compact subset of the open unit disk D, H∞(D) be the set

of bounded analytic functions on D and C(K) be the set of continuous

functions on K.

Then each function f ∈ H∞(D) is approximable by finite linear com-

binations of the system of powers
{
zk

}∞
0

uniformly on K at a rate of

geometrical progression and as approximants one can take Taylor poly-

nomials, i.e.

lim sup
n→∞

n

√
‖f − Pnf‖C(K) < 1,

where Pn(f)(z) :=
n∑

k=0

f(k)(0)
k!

zk.
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If f ∈ H(C) then one can obtain faster approximation

lim
n→∞

n

√
‖f − Pnf‖C(K) = 0.

From now on approximation which is faster than geometrical progression

will be called fast approximation.

In case when logarithmic capacity ofK is positive, γ(K) > 0, Bernstein

and Walsh [BW] obtained the following result.

BW type result (Bernstein-Walsh): The class of functions f :

K → C permitting the fast approximation by finite linear combinations

of the system
{
zk

}∞
0

in C(K), coincides with H(C).

We have seen that to make the fast approximation of the class H∞(D)

we have to miniaturize it up to the class of entire functions. The natural

question arises if we can fast approximate whole class H∞(D) using some

other system instead of
{
zk

}∞
0

. Due to Fisher and Micchelli [FM] the

answer is negative.

FM type result (Fisher-Micchelli) There is no system of functions

e
(n)
k : K → C, k = 1, 2, . . . , n; n = 1, 2, . . .

such that every function f ∈ H∞(D) admits the fast approximation by

polynomials

n∑

k=1

a
(n)
k e

(n)
k

in C(K).

Reasoning from these results, let us consider the following problems

named Fisher-Micchelli’s and Bernstein-Walsh’s type problem, respec-

tively.

Problems:

FM)For a given space H , find a system e
(n)
k such that each element

of H admits the fast approximation by linear combinations
n∑

k=1

a
(n)
k e

(n)
k .

BW) For a given system e
(n)
k , find the class of elements permitting the

fast approximation by linear combinations
n∑

k=1

a
(n)
k e

(n)
k .

We have developed a common method to investigate both problems

based on the notion of q-bounded systems.
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1. q-bounded systems

Definition 1.1 Let X be a Banach space,
(
e
(n)
k

)
k≤n

⊂ X, n = 1, 2, . . .

be a triangle matrix, and Ln be the linear span of the finite system{
e
(n)
k

}n

k=1
. For q > 0 the matrix

(
e
(n)
k

)
k≤n

is called

i. q-lower bounded in X, if for each sequence Pn =
n∑

k=1

a
(n)
k e

(n)
k ∈ Ln

one has

lim sup
n→∞

n

√
‖Pn‖X ≥ q lim sup

n→∞
n

√
max
1≤k≤n

∣∣∣a(n)
k

∣∣∣.

ii. q-upper bounded in X, if

lim sup
n→∞

n

√
max
1≤k≤n

∥∥∥e(n)
k

∥∥∥
X
≤ q.

Definition 1.2 The matrix
(
e
(n)
k

)
k≤n

is called 0-lower bounded (∞-

upper bounded), if it is q-lower (upper) bounded for some q ∈ (0,∞).

Definition 1.3 The system {ek}∞k=1 ⊂ X is called q-lower (upper)

bounded, if the matrix
(
e
(n)
k

)
k≤n

is q-lower (upper) bounded for e
(n)
k :=

ek, k ≤ n.

Checking of q-upper boundedness is usually easy. As regards checking

of q-lower boundedness, it seems difficult. The following lemma shows

that checking of q-lower boundedness can be reduced to checking of q-

upper boundedness of biorthogonal system.

Lemma 1.1 (Checking lower boundedness, [F]) If the finite sys-

tems
{
ϕ

(n)
k

}n

k=1
and

{
e
(n)
k

}n

k=1
are biorthogonal for all n ∈ N and the

matrix
(
ϕ

(n)
k

)
k≤n

is q-upper bounded in a normed space Y then the

matrix
(
e
(n)
k

)
k≤n

is 1
q
-lower bounded in the dual space Y ∗.

2. Basic lemma

There is a close relation between Kolmogorov n-widths and q-bounded

systems.

Definition 2.1 Let K be a subset of a normed linear space X. The

quantity

dn(K,X) = inf
Xn⊂X

sup
x∈K

inf
y∈Xn

‖y − x‖X ,
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where the leftmost infimum is taken over all subspaces Xn ⊂ X of di-

mension n, is called the Kolmogorov n-width of K in X.

Lemma 2.1(q-bounded systems and Kolmogorov n-widths)

Let H,X be Banach spaces and H ⊂ X. If there exists a matrix(
ϕ

(n)
k

)
k≤n

⊂ H which is q1-lower bounded in X and q2-upper bounded in

H, then

lim sup
n→∞

n
√
dn(BH , X) ≥ q1

q2
,

for the unit ball BH = {x ∈ H : ‖x‖H ≤ 1} of H.

Lemma 2.1 could be established by Tikhomirov’s well known result.

Lemma (Tikhomirov, [T]) If Bn+1 is a unit ball of some n + 1-

dimensional subspace of a Banach space X, then dn(Bn+1, X) = 1.

Instead, we shall give here an elementary proof in the sense that it

does not depend on Borsuk’s theorem.

Proof. Assuming the converse, there is a positive number δ and the

n-dimensional (n ≥ n0) subspaces Yn ⊂ X such that

sup
x∈BH

inf
y∈Yn

n

√
‖y − x‖X <

q1
q2

− δ (n ≥ n0).

Let
{
e
(n)
1 , . . . , e

(n)
n

}
be a basis of Yn. Denoting

rn(x) = inf
a
(n)
k

n

√√√√
∥∥∥∥∥x−

n∑

k=1

a
(n)
k e

(n)
k

∥∥∥∥∥
X

,

we have

sup
x∈BH

rn(x) <
q1
q2

− δ (n ≥ n0). (1)

For each x ∈ BH take coefficients a
(n)
k (x) such that

lim sup
n→∞

n

√√√√
∥∥∥∥∥x−

n∑

k=1

a
(n)
k (x)e

(n)
k

∥∥∥∥∥
X

= lim sup
n→∞

rn(x). (2)

Since
(
ϕ

(n)
k

)
k≤n

is q2-upper bounded in H , it follows that

ψ
(n)
k :=

ϕ
(n)
k

(q2 + ε)n ∈ BH , k = 1, 2, . . . , n, (3)

for each positive ε beginning from some N(ε).

The linear dependence of the system
{〈

a
(n)
1 (ψ

(n+1)
i ), a

(n)
2 (ψ

(n+1)
i ), . . . , a(n)

n (ψ
(n+1)
i )

〉}n+1

i=1
in C

n
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implies the existence of coefficients c
(n+1)
i , i = 1, . . . , n + 1 such that

n+1∑
i=1

c
(n+1)
i a

(n)
k (ψ

(n+1)
i ) = 0, k = 1, 2, . . . , n and

max
1≤i≤n+1

∣∣∣c(n+1)
i

∣∣∣ = 1. (4)

Denote Pn+1 =
n+1∑
i=1

c
(n+1)
i ψ

(n+1)
i . Combining (1) – (4), we obtain

q1
q2 + ε

≤ lim sup
n→∞

n+1

√
‖Pn+1‖X

= lim sup
n→∞

n+1

√√√√
∥∥∥∥∥

n+1∑

i=1

c
(n+1)
i

[
ψ

(n+1)
i −

n∑

k=1

a
(n)
k (ψ

(n+1)
i )e

(n)
k

]∥∥∥∥∥
X

≤ lim sup
n→∞

n+1

√√√√
n+1∑

i=1

∣∣∣c(n+1)
i

∣∣∣

× lim sup
n→∞

n+1

√√√√ max
1≤i≤n+1

∥∥∥∥∥ψ
(n+1)
i −

n∑

k=1

a
(n)
k (ψ

(n+1)
i )e

(n)
k

∥∥∥∥∥
X

= lim sup
n→∞

max
1≤i≤n+1

rn+1(ψ
(n+1)
i ) ≤ lim sup

n→∞
sup

x∈BH

rn+1(x) ≤
q1
q2

− δ.

This yields that q1

q2
− δ ≥ q1

q2
and the contradiction proves the lemma.

The following basic lemma shows that checking of q-boundedness of

even one system leads to solution of both problems at once.

Lemma 2.2 (Basic lemma)

FM) Suppose H ⊂ X are Banach spaces and ‖x‖X ≤ C ‖x‖H , x ∈
H. If exists a matrix

(
ϕ

(n)
k

)
k≤n

⊂ H, which is q1-lower bounded in X

and q2-upper bounded in H, then for every matrix
(
e
(n)
k

)
k≤n

⊂ X there

is an element x ∈ H such that

lim sup
n→∞

n

√√√√
∥∥∥∥∥x−

n∑

k=1

a
(n)
k e

(n)
k

∥∥∥∥∥
X

≥ q1
q2
,

for all numerical matrices
(
a

(n)
k

)
k≤n

.

BW) Let {ek}∞k=1 be a 0-lower and ∞-upper bounded system in a

Banach space X. For x ∈ X there are polynomials Pn =
n∑

k=1

a
(n)
k ek

satisfying n
√

‖x− Pn‖X
→

n→∞
0 if and only if x =

∞∑
k=1

xkek,
k
√

|xk| →
k→∞

0.
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Proof. One can find BW) proof in [F] under even more general con-

ditions.

FM) Assuming the converse, it is possible to take
(
e
(n)
k

)
k≤n

⊂ X such

that lim sup
n→∞

rn(x) < q1

q2
(∀x ∈ H) for rn(x) := inf

a
(n)
k

n

√∥∥∥∥x−
n∑

k=1

a
(n)
k e

(n)
k

∥∥∥∥
X

.

Then let H =
∞⋃
i=1

Hi, where Hi :=

{
x ∈ H : lim sup

n→∞
rn(x) < q1

q2
− 1

i

}
.

Since H is a Banach space, one can take some Hi0 being a set of the

second category there.

Denote q0 = q1

q2
− 1

i0
and

Ek = {x ∈ H : rn(x) ≤ q0 for n ≥ k} .

As ‖∗‖H is stronger than ‖∗‖X , the sets Ek are closed in H . Since

Hi0 ⊂
∞⋃

k=1

Ek, then some Ek0 contains a ball in H , that is the estimates

rn(x0 + µx) ≤ q0 (n ≥ k0)

hold for some positive number µ, for some x0 ∈ X and for each x chosen

from the unit ball BH = {x ∈ H : ‖x‖H ≤ 1}. As

n
√
µ · rn(x) = rn(µx)

≤ n

√√√√inf
a
(n)
k

∥∥∥∥∥x0 + µx−
n∑

k=1

a
(n)
k e

(n)
k

∥∥∥∥∥
X

+ inf
a
(n)
k

∥∥∥∥∥x0 −
n∑

k=1

a
(n)
k e

(n)
k

∥∥∥∥∥
X

≤ n
√

2q0 (∀x ∈ BH),

then

lim sup
n→∞

sup
x∈BH

rn(x) ≤ q0.

Therefore

lim sup
n→∞

n
√
dn(BH , X) ≤ q0

that contradicts lemma 2.1.

To each pair
(
X, ϕ

(n)
k

)
, where

(
ϕ

(n)
k

)
k≤n

is some matrix of elements

from a Banach space X, let’s put in correspondence the set ℑX

(
ϕ

(n)
k

)
,

consisting of elements x ∈ X that

n∑

j=1

j∑

i=1

a
(n)
ij ϕ

(j)
i

X→
n→∞

x, sup
n

n∑

j=1

j∑

i=1

∣∣∣a(n)
ij

∣∣∣ <∞.
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Corollary. Let
(
ϕ

(n)
k

)
k≤n

be q-lower bounded matrix in the Banach

space X and
∥∥∥ϕ(n)

k

∥∥∥
X

≤ C, k ≤ n, n = 1, 2, . . .. Then for each matrix
(
e
(n)
k

)
k≤n

⊂ X there is an element x ∈ ℑX

(
ϕ

(n)
k

)
such that

lim sup
n→∞

n

√√√√
∥∥∥∥∥x−

n∑

k=1

a
(n)
k e

(n)
k

∥∥∥∥∥
X

≥ q,

for all numerical matrices
(
a

(n)
k

)
k≤n

.

Proof. Let Mn be the Banach space of all n× n triangular numerical

matrices a = (aij), 1 ≤ i ≤ j ≤ n, equipped with the norm |a|n =
n∑

j=1

j∑
i=1

|aij |. For a = (aij) ∈Mn denote

aϕ =
n∑

j=1

j∑

i=1

aijϕ
(j)
i ∈ X.

Consider the set M of sequences A =
{
a(n)

}∞
n=1

, a(n) ∈ Mn that con-

verges in X,

Aϕ = lim
n→∞

a(n)ϕ,

and sup
n

∣∣a(n)
∣∣
n
<∞. Then M is a Banach space, with the norm

‖A‖M = sup
n

∣∣a(n)
∣∣
n
.

Therefore the set ℑX

(
ϕ

(n)
k

)
that coincide with {Aϕ : A ∈M} turns to

a Banach space, equipped with the norm

‖x‖ℑX
= inf

A:Aϕ=x
‖A‖M .

Indeed, ℑX

(
ϕ

(n)
k

)
is isometrically isomorphic to the factor space M/M0,

which is a Banach space as M0 = {A : Aϕ = 0} is a closed subspace of

M .

To complete the proof it is enough to note that
∥∥∥ϕ(n)

k

∥∥∥
ℑX

≤ 1, ‖x‖X ≤ C ‖x‖ℑX
, x ∈ ℑX

(
ϕ

(n)
k

)

and use basic lemma FM).
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3. Application 1

Let K be a compact subset of the open unit disk D with positive

logarithmic capacity γ(K), C(K) be the set of continuous functions on

K and H∞(D) be the set of bounded analytic functions on the unit disk

D.

Take H = H∞(D), X = C(K) then H ⊂ X and ‖∗‖X ≤ ‖∗‖H .

It is obvious that the system ϕ
(n)
k (z) = ϕk(z) = zk is 1-upper bounded

inH . On the other hand, one can easily establish γ(K)
4

-lower boundedness

of
{
zk

}∞
0

in X using the following

Proposition ([F]). For each polynomial Pn(z) =
n∑

k=0

akz
n−k, a0 6= 0

there is a polynomial Qn(z) =
n∑

k=0

bkz
n−k, b0 = 1 satisfying

|Pn(z)| ≥
max
0≤k≤n

|ak|

4n
|Qn(z)| , z ∈ D.

Now applying basic lemma we obtain Fisher-Micchelli’s and Bernstein-

Walsh’s results.

(FM) Let
(
e
(n)
k

)
k≤n

be a matrix of continuous functions on K. Then

there is a function f ∈ H∞(D) such that

lim sup
n→∞

n

√√√√
∥∥∥∥∥f −

n∑

k=1

a
(n)
k e

(n)
k

∥∥∥∥∥
C(K)

≥ γ(K)

4
,

for all numerical matrices
(
a

(n)
k

)
k≤n

.

(BW) The class of functions f : K → C, permitting the fast ap-

proximation by finite linear combinations of the system
{
zk

}∞
0

in C(K),

coincide with H (C).

As you could see we have obtained FM and BW results by checking

q-boundedness of just one system
{
zk

}∞
k=0

.

4. Application 2

It was mentioned above that to make the fast approximation ofH∞ (D)

we have to miniaturize it up to the class of entire functions. Now let’s

consider another miniaturization.

Suppose 0 ≤ n1 < n2 < . . . < nk < . . . are integers with density τ , i.e.

lim
k→∞

k
nk

= τ .
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Denote

H∞
{nk}(D) =

{
f ∈ H∞(D) : f(z) =

∞∑

k=1

akz
k, ak = 0, k /∈ {nk}

}
,

‖f‖H∞

{nk}
= sup

z∈D
|f(z)| .

Let K be a compact subset of the unit disk D = {z ∈ C : |z| < 1} with

positive logarithmic capacity γ (K).

Theorem 4.1

FM 1) If τ = 0 then lim
n→∞

n
√
dn (B,C(K)) = 0, for the unit ball B of

H∞
{nk}(D).

FM 2) If τ > 0 then for each matrix
(
e
(n)
k

)
k≤n

of continuous func-

tions on K there is a function f ∈ H∞
{nk}(D) satisfying

lim sup
n→∞

n

√√√√
∥∥∥∥∥f −

n∑

k=1

a
(n)
k e

(n)
k

∥∥∥∥∥
C(K)

≥
(
γ(K)

4

) 1
τ

,

for all numerical matrices
(
a

(n)
k

)
k≤n

.

BW) If τ > 0 then the class of functions f : K → C, permitting

the fast approximation by the finite linear combinations of the system

{znk}∞k=1 in C(K), coincide with H∞
{nk}(D) ∩H(C).

Proof. To prove FM1) one can take the partial sums of correspond-

ing lacunary series as approximants. Proofs of FM2) and BW) can be

established by the basic lemma.

Indeed, take H = H∞
{nk}(D), X = C(K) and ϕk(z) = znk ∈ H∞

{nk}(D).

It can be easily checked that {znk}∞k=1 is 1-upper bounded in H and(
γ(K)

4

) 1
τ

-lower bounded in X.

5. Application 3

Consider the system of exponents
{
e−λkx

}∞
k=1

, (5)

where λk are disjoint numbers, which satisfy

Reλk ≥ a > 0, |λk| ≤M <∞, k = 1, 2, . . . . (6)

To every function f ∈ L2(0,∞) we put in correspondence its approx-

imation error by finite linear combinations of first n elements of (5),
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i.e. En(f) = inf
a
(n)
k

∥∥∥∥f(x) −
n∑

k=1

a
(n)
k e−λkx

∥∥∥∥
L2(0,∞)

. There is an analogue of

Bernstein theorem for exponents.

Theorem (Musoyan, [M1]) Let f ∈ L2(0,∞). Then the estimate

lim sup
n→∞

n
√
En(f) < 1 holds if and only if there exists an entire function of

exponential type with indicator diagram located in the open left half-plane

coinciding with f on (0,∞) almost everywhere.

In [Z] it has been shown that in a sense such rate of approximation

can’t be improved.

Theorem ([Z]) Let D be a set of positive measure µ(D) and D ⊂
{z : |z| ≤M1, Rez < 0}. If (6) takes place then

lim sup
n→∞

n
√
En(fλ) ≥

1

4e
√
π

√
µ(D)

max {M,M1}
,

where fλ(z) = e−λz for some λ chosen from −D = {z : −z ∈ D}.
For entire function f of exponential type introduce its Borel trans-

form βf (z) =
∞∑

n=0

f (n)(0)z−n−1. Let K be a compact subset of the open

right half-plane with positive logarithmic capacity γ(K) and −K =

{z : −z ∈ K}. For 1 ≤ p ≤ ∞ we denote by Lp
K the class of functions

f ∈ Lp(0,∞) admitting the extension up to entire function of exponential

type with βf holomorphic on the complement of −K.

For f ∈ Lp(0,∞) and any matrix
(
e
(n)
k

)
k≤n

⊂ Lp(0,∞) consider

E(p)
n (f) := inf

a
(n)
k

∥∥∥∥∥f −
n∑

k=1

a
(n)
k e

(n)
k

∥∥∥∥∥
Lp(0,∞)

.

Theorem 5.1 (FM) For each matrix
(
e
(n)
k

)
k≤n

⊂ Lp(0,∞), 1 ≤ p ≤
∞, there is a function f ∈ Lp

K satisfying

lim sup
n→∞

n

√
E

(p)
n (f) ≥ γ(K)

d(K)
,

where d(K) = inf {2M : K ⊂ {z : |z| ≤M}}.
Proof. There exists a matrix of numbers (λkn)k≤n ⊂ K such that the

matrix of exponents
(
e−λknx

)
k≤n

is γ(K)
d(K)

-lower bounded in Lp(0,∞). To

prove this, we introduce Fekete’s n-th transfinite diameter and Chebyshev

n-th constant ofK ([L], p. 606) that are τn = max
z1,...,zn∈K

∏
j 6=k

|zk − zj |1/n(n−1)
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and cn = min
z1,...,zn∈C

max
z∈K

n∏
k=1

|zk − z|1/n respectively. The theorem of Fekete

– Szego states that both τn and cn tend to γ(K) as n→ ∞.

We take (λkn)k≤n in such a way that

∏

j 6=k

|λkn − λjn|1/n(n−1) = τn, n = 1, 2, . . . . (7)

Consider the finite system of exponents

{
e−λ1nx, . . . , e−λnnx

}
(8)

and Blashke product Bn(λ) =
n∏

k=1

λ−λkn

λ+λkn
for {λkn}n

k=1. The biorthogonal

system generated by (8) is the system of functions [M2]

ϕ
(n)
k (x) =

1

B′
n(λkn)

n∑

m=1

e−λmnx

B′
n(λmn)(λmn + λkn)

, k = 1, . . . , n; x > 0, (9)

that is,
∞∫
o

e−λpnxϕqn(x)dx = δpq (δpq is Kronecker’s delta) and the linear

spans of (8) and (9) coincide. According to lemma 1.1, we just need d(K)
γ(K)

-

upper boundedness of
(
ϕ

(n)
k

)
k≤n

in all spaces Lp(0,∞), 1 ≤ p ≤ ∞.

The function ϕ
(n)
k (x) can be written in the integral form

ϕ
(n)
k (x) =

1

B′
n(λkn)

1

2πi

∫

Γr,R

e−ζxdζ

Bn(ζ)(ζ + λkn)
, (10)

where Γr,R is the contour consisting of the segment [r + iR, r − iR] and

semicircle ζ = r + Reiϕ, −π
2
≤ ϕ ≤ π

2
running in positive direction.

Besides, interior of Γr,R contains the compact set K. For any positive

number ε one can fix r such small and R such large that
∣∣∣ ζ−λ

ζ+λ

∣∣∣ > 1 − ε

when (ζ, λ) ∈ Γr,R ×K. Consequently, (10) implies

∥∥∥ϕ(n)
k

∥∥∥
Lp(0,∞)

≤ C

|B′
n(λkn)|

1

(1 − ε)n , k = 1, 2, . . . , n; n = 1, 2, . . . ,

where the constant C does not depend on k and n. As ε was arbitrary,

the last estimate leads to

lim sup
n→∞

n

√
max

1≤m≤n

∥∥∥ϕ(n)
m

∥∥∥
Lp(0,∞)

≤ 1

lim inf
n→∞

n

√
min

1≤m≤n
|B′

n(λmn)|
≤
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≤ d(K)

lim inf
n→∞

n

√
min

1≤m≤n

n∏
k=1,k 6=m

|λkn − λmn|
≤ d(K)

γ(K)
.

Indeed, according to (7) we get

n

√√√√
n∏

k=1,k 6=m

|λkn − λmn| = n

√√√√max
z∈K

n∏

k=1,k 6=m

|λkn − z| ≥ c
1− 1

n

n−1

for all m = 1, 2, . . . , n, therefore

lim inf
n→∞

n

√√√√ min
1≤m≤n

n∏

k=1,k 6=m

|λkn − λmn| ≥ lim
n→∞

c
1− 1

n

n−1 = γ(K).

Now let’s prove ℑLp(0,∞)

(
e−λknx

)
⊂ Lp

K .

For f ∈ ℑLp(0,∞)

(
e−λknx

)
consider the exponential polynomials fn(z) =

n∑
j=1

j∑
i=1

a
(n)
ij e

−λijz (z ∈ C) such that

sup
n

n∑

j=1

j∑

i=1

∣∣∣a(n)
ij

∣∣∣ <∞ and ‖fn − f‖Lp(0,∞)
→

n→∞
0.

The chosen sequence of polynomials is a normal family of entire functions

because of its uniformly boundedness inside of C. Similarly, the sequence

of Borel transforms

βfn
(z) =

n∑

j=1

j∑

i=1

a
(n)
ij

z + λij

is a normal family on the complement of −K. So fn(z) →
n→∞

f̃(z) uni-

formly on each compact subset of the complex plane and βfn
(z) →

n→∞
β (z)

uniformly on each compact subset of the complement of −K.

As entire function f̃ is of exponential type and f̃ = f almost ev-

erywhere on (0,∞), it remains to prove β ef(z) = β(z), z ∈ C\ (−K).

Indeed, if Rez ≥ δ > 0 then

βfn
(z) − β ef (z) =

∞∫

0

[fn(t) − f(t)] e−ztdt.

Therefore
∣∣∣βfn

(z) − β ef(z)
∣∣∣ = O(1) ‖fn − f‖Lp(0,∞) (n→ ∞).
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Thus β ef (z) = β(z) (Rez > 0). Consequently, β ef and β coincide on the

complement of −K. Now theorem 5.1 follows from the corollary of basic

lemma.

Remark. It is known [J] that the sequence {λk}∞1 , Reλk > 0 of

disjoint numbers satisfies Carleson’s separability condition [C]

inf
1≤j≤n

n∏

k=1,k 6=j

∣∣∣∣
λk − λj

λk + λj

∣∣∣∣ ≥ δ > 0, n = 1, 2, . . . (11)

if and only if the system
{
e−λkx

}∞
k=1

is basis in its closed linear span

in the space L2(0,∞). If (6) holds then
{
e−λkx

}∞
k=1

isn’t minimal, so

(11) doesn’t hold. However, a bounded sequence of powers can be taken

geometrically separable, i.e.

lim inf
n→∞

n

√√√√ inf
1≤j≤n

n∏

k=1,k 6=j

∣∣∣∣
λk − λj

λk + λj

∣∣∣∣ ≥ δ > 0. (12)

Moreover,

Lemma 5.1 Let the sequence {λk}∞1 satisfies the condition (6). Then

(12) takes place if and only if the system
{
e−λkx

}∞
k=1

is δ-lower bounded

in L2(0,∞).

Proof. Suppose

Bn(λ) =
n∏

k=1

λ− λk

λ+ λk

and

ϕ
(n)
k (x) =

1

B′
n(λk)

n∑

m=1

e−λmx

B′
n(λm)(λm + λk)

.

The inequality

lim sup
n→∞

n

√
max
1≤j≤n

∥∥∥ϕ(n)
j

∥∥∥
Lp(0,∞)

≤ 1

lim inf
n→∞

n

√
min

1≤j≤n
|B′

n(λj)|
=

=


lim inf

n→∞
n

√√√√ inf
1≤j≤n

n∏

k=1,k 6=j

∣∣∣∣
λk − λj

λk + λj

∣∣∣∣




−1

(13)

holds for all 1 ≤ p ≤ ∞. Taking into account lemma 1.1, (13) completes

the proof of necessity.
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To prove sufficiency we use Fourier transforms of functions ϕ
(n)
k ∈

L2(0,∞)

ϕ̂
(n)
k (τ) =

1

B′
n(λk)

1

2πi

∞∫

0

e−iτx

∫

Γ

e−ζxdζ

Bn(ζ)(ζ + λk)
dx, τ ∈ (−∞,∞),

where Γ is a contour that lies in the open right half – plane and con-

tains all points λk, k = 1, 2, . . . inside. Applying Fubini’s and residue

theorems, one can obtain

ϕ̂
(n)
k (τ) =

1

B′
n(λk)

1

Bn(−iτ)(iτ − λk)
.

Hence

∥∥∥ϕ(n)
k

∥∥∥
L2(0,∞)

=
√

2π

∥∥∥∥ϕ̂
(n)
k

∥∥∥∥
L2(−∞,∞)

=

√
2π

|B′
n(λk)|





∞∫

−∞

dτ

|iτ + λk|2





1/2

=
π
√

2

|B′
n(λk)|

√
Reλk

.

On the other hand, since ϕ
(n)
k was generated by

{
e−λkx

}n

k=1
, it is 1/δ-

upper bounded in the space L2(0,∞) [F]. Therefore

lim inf
n→∞

n

√
min

1≤j≤n
|B′

n(λj)| ≥ δ.

The lemma is proved.

Combining (13), lemma 1.1 and basic lemma, we get the following BW

type theorem.

Theorem 5.2 (BW) Let the sequence of disjoint numbers {λk}∞1
satisfying (6) be geometrically separable. Then the class of functions

f ∈ Lp(0,∞), 1 ≤ p ≤ ∞, permitting the fast approximation by finite

linear combinations of the system
{
e−λkx

}∞
k=1

, coincide with the set of

series

∞∑

k=1

ake
−λkx, k

√
|ak| →

k→∞
0,

where the convergence is in the sense of Lp(0,∞) topology.
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6. Application 4

Let Hp(G+), 1 < p < ∞, be the Hardy space of functions f analytic

on the upper half - plane G+ = {z : Imz > 0}, with the norm

‖f‖Hp(G+) = sup
y>0





∞∫

−∞

|f(x+ iy)|p dx





1/p

<∞.

For f ∈ Hp(G+) and any matrix
(
e
(n)
k

)
k≤n

⊂ Hp(G+) consider the

approximation error

E(p)
n (G+)(f) := inf

a
(n)
k

∥∥∥∥∥f −
n∑

k=1

a
(n)
k e

(n)
k

∥∥∥∥∥
Hp(G+)

.

The theorem of Paley and Wiener states: the class H2(G+) coincides

with the set of functions representable in the form

f(z) =
1√
2π

∞∫

0

f̂(t)eiztdt, z ∈ G+,

where f̂ ∈ L2(0,∞). If f̂(t) = e−λt, Reλ > 0 then the corresponding

function f ∈ H2(G+) is

f(z) =
i

2π

1

z − µ
, µ = iλ ∈ G+.

Reasoning from this, let’s consider the system of rational functions

ek(z) =
1

z − λk

, k = 1, 2, . . . ,

where λk are disjoint complex numbers chosen from some compact set

K ⊂ G+. Denote K = {z : z ∈ K}. Using Musoyan’s theorem, one

can establish lim sup
n→∞

n

√
E

(2)
n (G+)(f) < 1 for f ∈ H2(G+) ∩ Hol(C\K),

f(∞) = 0.

Then, let γ(K) > 0 and

Hp
K(G+) =

{
f : f ∈ Hp(G+) ∩Hol(C\K) , f(∞) = 0

}
.

Theorem 6.1 (FM) For each matrix
(
e
(n)
k

)
k≤n

⊂ Hp (G+) there is

a function f ∈ Hp
K(G+) satisfying

lim sup
n→∞

n

√
E

(p)
n (G+) (f) ≥ γ (K)

d (K)
,
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where d(K) = inf {2M : K ⊂ {z : |z| ≤M}}.
Proof. As in theorem 5.1, there exists a matrix of numbers (λkn)k≤n ⊂

K such that
(

1
z−λkn

)
k≤n

is γ(K)
d(K)

-lower bounded in Hp(G+) (see [M3] for

integral representation of generated biorthogonal system and [F]). The

embedding ℑHp(G+)

(
1

z−λkn

)
⊂ Hp

K(G+) holds as well. To complete the

proof it remains to apply the corollary of basic lemma.

Now consider the Hardy space Hp(D), 1 < p < ∞, of analytic func-

tions on the unit disk D = {z : |z| < 1}, with the norm

‖f‖Hp(D) = sup
0<r<1





1

2π

π∫

−π

∣∣f(reiθ)
∣∣p dθ





1/p

<∞.

For f ∈ Hp(D) and any matrix
(
e
(n)
k

)
k≤n

⊂ Hp(D) denote

E(p)
n (D)(f) := inf

a
(n)
k

∥∥∥∥∥f −
n∑

k=1

a
(n)
k e

(n)
k

∥∥∥∥∥
Hp(D)

.

Let K be a compact subset of the unit disk with positive logarithmic

capacity γ(K) and 1/K = {z : 1/z ∈ K}. If e
(n)
k (z) = ek(z) = zk then

lim sup
n→∞

n

√
E

(p)
n (D) (f) < 1,

for every function f , holomorphic on the complement of 1/K.

Theorem 6.2 (FM) For each matrix
(
e
(n)
k

)
k≤n

⊂ Hp (D) there is a

function f ∈ Hp (D), holomorphic on the complement of 1/K , satisfy-

ing

lim sup
n→∞

n

√
E

(p)
n (D) (f) ≥ γ (K)

2
.

Proof. First of all, using technique of the theorem 5.1 once more, we

find a matrix (λkn)k≤n ⊂ K such that the matrix of rational functions(
1

1−λknz

)
k≤n

is γ(K)
2

-lower bounded in Hp(D) (see [M] for representation

of generated biorthogonal system and [F]). Secondly, the checking of

embedding ℑHp(D)

(
1

1−λknz

)
⊂ H(C\1/K) is trivial. Finally, we use the

corollary of basic lemma.

Corresponding BW results are presented below.

Theorem 6.3 (BW) Let the sequence of disjoint complex numbers

{λk}∞k=1 be chosen from a compact subset of G+ and be geometrically
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separable, i.e.

lim inf
n→∞

n

√√√√ inf
1≤j≤n

n∏

k=1,k 6=j

∣∣∣∣
λk − λj

λk − λj

∣∣∣∣ ≥ δ > 0.

Then the class of functions f ∈ Hp (G+), permitting the fast approxi-

mation by finite linear combinations of the system
{

1
z−λk

}∞

k=1
, coincides

with the set of series
∞∑

k=1

ak

z − λk

, k
√

|ak| →
k→∞

0,

where the convergence is in the sense of Hp (G+) topology.

Theorem 6.4 (BW) Let the sequence of disjoint complex numbers

{λk}∞k=1 be chosen from a compact subset of the unit disk D and be geo-

metrically separable, i.e.

lim inf
n→∞

n

√√√√ inf
1≤j≤n

n∏

k=1,k 6=j

∣∣∣∣
λk − λj

1 − λjλk

∣∣∣∣ ≥ δ > 0.

Then the class of functions f ∈ Hp (D), permitting the fast approxima-

tion by finite linear combinations of the system
{

1
1−λkz

}∞

k=1
, coincides

with the set of series
∞∑

k=1

ak

1 − λkz
, k

√
|ak| →

k→∞
0,

where the convergence is in the sense of Hp (D) topology.

7. Application 5

Let ϕ̂ be the Fourier transform of ϕ ∈ L2 (R). Further, assume that

|ϕ̂ (ξ)| ≥ m > 0, ξ ∈ (a, a+ 2σ) and {λk}∞k=1 ⊂ R satisfies strong separa-

bility condition

n

√√√√ inf
1≤j≤n

n∏

k=1,k 6=j

sin
σ

n
|λk − λj | ≥ δ > 0, n ≥ n0. (14)

Then the following statement takes place

Theorem 7.1 (BW) f ∈ L2 (R) is fast approximable by the system

of translates {ϕ (x− λk)}∞k=1, i.e.

n

√√√√inf
a
(n)
k

∥∥∥∥∥f (x) −
n∑

k=1

a
(n)
k ϕ (x− λk)

∥∥∥∥∥
L2(R)

→
n→∞

0
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if and only if

f (x)
L2(R)
=

∞∑

k=1

ckϕ (x− λk),
k
√

|ck| → 0.

Proof. It is enough to show that under conditions of the theorem

the system {ϕ (x− λk)}∞k=1 is 0-lower bounded and ∞-upper bounded in

L2 (R). As regards ∞-upper boundedness it is obvious. To prove 0-lower

boundedness, at first we denote Pn (x) =
n∑

k=1

a
(n)
k ϕ (x− λk). Then note

that

‖Pn (x)‖L2(R) =
∥∥∥P̂n (ξ)

∥∥∥
L2(R)

=

∥∥∥∥∥ϕ̂ (ξ)
n∑

k=1

a
(n)
k eiλkξ

∥∥∥∥∥
L2(R)

.

So it remains to prove that
{
eiλkξ

}∞
k=1

is 0-lower bounded in L2 (a, a+ 2σ),

that is

lim sup
n→∞

n

√√√√
∥∥∥∥∥

n∑

k=1

a
(n)
k eiλkξ

∥∥∥∥∥
L2(a,a+2σ)

≥ q lim sup
n→∞

n

√
max
1≤k≤n

∣∣∣a(n)
k

∣∣∣ (15)

for some positive number q.

As
∣∣eiλk(a+σ)

∣∣ = 1, k = 1, 2, . . . one can replace (15) by

lim sup
n→∞

n

√√√√
∥∥∥∥∥

n∑

k=1

a
(n)
k eiλkξ

∥∥∥∥∥
L2(−σ,σ)

≥ q lim sup
n→∞

n

√
max
1≤k≤n

∣∣∣a(n)
k

∣∣∣.

To establish this inequality we construct biorthogonal matrix
(
ϕ

(n)
k

)
k≤n

and use lemma 1.1. Let ϕ̂
(n)
k (λ) =

sin
σ(λ−λk)

n

σ(λ−λk)
n

n∏
i=1,i6=k

sin
σ(λ−λi)

n

sin
σ(λk−λi)

n

. Then

ϕ̂
(n)
k (λ) ∈ PWσ, where PWσ is Paley-Wiener class of entire functions of

exponential type ≤ σ which belong to L2 (R). By the theorem of Paley

and Wiener one has ϕ
(n)
k (ξ) ∈ L2 (−σ, σ). Now taking into account

ϕ̂
(n)
k (λi) =

{
1, i = k

0, i 6= k

we obtain that the systems
{

1√
2π
ϕ

(n)
k

}n

k=1
and

{
eiλkξ

}n

k=1
are biorthogonal

for all natural numbers n. On the other hand, (14) implies
∥∥∥ϕ(n)

k

∥∥∥ =
∥∥∥ϕ̂(n)

k

∥∥∥ ≤ Cn

δn
,

for some positive constant C.

Finally, we apply lemma 1.1 and establish the theorem.
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8. Application 6

It is well known (see [B] and [V]) that there is a close relation be-

tween the order of entire function and the rate of its approximation by

polynomials.

Theorem (Batirov-Varga) Let K ⊂ C be a compact set of positive

logarithmic capacity. Then for each entire function f one has

lim sup
n→∞

n lnn

− lnEn (f,K)
= ρ,

where ρ is the order of function f , En (f,K) is the error of approximation

of function f by algebraic polynomials in the uniform norm on K.

One can easily obtain an analogy of basic lemma’s BW result in this

direction.

Theorem 8.1 (BW) Let {ek}∞k=1 be a 0-lower and ∞-upper bounded

system in a Banach space X,En (x) be the error of approximation of

x ∈ X by polynomials
n∑

k=1

a
(n)
k ek in X and, finally, ρ be some non-negative

number. Then

lim sup
n→∞

n lnn

− lnEn (x)
≤ ρ

if and only if

x =
∞∑

k=1

xkek, lim sup
n→∞

n lnn

− ln |xk|
≤ ρ.

Taking X = C (K) and ek = zk we immediately establish Batirov-Varga’s

result.
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