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Miroslav Kureš and David Sehnal

THE ORDER OF ALGEBRAS WITH NONTRIVIAL FIXED POINT

SUBALGEBRAS

(submitted by M. A. Malakhaltsev)

Abstract. The paper represents an advancement of research the fundamental

problem of which is a classification of algebras A (Weil algebras primarily) having a

nontrivial fixed point subalgebra (with respect to all algebra automorphisms). The

main result is the determination of the algebra order allowing a nontrivial fixed point

subalgebra. Moreover, an autonomous importance of some results about socle ele-

ments of A and the unipotency of algebra automorphisms is highlighted.

1. Introduction

We consider local commutative R-algebra A with identity, the nilpotent ideal nA of

which has a finite dimension as a vector space and A/nA = R. We call the order of A

the minimum ord(A) of the integers r satisfying nr+1

A = 0 and the width w(A) of A the

dimension dimR(nA/n2
A). One can assume A is expressed as a finite dimensional factor

R-algebra of the algebra R[x1, . . . , xn] of real polynomials in several indeterminates.

Thus, the main example is

Dr
n : = R[x1, . . . , xn]/mr+1,

m = 〈x1, . . . , xn〉 being the maximal ideal of R[x1, . . . , xn]. Evidently, ord(Dr
n) = r

and w(Dr
n) = n. As well, every other such an algebra A of the order r can be expressed

in a form

A = R[x1, . . . , xn]/i + mr+1,
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where an ideal i satisfies mr+1 $ i ⊂ m2 and is generated by finite number of poly-

nomials, i.e. i = 〈P1, . . . , Pl〉. The fact i ⊂ m2 implies that the width of A is n, too.

It is evident, that such expressions of algebras in question are not unique after all.

Clearly, A can be expressed also in a form

A = Dr
n/j,

where j is an ideal in Dr
n with analogous conditions as above mentioned i.

In differential geometry, we talk about Weil algebras, see e.g. [3]. In this paper,

we shall call them shortly algebras. Notwithstanding that many of our results are not

binded with the real field only, we investigate this as our main case here.

Let Aut A be a group of automorphisms of the algebra A. By a fixed point of A we

mean every a ∈ A satisfying φ(a) = a for all φ ∈ AutA. Let

SA = {a ∈ A; φ(a) = a for all φ ∈ AutA}

be the set of all fixed points of A. (We opine that nothing but fixed point subalge-

bras AG = {a ∈ A; φ(a) = a for all φ ∈ G}, where G ⊂ Aut A is a finite group of

automorphisms, were studied in detail up to now. See e.g. [2].) It is clear, that SA

is a subalgebra of A. As

A = R · (1 ⊕ nA)

(nA being the ideal of nilpotent elements of A), R = R · 1 ⊂ SA certainly holds,

because every automorphism sends 1 into 1.

Remark 1. We remark that SA itself is a subalgebra of

SFinA : = {a ∈ A having a finite orbit with respect to all φ ∈ Aut A},

which is another interesting subalgebra of A apt for a computer algorithmization, as

we plan explicate in another paper in future.

As to an original motivation of this research, the bijection between all natural

operators lifting vector fields from m-dimensional manifolds to bundles of Weil contact

elements and the subalgebra of fixed points SA of a Weil algebra A was determined

in [5]. Although in the known geometrically motivated examples is usually SA = R
(such SA is called trivial), there are some algebras for which SA % R and we suspect

related bundles will have remarkably interesting geometry. Thus, the fundamental

problem is a classification of algebras having SA nontrivial. See [5], [6] for known

results up to now. Especially, we underline the fact that SA is trivial whenever the

ideal j is homogeneous. Our new results are facilitated after a sort of a computer

working, too; we submit the algorithm aspect in the next joint-work. Nevertheless,

one can use pencil paper methods (like in [5], [6]) as well.

Remark 2. As our paper is concentrated on the order of A, we remark that in the

original paper of André Weil, [8], the order was called the height of A. Further, the

term Loevy length is also sometimes used (= ord(A) + 1).

2. Socle elements and uni potent automorphisms

2.1. The basis of the ideal j and the basis of the vector space A. We take an

algebra A in a form

A = Dr
n/j.
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The set G of generators of j (the basis of j) can be multifarious. We refer to two

important possibilities:

(i) Groebner basis, very important in computer algebra and implemented in most

of computer algebra systems

(ii) elementary polynomial basis outgoing from the minimalization of the length

(i.e. number of monomials) of the longest generator among P1, . . . , Pl and

the follow-up minimalization of the number of generators with such length,

the idea was described in [6]

Clearly, A is a real vector space. Its basis (naturally, fully independent on the

mentioned basis of j) is constituted by equivalence classes [1], [x1], . . . , [xn], plus

classes containing higher monomials in x1, . . . xn: every such a monomial is contained

in one equivalence class, but the choice of the representative is not unique. We shall

take the least monomial (with coefficient 1) as to the graded lexicographical order.

After a fixing of this basis (denoted B(A) hereafter), we can write elements of A as

a linear combination of the basis elements (written ordinarily with omitted brackets

[ ]) by a unique way. Of course, the multiplication rules are needful to be added, best

in the form of a table.

Example 1. Let

A = D2
3/〈x

2 + xy + xz, xy + y2 + yz〉.

Then

B(A) = {1, x, y, z, x2, xy, y2, z2},

hence dimR(A) = 8 and elements of A can be written in the form

k1 + k2x + k3y + k4z + k5x
2 + k6xy + k7y

2 + k8z
2

with the following multiplication table.

· 1 x y z x2 xy y2 z2

1 1 x y z x2 xy y2 z2

x x x2 xy −x2 − xy 0 0 0 0

y y xy y2 −y2 − xy 0 0 0 0

z z −x2 − xy −y2 − xy z2 0 0 0 0

x2 x2 0 0 0 0 0 0 0

xy xy 0 0 0 0 0 0 0

y2 y2 0 0 0 0 0 0 0

z2 z2 0 0 0 0 0 0 0

Proposition 1. Let a ∈ SA, a =
∑

i riBi, ri 6= 0, Bi ∈ B(A). In general, Bi may

not belong to SA.

Proof. Let

A = D5
2/〈x

2y2 + x5, x2y2 + y5〉.
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The basis is B(A) = {1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x3y, x2y2, xy3, y4, x4y, xy4}.

Aut A has two connected components:

1st component

x 7→ x + C1,3x
2 + C1,4xy + C1,6x

3 + C1,7x
2y + C1,8xy2 + C1,9y

3 + C1,10x
4 +

C1,11x
3y + C1,12x

2y2 + C1,13xy3 + C1,14y
4 + C1,15x

4y + C1,16xy4

y 7→ y + C2,4xy + C2,5y
2 + C2,6x

3 + C2,7x
2y + C2,8xy2 + C2,9y

3 + C2,10x
4 +

C2,11x
3y + C2,12x

2y2 + C2,13xy3 + C2,14y
4 + C2,15x

4y + C2,16xy4;

2nd component

x 7→ y + C1,4xy + C1,5y
2 + C1,6x

3 + C1,7x
2y + C1,8xy2 + C1,9y

3 + C1,10x
4 +

C1,11x
3y + C1,12x

2y2 + C1,13xy3 + C1,14y
4 + C1,15x

4y + C1,16xy4

y 7→ x + C2,3x
2 + C2,4xy + C2,6x

3 + C2,7x
2y + C2,8xy2 + C2,9y

3 + C2,10x
4 +

C2,11x
3y + C2,12x

2y2 + C2,13xy3 + C2,14y
4 + C2,15x

4y + C2,16xy4;

Ci,j ∈ R.

The elements of the form

c1 + c2x
2y2 + c3(x

4y + xy4)

are fixed for all c1, c2, c3 ∈ R; however, x4y ∈ B(A) is not fixed and xy4 ∈ B(A) is not

fixed. �

2.2. Socle elements. If an element a ∈ A has the property au = 0 for all u ∈ nA,

we call a the socle element of A.

Let a =
∑

i riBi be an element of A expressed as a linear combination of basis

elements.

Lemma 1. a is a socle element if and only if all Bi are socle elements.

Proof. It is clear that if all Bi are socle elements, then a =
∑

i riBi is also a socle

element. Let a be a socle element of A and let us suppose that some Bi, say B1,

is not a socle element. It follows there is u ∈ nA, u =
∑

j r̄jB̄j (B̄j ∈ B(A)), such

that B1u 6= 0. However, it implies there exists some B̄j , say B̄1 for which B1B̄1 6= 0.

We can write B̄1 as a monomial of basis elements from nA/n2
A, i.e. B̄1 = xp1

n1
. . . xpk

nk
,

where p1, . . . , pk ∈ N. Thus B1xn1
6= 0, too. It means axn1

6= 0 and a is not a socle

element; a contradiction. �

Lemma 2. Every algebra A has non-zero socle elements.

Proof. If ordA = 0, then A = R and nA = {0}: that is why all elements of A are

socle elements. If ordA = r > 0, then it is sufficient look for socle elements amidst

elements of B(A) (cf. Lemma 1). We take an element a ∈ B(A) and multiply it by all

x1, . . . , xn: if all products equal zero, then a is a socle element, if not, we take some

non-zero product axi and multiply it by all x1, . . . , xn repeatedly; the number of such

multiplications (till then a socle element is found) is maximally r as nr+1

A = 0. �

We can consult the Example 1 anew and find that the multiplication table is an

elegant tool for the identification of socle elements. Easily, we have observed that all

socle elements constitute an ideal called the socle of A and denoted by soc(A). The

following assertion specifies the relation between soc(A) and nA.
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Lemma 3. For every algebra A with ord(A) = r,

nr
A ⊂ soc(A).

Proof. The lemma is very transparent: every ”maximal power” is a socle element. It

is also clear, that there exist algebras, for which nr
A $ soc(A). �

Moreover, elements of A in the form

r1 + r2a, r1, r2 ∈ R, a ∈ soc(A)

form a subalgebra MA of A used e.g. in [4]. The problem of a relation between SA

and MA is still open.

2.3. Unipotent automorphisms. We denote by GA the connected identity com-

ponent of the group Aut A of automorphisms A. Further, we have the morphism

ǫA : AutA → GL(nA/n2
A).

The kernel of ǫA is denoted by UA and it is a subgroup of AutA having all elements

unipotent. A unipotent automorphism is such φ ∈ AutA for which idA −φ is a

nilpotent endomorphism of A; alternatively, such φ ∈ AutA for which all eigenvalues

(over C) of its matrix representation are equal 1. Of course, there are also unipotent

automorphisms not belonging to UA, in general. The subgroup UA is connected and

the inclusions

idA ∈ UA ⊂ GA ⊂ AutA

always hold. For the properties of UA see [1] and [7].

Immediately, we have the following assertion.

Proposition 2. Let A be a Weil algebra of the order r. If UA = Aut A, then all socle

elements of A belonging to nr
A belong to SA, too.

Proof. The assertion is clear: all automorphisms have a form

1 7→ 1

x1 7→ x1 + P1

. . .

xn 7→ xn + Pn,

where Pi are polynomials without absolute and linear terms. �

(We shall not write 1 7→ 1 below in the description of automorphisms.)

Taking Lemma 2 into consideration, we have obtained immediately:

Corollary 1. If ordA > 0 and UA = Aut A, then SA is nontrivial.

We will not remind the trivial case ord(A) = 0 below. Within a time of this

research, some conjectures about an effect of the property UA = GA have occurred.

In particular, we have proved:

Proposition 3. If UA = GA, then SA can be both nontrivial and trivial (i.e. UA =

GA is not a sufficient condition for a nontrivial SA).
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Proof. Of course, the nontrivial case is included e.g. in the previous proposition.

Examples of algebras with UA = AutA are in the proof of Proposition 4. The trivial

case comes in the algebra

A = D5
2/〈xy2 + x5, x2y + y5〉.

The basis is B(A) = {1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, y4}.

Aut A has eight connected components:

1st component

x 7→ −x + C1,3x
2 + C1,4xy + C1,6x

3 + C1,7x
2y + C1,8xy2 + C1,10x

4 + C1,11y
4

y 7→ −y + C2,4xy + C2,5y
2 + C2,7x

2y + C2,8xy2 + C2,9y
3 + C2,10x

4 + C2,11y
4;

2nd component

x 7→ x + C1,3x
2 + C1,4xy + C1,6x

3 + C1,7x
2y + C1,8xy2 + C1,10x

4 + C1,11y
4

y 7→ −y + C2,4xy + C2,5y
2 + C2,7x

2y + C2,8xy2 + C2,9y
3 + C2,10x

4 + C2,11y
4;

3rd component

x 7→ −x + C1,3x
2 + C1,4xy + C1,6x

3 + C1,7x
2y + C1,8xy2 + C1,10x

4 + C1,11y
4

y 7→ y + C2,4xy + C2,5y
2 + C2,7x

2y + C2,8xy2 + C2,9y
3 + C2,10x

4 + C2,11y
4;

4th component

x 7→ x + C1,3x
2 + C1,4xy + C1,6x

3 + C1,7x
2y + C1,8xy2 + C1,10x

4 + C1,11y
4

y 7→ y + C2,4xy + C2,5y
2 + C2,7x

2y + C2,8xy2 + C2,9y
3 + C2,10x

4 + C2,11y
4;

5th component

x 7→ −y + C1,4xy + C1,5y
2 + C1,7x

2y + C1,8xy2 + C1,9y
3 + C1,10x

4 + C1,11y
4

y 7→ −x + C2,3x
2 + C2,4xy + C2,6x

3 + C2,7x
2y + C2,8xy2 + C2,10x

4 + C2,11y
4;

6th component

x 7→ y + C1,4xy + C1,5y
2 + C1,7x

2y + C1,8xy2 + C1,9y
3 + C1,10x

4 + C1,11y
4

y 7→ −x + C2,3x
2 + C2,4xy + C2,6x

3 + C2,7x
2y + C2,8xy2 + C2,10x

4 + C2,11y
4;

7th component

x 7→ −y + C1,4xy + C1,5y
2 + C1,7x

2y + C1,8xy2 + C1,9y
3 + C1,10x

4 + C1,11y
4

y 7→ x + C2,3x
2 + C2,4xy + C2,6x

3 + C2,7x
2y + C2,8xy2 + C2,10x

4 + C2,11y
4;

8th component

x 7→ y + C1,4xy + C1,5y
2 + C1,7x

2y + C1,8xy2 + C1,9y
3 + C1,10x

4 + C1,11y
4

y 7→ x + C2,3x
2 + C2,4xy + C2,6x

3 + C2,7x
2y + C2,8xy2 + C2,10x

4 + C2,11y
4;

Ci,j ∈ R.

By a direct application of automorphisms of the whole group Aut A to a general

element

k1 + k2x + k3y + k4x
2 + k5xy + k6y

2 + k7x
3 + k8x

2y + k9xy2 + k10y
3 + k11x

4 + k12y
4

of A (ki ∈ R) we find SA trivial. �
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Remark 3. We remark that in the list of algebras having unipotent GA (in [1],

Theorem 3.11, the case c.ii) is an error. Surely, let us evaluate automorphisms for

A = D4
2/〈x

3 + y4, x2y + y4, xy2〉.

The basis is B(A) = {1, x, y, x2, xy, y2, x2y, y3}.

Aut A consists of only one connected component:

x 7→ C4
2,2x + C1,3x

2 + C1,4xy + (C6
2,2 − C3

2,2)y
2 + C1,6x

2y + C1,7y
3

y 7→ (C4
2,2 − C3

2,2)x + C3
2,2y + C2,3x

2 + C2,4xy + C2,5y
2 + C2,6x

2y + C2,7y
3

Ci,j ∈ R; C2,2 6= 0.

3. The order theorem

3.1. The width 2. Let r ≥ 4 and let

Âr = Dr
2/〈x

r−2 + yr−1, xr−1 + yr〉.

We have obtained the following result about Âr.

Proposition 4.

i) SÂ4 is trivial.

ii) If r ≥ 5, then SÂr is nontrivial and dimR SÂr ≥ r − 2.

Proof. i) The problem was formulated in [5] as the Exercise 1. It is sufficient to find

one automorphism for which only constants are fixed. Nevertheless, we can describe

the whole group Aut A. The basis of Â4 is B(Â4) = {1, x, y, x2, xy, y2, x2y, xy2}.

1st component

x 7→ −|C2,2|
3x +

1

128
(2|C2,2|

3 − 80C1,4 + 3C4
2,2 − C6

2,2 + 96C2
2,2C2,5 +

48|C2,2|(C1,4 − 4C2,4 − 2C2,5))x
2 + C1,4xy −

3

8
(|C2,2|

3 + C4
2,2)y

2 +

C1,6x
2y + C1,7xy2

y 7→ −
1

4
(|C2,2|

3 + C2
2,2)x + C2

2,2y + C2,3x
2 + C2,4xy + C2,5y

2 + C2,6x
2y +

C2,7xy2;

2nd component

x 7→ |C2,2|
3x +

1

128
(−2|C2,2|

3 − 80C1,4 + 3C4
2,2 − C6

2,2 + 96C2
2,2C2,5 −

48|C2,2|(C1,4 − 4C2,4 − 2C2,5))x
2 + C1,4xy +

3

8
(|C2,2|

3 − C4
2,2)y

2 +

C1,6x
2y + C1,7xy2

y 7→
1

4
(|C2,2|

3 − C2
2,2)x + C2

2,2y + C2,3x
2 + C2,4xy + C2,5y

2 + C2,6x
2y +

C2,7xy2;

Ci,j ∈ R.

The example of an automorphism precluding nontrivial elements of SÂ4 is e.g. (we

take C2,2 = 2 and all other Ci,j = 0 in the 1st component of AutA)

x 7→ −8x − 9y2

y 7→ −3x + 4y.
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ii) For r ≥ 5, polynomials xr, xr−1y, xr−2y2, xr−1 +yr, xr−2 +yr−1, xr−1 +xyr−1,

xr−2y + yr are belonging to j = 〈xr−2 + yr−1, xr−1 + yr〉. The automorphisms have

a form

x 7→ Ax + By + K(x, y)

y 7→ Cx + Dy + L(x, y),

where K and L are polynomials without absolute and linear terms.

The condition xr−2 + yr−1 = 0 gives

Br−2 = 0,

looking at yr−2. It follows B = 0. The same condition gives

CDr−2 = 0,

looking at xyr−2 (this is obtained as the image of yr−1 only and the condition r > 4

is essential). It follows C = 0 (because D 6= 0 as B = 0). The same condition also

gives

Ar−2 = Dr−1,

looking at xr−2.

The condition xr−1 + yr = 0 gives

Ar−1 = Dr,

looking at xr−1. The last two conditions imply A = D = 1.

We have U
Âr

= Aut Âr and, as to Corollary 1, SÂr is nontrivial. The dimension

dimR SÂr must be greater or equal to the number of (linearly independent) basis

elements of the socle. �

Remark 4. As to Â4, Professor Manuel Saoŕın had proposed in our e-mail communi-

cation another way to the squaring up to the group of automorphisms of this algebra:

The algebra Â4 = D4
2/〈x

2 +y3, x3 +y4〉 is isomorphic to the algebra D4
2/〈X

2−Y 3, Y 4〉

through the isomorphisms of ideals given by

X 7→ −8x + xy − 3y2 +
19

56
y3

Y 7→ x − 4y −
1

14
xy +

1

4
y2.

3.2. The general width.

Lemma 4. If ord(A) ≤ 2, then SA is trivial.

Proof. That was recalled in Introduction, that the fulfillment of j ⊂ m2 in the ex-

pression A = Dr
n/j is presumed. Thus A = D2

n or D2
n factorized through an ideal

generated by homogeneous polynomials of the second order; however, it means that

we have only algebras with trivial SA, cf. Introduction and [5]. �

If we know an algebra with nontrivial fixed point subalgebra, then one can construct

an algebra with nontrivial fixed point subalgebra of a greater width and the same order

as the existing. (It was showed in [6].) If w(A) = 2, then the opening order for the

possibility of non-trivial SA is 4; we have just proved in Proposition 4 that for all

orders greater than 4 it is possible, too. Consequently, the following Proposition 5

completes the classification.
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Proposition 5. There are algebras of the order 3 with nontrivial fixed point subalge-

bras.

Proof. It follows from Proposition 1 in [6], that we must look for it in the width

greater then 2. Truly, for

A = D3
3/〈x

2 + y3, xy + z3, y2z + yz2〉

we have obtained B(A) = {1, x, y, z, x2, xy, y2, xz, yz, z2, xz2, y2z} and AutA with

two connected components:

1st component

x 7→ −x + C1,4x
2 + C1,5xy + y2 + C1,7xz + C1,10xz2 + C1,11yz2

y 7→ y + C2,4x
2 + C2,5xy + C2,6y

2 + C2,7xz + C2,8yz + 3C3,1z
2 +

C2,10xz2 + C2,11y
2z

z 7→ C3,1x − y − z + C3,4x
2 + C3,5xy + C3,6y

2 + C3,7xz + C3,8yz + C3,9z
2 +

C3,10xz2 + C3,11y
2z;

2nd component

x 7→ x + C1,4x
2 + C1,5xy + C1,7xz + C1,10xz2 + C1,11yz2

y 7→ y + C2,4x
2 + C2,5xy + C2,6y

2 + C2,7xz + C2,8yz − 3C3,1z
2 + C2,10xz2 +

C2,11y
2z

z 7→ C3,1x + z + C3,4x
2 + C3,5xy + C3,6y

2 + C3,7xz + C3,8yz +

C3,9z
2 + C3,10xz2 + C3,11y

2z;

Ci,j ∈ R.

The elements of the form

c1 + c2x
2

are fixed for all c1, c2 ∈ R. �

The example implies immediately:

Corollary 2. UA = GA is not a necessary condition for a nontrivial SA.

Proof. It is evident that GA for A = D3
3/〈x

2 + y3, xy + z3, y2z + yz2〉 has elements

(with C3,1 6= 0) not belonging to the kernel of ǫA; nevertheless, all elements of GA

are still unipotent here (we left a verification of this fact to the reader). �

Finally, we summarize to the following ”order theorem”.

Theorem. There is no algebra A with w(A) = 1 and with nontrivial fixed point sub-

algebra. There exist algebras A with w(A) = 2 with a nontrivial fixed point subalgebra

if and only if ord(A) ≥ 4. For all w(A) > 2, there exist algebras A with a nontrivial

fixed point subalgebra if and only if ord(A) ≥ 3.

Proof. The case w(A) = 1 is trivial. The case w(A) = 2 is solved in [6], Proposition 1

and Proposition 2. In particular, nontrivial SA = {c1 + c2x
2y} was proved for A =

D4
2/〈x

2y + y4, x3 + xy2〉 in [6]. Finally, the case w(A) > 2 is solved by Proposition 4,

Lemma 4 and Proposition 5 listed above. �

The result can be recapitulated by the tabular form:
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Algebras with a nontrivial fixed point subalgebra

width\
order ord(A) = 1 ord(A) = 2 ord(A) = 3 ord(A) = 4 ord(A) = 5 . . .

w(A) = 1 ∄ ∄ ∄ ∄ ∄ ∄
w(A) = 2 ∄ ∄ ∄ X X X

w(A) = 3 ∄ ∄ X X X X

w(A) = 4 ∄ ∄ X X X X

. . . ∄ ∄ X X X X
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