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Abstract. For the monoidal category of graded modules we find

braidings and quantizations. We use them to find quantizations of

braided symmetric algebras and modules, braided derivations, braided

connections, curvatures and differential operators.

1. Introduction

We consider quantizations q, braidings σ and quantizations of braidings

σq of the monoidal category of graded modules. The grading is by a finite

commutative monoid. We work with braidings that are symmetries, in

fact, in this category are all braidings symmetries.

We consider σ-symmetric graded algebras A, graded modules, graded

co- and bialgebras and graded internal homomorphisms and find quanti-

zations of these.

We have found explicit descriptions of all quantizations and braidings

in the monoidal category of modules graded by a finite commutative

monoid and they depend only on the grading, [8].

That is, first of all we have found explicit formulas for σ-symmetric

graded algebras A, graded modules, graded co- and bialgebras, graded

internal homomorphisms, braided derivations, braided connections and

curvature. Then we have found explicit formulas for quantizations of

these structures.

From [9] we have the following results. Graded internal homomor-

phisms has a graded braided Lie structure with respect to the braided
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commutator. Quantizations of the graded internal homomorphisms has

the quantized braided Lie structure and can be realized within the orig-

inal braided Lie structure by what we call dequantization. We shall go

through this in details for graded braided derivations.

We investigate graded braided derivations in σ-symmetric graded al-

gebras and modules. The braided bracket of two braided derivations is

a braided derivation. We show that there is a braided Lie structure on

the braided derivations.

A quantization the braided derivations provides an isomorphism of

the graded modules of braided derivations and quantized braided deriva-

tions. We also show that the quantizations of braided derivations has

the braided Lie structure with respect to the quantizations of the braid-

ing which can be realized within the original braided Lie structure by

dequantization.

We define braided connections in graded modules and braided curva-

tures. We prove that the braided curvature is A-linear, skew σ-symmetric

and is an A-module homomorphism.

We find quantizations of braided connections and braided curvatures.

The quantization of the braided curvature is A-linear, skew σq-symmetric

and an A-module homomorphism with respect to the quantized braiding.

Finally we consider braided differential operators, their symbols and

quantizations of these. Because of the Z-grading of the braided symbols

we can extend the notion of braiding and quantization of these to include

the Z-grading.

This paper is the second in a trilogy.

The results here are all proved for any monoidal category, except for

when grading is explicitly involved. That is, we have shown that all the

results here also are true for braided derivations of algebras and modules,

braided connections, braided curvature, quantizations and so on of any

monoidal category. This is found in the first paper Quantizations of

braided derivations. 1. Monoidal categories, [9].

In [8] we showed that the Fourier transform establishes an isomorphism

between the categories of Ĝ-graded modules and G-modules where G is

a finite abelian group and Ĝ is the dual of G. Using this we find a

description of all quantizations and braiding also for the monoidal cate-

gory of modules with action by G. Again, we have a complete and ex-

plicit description for braided derivations of algebras and modules, braided

connections, curvature, differential operators and quantizations of these

structures. This is to be found in the third paper Quantizations of braided

derivations. 3. Modules with action by a group, [10].
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There are many interesting applications of these results. One of the

more interesting applications is quantizations of braided Lie algebras.

In the paper [11], which is to be published, we show quantizations of

semisimple Lie algebras by quantizations of derivations, for example an

alternative quantization of sl 2 (C). To find this quantization we use the

fact that sl 2 (C) is graded by Z and consider the exterior algebra, hence

there is a Z × Z-grading which gives nontrivial quantizers.

Note that in all three papers we assume that the associativity con-

straint is trivial.

As noted, most of the proofs are found for general monoidal categories

in [9], but almost all proofs will be repeated for clarity.

2. Graded modules

Let M be a finite commutative monoid. Let R be a commutative ring

with unit.

Denote by modR (M) the strict monoidal category [19] of M-graded

R-modules,

X = ⊕m∈MXm.

Denote the grading of a homogeneous element x ∈ X either by |x| ∈ M ,

or write xm, m ∈ M . Throughout the paper is everything stated in terms

of homogeneous elements.

The arrows of modR (M) are grading preserving morphisms.

The tensor product X ⊗R X ′ of two objects in modR (M) is defined,

(X ⊗R X ′)m = ⊕i+j=m(Xi ⊗R X ′
j).

Quantizations and braidings of this category is described in [12] and

[8]. Recall that any quantization of the monoidal category modR (M) is

realized by a 2-cocycle q ∈ Z2 (M, U (R)),

q (i, j) q−1 (i, j + k) q (i + j, k) q−1 (j, k) = 1, (1)

i, j, k ∈ M . When we factor out the trivial quantizations we are left

with H2 (M, U (R)). For homogeneous elements x ∈ X, y ∈ Y in the

M-graded modules X and Y a quantization has the form

q : x ⊗ y 7−→ q (|x|, |y|)x ⊗ y.

Note that quantizations preserve associativity constraints.

Any braiding in modR (M) is realized by σ : M × M → U (R) which

is a bihomomorphism,

σ (i + j, k) = σ (i, k) σ (j, k) ,

σ (i, j + k) = σ (i, j) σ (i, k) ,
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and a symmetry,

σ (i, j)σ (j, i) = 1,

i, j, k ∈ M . For homogeneous elements x ∈ X, y ∈ Y in the M-graded

modules X and Y a braiding has the form

σ : x ⊗ y 7−→ σ (|x|, |y|)y ⊗ x.

Any braiding σ is also a 2-cocycle gives a quantization when composed

with the twist, τ ◦ σ.

A quantization by q of a braiding σ is

σq (i, j) = q−1 (j, i) σ (i, j) q (i, j) ,

i, j ∈ M .

2.1. Quantizations of graded algebras. An algebra A in modR (M)

is called an M-graded R-algebra and is equipped with multiplication

µ : A ⊗ A → A

which maps Ai ⊗ Aj to Ai+j , i, j ∈ M .

Given a quantization q, a quantization of an algebra A in modR (M)

is a new multiplication µq defined as follows

µq (a ⊗ b) = a ∗q b = q (|a|, |b|)ab

where a, b ∈ A are homogeneous and the multiplication on the right hand

side is the old multiplication.

Let σ be a braiding and let A be a σ-commutative algebra in modR (M),

ab = σ (|a|, |b|) ba

for all homogeneous a, b ∈ A

Let q be a quantization and σq be the quantized braiding. Let A be a

σ-commutative algebra in modR (M). Then Aq is σq-commutative,

a ∗q b = σq (|a|, |b|) b ∗q a

for homogeneous a, b ∈ Aq.

2.2. Quantizations of graded modules. An A-module E in modR (M)

is called a (left) M-graded A-module and is equipped with an action

ν : A ⊗ E → E

which maps Ai ⊗ Ej to Ei+j , i, j ∈ M and similarly for right modules.

For the category modR (M) a quantization of a left, respectively right,

A-module E is

a ∗l x = q (|a|, |x|)ax,
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respectively

x ∗r a = q (|x|, |a|)xa,

for homogeneous a ∈ A, x ∈ E.

A A-A-bimodule E is σ-symmetric if

ax = σ (|a|, |x|)xa,

xa = σ (|x|, |a|)ax,

for homogeneous a ∈ A, x ∈ E.

Note that since the braidings are symmetries will left σ-symmetric A-

module structure imply right σ-symmetric structure, hence we need only

to consider left A-modules.

Let E and E ′ be two σ-symmetric A-A-bimodules and E ⊗E ′ be their

tensor product. Define the action of A on E ⊗ E ′,

a (x ⊗ x′) = ax ⊗ x′ + σ (|a|, |x|)x ⊗ ax′,

(x ⊗ x′) a = x ⊗ x′a + σ (|x′|, |a|)xa ⊗ x′,

for homogeneous a ∈ A, x ∈ E, x′ ∈ E ′, and E ⊗ E ′ is σ-symmetric.

2.3. Quantizations of graded coalgebras. A coalgebra A with co-

multiplication ∆ : A → A ⊗ A in the monoidal category modR (M) is

called an M-graded R-coalgebra. The comultiplication ∆ maps

Am →
∑

i+j=m

Ai ⊗ Aj .

Let σ be a braiding and let A be a σ-cocommutative coalgebra in

modR (M), that is,

∆ (x) =
∑

|x′|+|x′′|=|x|

x′⊗x′′ =
∑

|x′|+|x′′|=|x|

σ−1 (|x′|, |x′′|)x′′⊗x′ = σ−1◦∆ (x)

for homogeneous x, x′, x′′ ∈ A.

A quantization of a coalgebra A in modR (M) is equipping Aq = A

with a new comultiplication ∆q, defined by

∆q (x) = q−1
A,A





∑

|x′|+|x′′|=|x|

x′ ⊗ x′′





=
∑

|x′|+|x′′|=|x|

q−1 (|x′|, |x′′|)x′ ⊗ x′′,

for homogeneous x, x′, x′′ ∈ A.
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If A is σ-cocommutative, then Aq is σq-cocommutative. The σq-co-

commutativity is

∑

|x′|+|x′′|=|x|

x′ ⊗q x′′ = σ−1
q





∑

|x′|+|x′′|=|x|

x′′ ⊗q x′





=
∑

|x′|+|x′′|=|x|

q (|x′′|, |x′|) σ−1 (|x′|, |x′′|) q−1 (|x′|, |x′′|) q−1 (|x′′|, |x′|)x′′⊗x′

=
∑

|x′|+|x′′|=|x|

σ−1 (|x′|, |x′′|) q−1 (|x′|, |x′′|)x′′ ⊗ x′,

for homogeneous x′, x′′ ∈ Aq. The comultiplication in the two last lines

is the comultiplication of A.

2.4. Quantizations of graded internal homomorphisms. The cat-

egory modR (M) is a closed, that is internal homomorphism hom (X, Y )

exists for all objects X, Y .

Remark 1. If M = G is rather a group than a monoid, then for any

two objects X and Y in modR (G) there exist a grading on hom (X, Y ) as

f ∈ hom (X, Y ), which maps Xi to Yj, is given the grading j− i ∈ G and

the internal homomorphisms can be considered as objects in modR (G).

A quantization qh of all hom is a new multiplication defined by

µh
q = µh ◦ qhom(Y,Z),hom(X,Y ) : hom (Y, Z) ⊗ hom (X, Y ) → hom (X, Z)

and

g ∗q f = q (|g|, |f |) g ◦ f,

f ∗q x = q (|f |, |x|) f ∗ x,

for homogeneous f , g and x of grading |f |, |g|, |x| ∈ G.

From [9] we have the following results. Internal homomorphisms of a σ-

symmetric graded module E over a σ-symmetric algebra A, hom (E, E),

has a braided Lie structure with respect to the braided commutator,

[, ]σ = µh − µh ◦ σ.

Quantizations of the internal homomorphisms has the quantized braided

Lie structure and can be realized within the original braided Lie structure

by what we call dequantization. We shall go through this in details for

braided derivations in the next section.
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3. Braided derivations in graded algebras

In this section we shall discuss braided derivations in σ-commutative

graded algebras and quantizations of these.

By remark 1, let from now on M = G be a finite abelian group.

Let R be a field, σ be a braiding in the monoidal category of G-graded

modules and A be a G-graded σ-commutative R-algebra.

Definition 2. A σ-derivation of A of degree |∂| ∈ G is an R-linear

operator ∂ : A → A such that

∂ : Ag → Ag+|∂|,

g ∈ G, that satisfies the σ-Leibniz rule,

∂ (ab) = ∂ (a) b + σ (|∂|, |a|) a∂ (b) , (2)

where a, b ∈ A are homogeneous and a is of grading |a| ∈ G.

The set of σ-derivations of degree k is denoted by Derσ
k (A) and the

set of all σ-derivations by Derσ (A).

A left A-module structure on Derσ (A) is defined by

(a∂) (b) = a (∂ (b)) ,

for homogeneous a, b ∈ A, ∂ ∈ Derσ
|∂| (A), and

a∂ ∈ Derσ
|a|+|∂| (A) .

Definition 3. A σ-commutator (or σ-bracket) on homogeneous elements

∂1, ∂2 ∈ Derσ (A) of degree |∂1| and |∂2| respectively, is defined by

[∂1, ∂2]
σ = ∂1∂2 − σ (|∂1|, |∂2|) ∂2∂1.

Proposition 4. The σ-commutator of two σ-derivations is a σ-derivation

of the combined degree,

[∂1, ∂2]
σ ∈ Derσ

|∂1|+|∂2|
(A) ,

∂1, ∂2 ∈ Derσ (A).

Proof. The σ-commutator of two derivations satisfies the σ-Leibniz rule,

([∂1, ∂2]
σ) (ab) = [∂1, ∂2]

σ (a) b + σ (|∂1| + |∂2|, |a|)a [∂1, ∂2]
σ (b) ,
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for homogeneous ∂1, ∂2 ∈ Derσ (A), a, b ∈ A, which is easily proved,

[∂1, ∂2]
σ (ab) = ∂1∂2 (ab) − σ (|∂1|, |∂2|) ∂2∂1 (ab)

= ∂1 (∂2 (a) b + σ (|∂2|, |a|)a∂2 (b))

− σ (|∂1|, |∂2|) ∂2 (∂1 (a) b + σ (|∂1|, |a|) a∂1 (b))

= ∂1∂2 (a) b + σ (|∂1|, |∂2| + |a|) ∂2 (a) ∂1 (b)

+ σ (|∂2|, |a|) ∂1 (a) ∂2 (b) + σ (|∂1|, |a|)σ (|∂2|, |a|)a∂1∂2 (b)

− σ (|∂1|, |∂2|) ∂2∂1 (a) b − σ (|∂1|, |∂2|)σ (|∂2|, |∂1| + |a|) ∂1 (a) ∂2 (b)

− σ (|∂1|, |∂2|) σ (|∂1|, |a|)∂2 (a) ∂1 (b)

− σ (|∂1|, |∂2|) σ (|∂1|, |a|)σ (|∂2|, |a|)a∂2∂1 (b)

= ∂1∂2 (a) b + σ (|∂1| + |∂2|, |a|) a∂1∂2 (b)

− σ (|∂1|, |∂2|) ∂2∂1 (a) b − σ (|∂1|, |∂2|)σ (|∂1| + |∂2|, |a|)a∂2∂1 (b)

= [∂1, ∂2]
σ (a) b + σ (|∂1| + |∂2|, |a|) a [∂1, ∂2]

σ (b) .

Proposition 5. The σ-bracket satisfies the conditions,

[a∂1, ∂2]
σ = a [∂1, ∂2]

σ − σ (|a| + |∂1|, |∂2|) ∂2 (a) ∂1, (3)

[∂1, a∂2]
σ = σ (|∂1|, |a|) a [∂1, ∂2]

σ + ∂1 (a) ∂2, (4)

∀a ∈ A.

Proof.

[a∂1, ∂2]
σ (b) = a∂1∂2 (b) − σ (|a| + |∂1|, |∂2|) ∂2 (a∂1) (b)

= a∂1∂2 (b) − σ (|a| + |∂1|, |∂2|) (∂2 (a) ∂1 (b) + σ (|∂2|, |a|) a∂2∂1 (b))

= (a [∂1, ∂2]
σ − σ (|a| + |∂1|, |∂2|) ∂2 (a) ∂1) (b) ,

[∂1, a∂2]
σ (b) = ∂1 (a∂2) (b) − σ (|∂1|, |a| + |∂2|) a∂2∂1 (b)

= ∂1 (a) ∂2 (b) + σ (|∂1|, |a|) a∂1∂2 (b) − σ (|∂1|, |a| + |∂2|) a∂2∂1 (b)

c = (σ (|∂1|, |a|)a [∂1, ∂2]
σ + ∂1 (a) ∂2) (b) .

The braided derivations is a braided Lie algebra as defined in [5].

Theorem 6. Derσ (A) is a G-graded σ-Lie algebra with respect to the

σ-bracket, that is, the following properties are satisfied,

[Derσ (A) , Derσ (A)]σ ⊆ Derσ (A) , (i)

[

Derσ
i (A) , Derσ

j (A)
]σ

⊆ Derσ
i+j (A) , (i’)
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i, j ∈ G, skew σ-symmetricity,

[∂1, ∂2]
σ = −σ (|∂1|, |∂2|) [∂2, ∂1]

σ , (ii)

the σ-Jacobi identity for derivations,

[∂1, [∂2, ∂3]
σ]

σ
= [[∂1, ∂2]

σ , ∂3]
σ

+ σ (|∂1|, |∂2|) [∂2, [∂1, ∂3]
σ]

σ
, (iii)

for ∂1, ∂2, ∂3 ∈ Derσ (A) of degree |∂1|, |∂2|, |∂3| respectively.

Proof. Let’s do the proof for skew σ-symmetricity,

[∂1, ∂2]
σ = ∂1∂2 − σ (|∂1|, |∂2|) ∂2∂1

= σ (|∂1|, |∂2|) ∂2∂1 − σ (|∂1|, |∂2|) σ (|∂2|,|∂1|) ∂2∂1

= −σ (|∂1|, |∂2|) [∂2, ∂1]
σ .

3.1. Quantizations of braided derivations in graded algebras. Let

A be a σ-commutative G-graded algebra. Given a quantization q and an

operator ∂ : A → A of degree |∂| define it’s quantization

∂q (a) = Qq (∂) (a)
def
= q (|∂|, |a|) ∂ (a) , (5)

for homogeneous a ∈ A|a|.

Qq (∂) is an operator of the quantized M-graded algebra Aq.

The quantization of composition is

∂1 ∗q ∂2 = q (|∂1|, |∂2|) ∂1 ◦ ∂2. (6)

Denote by Derσq (Aq) set set of all Qq (∂), ∂ ∈ Derσ (A), equipped with

the quantization of the composition.

Theorem 7. Given a braiding σ, let σq be the quantization of σ. The

operator

Qq : (Derσ (A) , [−,−]σ) →
(

Derσq (Aq) , [−,−]σq

q

)

, (7)

∂ ∈ Derσ
|∂| (A) 7−→ Qq (∂) ∈ Der

σq

|∂| (Aq) .

is an isomorphism of modules between the σ-derivations of A and the

σq-derivations of Aq.

Proof. The σq-Leibniz rule is satisfied

Qq (∂) (a ∗q b) = q (|a|, |b|) q (|∂|, |a| + |b|) ∂ (ab)

= q (|∂|, |a|) q (|∂| + |a|, |b|) (∂ (a) b + σ (|∂|, |a|) a∂ (b))

Qq (∂) (a ∗q b) = Qq (∂) (a) ∗q b + σq (|∂|, |a|) a ∗q Qq (∂) (b)
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where

Qq (∂) (a) ∗q b

= q (|∂|, |a|) q (|∂| + |a|, |b|) ∂ (a) bσq (|∂|, |a|) a ∗q Qq (∂) (b)

= q−1 (|a|, |∂|)σ (|∂|, |a|) q (|∂|, |a|) a ∗q Qq (∂) (b)

= q−1 (|a|, |∂|)σ (|∂|, |a|) q (|∂|, |a|) q (|a|, |∂| + |b|) q (|∂|, |b|) a∂ (b)

= q (|∂|, |a|) q (|∂| + |a|, |b|)σ (|∂|, |a|) a∂ (b) .

The σq-commutator of two derivations satisfies the σq-Leibniz rule,

[∂1, ∂2]
σq

q (ab) = ∂1 ∗q ∂2 (ab) − σq (|∂1|, |∂2|) ∂2 ∗q ∂1 (ab)

= (∂1 ∗q ∂2) (a) b + q (|∂1|, |∂2|)σq (|∂1|, |∂2| + |a|) ∂2 (a) ∂1 (b)

+ q (|∂2|, |∂1|)σq (|∂2|, |a|) ∂1 (a) ∂2 (b)

+ σq (|∂1| + |∂2|, |a|)a∂1 ∗q ∂2 (b) − σq (|∂1|, |∂2|) ∂2 ∗q ∂1 (a) b

− q (|∂2|, |∂1|)σq (|∂1|, |∂2|) σq (|∂2|, |∂1| + |a|) ∂1 (a) ∂2 (b)

− q (|∂1|, |∂2|)σq (|∂1|, |∂2|) σq (|∂1|, |a|) ∂2 (a) ∂1 (b)

− σq (|∂1|, |∂2|) σq (|∂1| + |∂2|, |a|) a∂2 ∗q ∂1 (b)

= (∂1 ∗q ∂2) (a) b + σq (|∂1| + |∂2|, |a|) a (∂1 ∗q ∂2) (b)

− σq (|∂1|, |∂2|) (∂2 ∗q ∂1) (a) b

− σq (|∂1|, |∂2|) σq (|∂1| + |∂2|, |a|) a (∂2 ∗q ∂1) (b)

= [∂1, ∂2]
σq (a) b + σq (|∂1| + |∂2|, |a|) a [∂1, ∂2]

σq (b) ,

for homogeneous ∂1, ∂2 ∈ Derσq (Aq).

Derσq (Aq) is a σq-symmetric Aq-module,

[a∂1, ∂2]
σq

q = a [∂1, ∂2]
σq

q − σq (|a| + |∂1|, |∂2|) ∂2 (a) ∂1, (8)

[∂1, a∂2]
σq

q = σq (|∂1|, |a|) a [∂1, ∂2]
σq

q + ∂1 (a) ∂2, (9)

for homogeneous ∂1, ∂2 ∈ Derσq (Aq), a ∈ Aq.

Furthermore, Derσq (Aq) is a σq-Lie algebra with respect to the (σq−q)-

bracket, [−,−]σq

q .

Let q1, q2 and q be quantizations, then

Qq1q2
= Qq1

◦ Qq2

and

Qq−1 = Q−1
q .

The inverse of the quantization of an operator ∂ of Aq is denoted by

Q−1
q (∂) = ∂c.
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As an object, (Aq)c
= Aq = A.

Proposition 8. The composition satisfies

(∂1)c ∗q (∂2)c = (∂1 ◦ ∂2)c , (10)

for graded operators ∂1 and ∂2 on Aq.

Proof.

Q−1
q (∂1) ∗q Q−1

q (∂2) (a)

= q (|∂1|, |∂2|) q−1 (|∂1|, |∂2| + |a|) q−1 (|∂2|, |a|) ∂1∂2 (a)

= q−1 (|∂1| + |∂2|, |a|)∂1∂2 (a) = Q−1
q (∂1 ◦ ∂2) (a) ,

for homogeneous a ∈ Aq.

Let γ be any braiding and p any quantization. Define the γ−p -bracket,

[−,−]γp ,

on operators, for which the composition between the operators is ∗p,

[∂1, ∂2]
γ
p = ∂1 ∗p ∂2 − γ (|∂1|, |∂2|) ∂2 ∗p ∂1. (11)

Proposition 9. Let ∂1 ∈ Derσ
|∂1|

(A), ∂2 ∈ Derσ
|∂2|

(A), then

([∂1, ∂2]
σq)c = [(∂1)c , (∂2)c]

σq

q
.

Proof.

[∂1, ∂2]
σq

q = ∂1 ∗q ∂2 − σq (|∂1|, |∂2|) ∂2 ∗q ∂1

= q (|∂1|, |∂2|) ∂1∂2

− q−1 (|∂2|, |∂1|) σ (|∂1|, |∂2|) q (|∂1|, |∂2|) q (|∂2|, |∂1|) ∂2∂1

= q (|∂1|, |∂2|) [∂1, ∂2]
σ .

Definition 10. Define dequantization of Derσq (Aq) as the inverse of the

set of all Q−1
q (∂), ∂ ∈ Derσq (Aq), equipped with the [−,−]σq

q bracket and

the A-module structure

a ∗q ∂c = q (|a|, |∂|) a∂c, (12)

for homogeneous ∂ ∈ Derσq (Aq) and a ∈ A|a|.

The dequantization of the braided derivations operates on A in the

classical manner, but satisfies somewhat different properties than the

classical, as the following theorem states.
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Theorem 11. The braided Lie algebra structure of Derσq (Aq) can be

realized within the classical, Derσ (A), by dequantization.

For homogeneous elements ∂1, ∂2 ∈ Derσq (Aq), a ∈ Aq, the following

linearity is satisfied,

(∂1 + ∂2)c = (∂1)c + (∂2)c , (i)

A-module structure,

(a ◦ ∂1)c = a ∗q (∂1)c , (ii)

and for the commutator,

([∂1, ∂2]
σq)c = [(∂1)c , (∂2)c]

σq

q
. (iii)

Proof. (i):

Q−1
q (∂1 + ∂2) = Q−1

q (∂1) + Q−1
q (∂2) ,

(ii), A-module structure: By proposition 8,

ac ∗q (∂1)c = a ∗q (∂1)c = (a ◦ ∂1)c ,

(iii), σq-bracket:

Q−1
q ([∂1, ∂2]

σq) (a) = q−1 (|∂1| + |∂2|, |a|) (∂1∂2 − σq (|∂1|, |∂2|) ∂2∂1) (a)

is equal to

[(∂1)c , (∂2)c]
σq

q
= q−1 (|∂1|, |∂2| + |a|) q−1 (|∂2|, |a|) q (|∂1|, |∂2|) ∂1∂2 (a)

− q−1 (|∂2|, |∂1| + |a|) q−1 (|∂1|, |a|) q (|∂2|, |∂1|) σq (|∂1|, |∂2|) ∂2∂1 (a)

= q−1 (|∂1| + |∂2|, |a|) q−1 (|∂1|, |∂2|) q (|∂1|, |∂2|) ∂1∂2 (a)

− q−1 (|∂1| + |∂2|, |a|) q−1 (|∂2|, |∂1|) q (|∂2|, |∂1|)σq (|∂1|, |∂2|) ∂2∂1 (a)

= q−1 (|∂1| + |∂2|, |a|) (∂1∂2 − σq (|∂1|, |∂2|) ∂2∂1) (a) ,

for homogeneous a ∈ Aq, ∂1, ∂2 ∈ Derσq (Aq).

3.2. Evaluations and commutators. For both σ- and σq-derivations,

evaluating a derivation of some element corresponds to taking the braided

bracket of the derivation and that element.

Proposition 12. Let A be σ-commutative algebra and ∂ ∈ Derσ
|∂| (A),

a ∈ A|a|. Then the evaluation of ∂c on homogeneous a ∈ A is

∂ (a) = [∂, a]σ .

Let

∂q ∈ Der
σq

|∂| (Aq) .
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Then the evaluation of the derivation on some homogeneous a ∈ (Aq)|a|
is equal to taking the σq − q-bracket of ∂q and a,

∂q (a) = [∂q, a]σq

q
.

Proof. Let ∂ ∈ Derσ
|∂| (A) and a ∈ A|a|, b ∈ A|b|. By the σ-Leibniz rule

∂ (ab) = ∂ (a) b + σ (|∂|, |a|) a∂ (b) ,

and clearly, by rearranging,

∂ (a) = [∂, a]σ = ∂a − σ (|∂|, |a|) a∂.

For proof of the second half of the proposition let ∂q ∈ Der
σq

|∂| (Aq) and

a ∈ A|a|, b ∈ A|b|. By the σ-Leibniz rule

∂q (ab) = ∂q (a) ∗q b + σq (|∂|, |a|) a ∗q ∂q (b) ,

and by rearranging,

∂q (a) = [∂q, a]σq

q
= ∂q ∗q a − σq (|∂|, |a|) a ∗q ∂q.

4. Braided derivations in graded modules

Let R be a field, σ be a braiding in the monoidal category of graded

modules, A be a G-graded σ-commutative R-algebra and E a G-graded

σ-symmetric A-module. Let

∂A : A → A

be a G-graded σ-derivation of A.

Definition 13. An operator of E, ∂ : E → E is said to be a graded

σ-derivation over ∂A of degree |∂| ∈ G if ∂ is R-linear,

∂ : Eg → Eg+|∂|,

g ∈ G

|∂| = |∂A|,

and satisfy the σ-Leibniz rule with respect to ∂A,

∂ (ax) = ∂A (a) x + σ (|∂|, |a|) a∂ (x) ,

for homogeneous x ∈ E and a ∈ A.
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The pair (∂, ∂A) is called a σ-derivation of E over A.

The morphism π : (∂, ∂A) → ∂A we call the projection from the σ-

derivations of E over A to the σ-derivations of A.

The set of all σ-derivations of E over A of degree g ∈ G is denoted by

Der
(σ,A)
g (E) and the set of all σ-derivations of E over A (equipped with

the quantization of the composition) is denoted by Der(σ,A) (E) .

A left A-module structure on Der(σ,A) (E) is defined by

(a∂) (b) = a (∂ (x)) , (13)

and

a∂ ∈ Der
(σ,A)
|a|+|∂| (E) , (14)

for homogeneous a ∈ A, x ∈ E ∂ ∈ Der
(σ,A)
|∂| (E).

The σ-commutator is defined as for σ-derivations of A.

Proposition 14. The σ-commutator of two σ-derivations is a σ-derivation

of the combined degree,

[∂1, ∂2]
σ ∈ Der

(σ,A)
|∂1|+|∂2|

(E) ,

for homogeneous ∂1, ∂2 ∈ Der(σ,A) (E).

Proof. The σ-commutator of two derivations satisfies the σ-Leibniz rule

over A,

([∂1, ∂2]
σ) (ax) = [(∂1)A , (∂2)A]σ (a) x + σ (|∂1| + |∂2|, |a|)a [∂1, ∂2]

σ (x) ,

for homogeneous a ∈ A, which is proved as follows,

[∂1, ∂2]
σ (ax) = ∂1∂2 (ax) − σ (|∂1|, |∂2|) ∂2∂1 (ax)

= (∂1)A (∂2)A (a) x + σ (|∂1|, |∂2| + |a|) (∂2)A (a) ∂1 (x)

+ σ (|∂2|, |a|) (∂1)A (a) ∂2 (x) + σ (|∂1|, |a|)σ (|∂2|, |a|)a∂1∂2 (x)

− σ (|∂1|, |∂2|) (∂2)A (∂1)A (a)x

− σ (|∂1|, |∂2|) σ (|∂2|, |∂1| + |a|) (∂1)A (a) ∂2 (x)

− σ (|∂1|, |∂2|) σ (|∂1|, |a|) (∂2)A (a) ∂1 (x)

− σ (|∂1|, |∂2|) σ (|∂1|, |a|)σ (|∂2|, |a|)a∂2∂1 (x)

= (∂1)A (∂2)A (a) x + σ (|∂1| + |∂2|, |a|)a∂1∂2 (x)

− σ (|∂1|, |∂2|) (∂2)A (∂1)A (a)x − σ (|∂1|, |∂2|) σ (|∂1| + |∂2|, |a|) a∂2∂1 (x)

= [(∂1)A , (∂2)A]σ (a)x + σ (|∂1| + |∂2|, |a|)a [∂1, ∂2]
σ (x) .
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Proposition 15. The σ-bracket satisfies

[a∂1, ∂2]
σ = a [∂1, ∂2]

σ − σ (|a| + |∂1|, |∂2|) ∂2 (a) ∂1, (15)

[∂1, a∂2]
σ = σ (|∂1|, |a|) a [∂1, ∂2]

σ + ∂1 (a) ∂2, (16)

for homogeneous ∂1, ∂2 ∈ Der(σ,A) (E) and a ∈ A.

Theorem 16. Der(σ,A) (E) is a G-graded σ-Lie algebra with respect to

the σ-bracket. That is, the following properties are satisfied,
[

Der(σ,A) (E) , Der(σ,A) (E)
]σ

⊆ Der(σ,A) (E) , (i)

[

Der
(σ,A)
i (E) , Der

(σ,A)
j (E)

]σ

⊆ Der
(σ,A)
i+j (E) , (i’)

and [∂1, ∂2]
σ is a σ-derivation over [(∂1)A , (∂2)A]σ, the σ-bracket is skew

σ-symmetric,

[∂1, ∂2]
σ = −σ (|∂1|, |∂2|) [∂2, ∂1]

σ , (ii)

and the σ-Jacobi identity for derivations is satisfied,

[∂1, [∂2, ∂3]
σ]

σ
= [[∂1, ∂2]

σ , ∂3]
σ

+ σ (|∂1|, |∂2|) [∂2, [∂1, ∂3]
σ]

σ
, (iii)

for homogeneous ∂1, ∂2, ∂3 ∈ Der(σ,A) (E).

We get the exact sequence of graded A-modules and G-graded Lie

algebras

0 → Endσ
A (E) → Der(σ,A) (E)

π
→ Derσ (A) (17)

where Endσ
A (E) is the σ-symmetric (graded) endomorphisms of E over

A.

4.1. Quantizations of braided derivations in graded modules.

Let A be a σ-commutative G-graded algebra and E a σ-commutative

G-graded A-module

Given a quantization q and an operator

∂ : E → E

of degree |∂|, define the quantization of ∂,

∂q (x) = Qq (∂) (x) = q (|∂|, |x|) ∂ (x) , (18)

x ∈ E.

Qq (∂) is an operator of the quantized module Eq.

Denote by Der(σq ,Aq) (Eq) set set of all Qq (∂), ∂ ∈ Der(σ,A) (E), equipped

with the quantization of the composition.
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Theorem 17. The operator Qq is an A-module isomorphism between the

σ-derivations of E over A and the σq-derivations of Eq over Aq,

Qq :
(

Der(σ,A) (E) , [−,−]σ
)

→
(

Der(σq,Aq) (Eq) , [−,−]σq

q

)

, (19)

∂ ∈ Der
(σ,A)
|∂| (E) 7−→ Qq (∂) ∈ Der

(σq ,Aq)

|∂| (Eq) .

That is, Qq (∂) satisfies the σq-Leibniz rule with respect to Qq (∂A)

Qq (∂) (ax) = Qq (∂A) (a) x + σq (|∂|, |a|) aQq (∂) (x) , (20)

for homogeneous ∂ ∈ Der(σ,A) (E), x ∈ Eq, a ∈ Aq.

Der(σq,Aq) (Eq) is a σq-symmetric module, satisfying (8) and (9), and

is a σq-Lie algebra with respect to the σq − q-bracket, [−,−]σq

q .

Theorem 18. The Lie algebra structure of Der(σq,A) (Eq) can be realized

within the classical, Der(σ,A) (E), by dequantization. That is the following

is satisfied. The linearity,

(∂1 + ∂2)c = (∂1)c + (∂2)c , (i)

for homogeneous ∂1, ∂2 ∈ Der(σq ,A) (Eq), A-module structure,

(a ◦ ∂1)c = a ∗q (∂1)c , (ii)

and the commutator,

([∂1, ∂2]
σq)c = [(∂1)c , (∂2)c]

σq

q
, (iii)

for homogeneous ∂1, ∂2 ∈ Der(σq ,A) (Eq), a ∈ Aq.

We get the following commutative diagram exact sequences of graded

A-modules and G-graded Lie algebras

(21)

where

πq
def
= Qq ◦ π ◦ Q−1

q . (22)

5. Braided connections and curvature in graded modules

Let ∂1, ∂2 ∈ Derσ (A) be homogeneous.

Definition 19. A σ-connection in a σ-symmetric graded module E is a

σ-symmetric graded module homomorphism ∇ of degree 0

∇ : Derσ
|∂1|

(A) → Der
(σ,A)
|∂1|

(E)

such that

π ◦ ∇ = Id.
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Definition 20. A σ-connection ∇ is flat if it is a σ-Lie algebra homo-

morphism, that is,

∇ ([∂1, ∂2]
σ) = [∇∂1,∇∂2]

σ ,

for all ∂1, ∂2 ∈ Derσ (A).

Definition 21. In general, define the σ-curvature of ∇ to be

K∇ (∂1, ∂2) = [∇∂1,∇∂2]
σ −∇ ([∂1, ∂2]

σ) .

Theorem 22. Given homogeneous ∂1 and ∂2, the σ-curvature

K∇ : Derσ (A) ⊗ Derσ (A) → EndA (E) ,

applied to ∂1 and ∂2 is a σ-symmetric endomorphism of E, that is,

K∇ (∂1, ∂2) (a∂1) = σ (|∂1| + |∂2|, a) aK∇ (∂1, ∂2) (∂1) , (i)

and K∇ is skew σ-symmetric,

K∇ (∂1, ∂2) = −σ (|∂1|, |∂2|) K∇ (∂2, ∂1) . (ii)

Furthermore K∇ satisfies the σ-symmetric A-module homomorphisms

K∇ (a∂1, ∂2) = aK∇ (∂1, ∂2) , (iii)

K∇ (∂1, a∂2) = σ (|∂1|, |a|) aK∇ (∂1, ∂2) , (iv)

a ∈ A.

Proof. (i):

K∇ (∂1, ∂2) (ax) = [∇∂1,∇∂2]
σ (ax) −∇ ([∂1, ∂2]

σ) (ax)

= [(∇∂1)A , (∇∂2)A]σ (a) x + σ (|∂1| + |∂2|, a) a [∇∂1,∇∂2]
σ (x)

− (∇ ([∂1, ∂2]
σ))A (a)x − σ (|∂1| + |∂2|, |a|) a (∇ ([∂1, ∂2]

σ)) (x)

= [∂1, ∂2]
σ (a) x + σ (|∂1| + |∂2|, a) a [∇∂1,∇∂2]

σ (x)

− [∂1, ∂2]
σ (a) x − σ (|∂1| + |∂2|, |a|)a (∇ ([∂1, ∂2]

σ)) (x)

= σ (|∂1| + |∂2|, a) (a [∇∂1,∇∂2]
σ (x) − a (∇ ([∂1, ∂2]

σ)) (x))

= σ (|∂1| + |∂2|, a) aK∇ (∂1, ∂2) (x) .

(ii):

K∇ (∂1, ∂2) = [∇∂1,∇∂2]
σ −∇ ([∂1, ∂2]

σ)

= −σ (|∂1|, |∂2|) [∇∂2,∇∂1]
σ −∇ (−σ (|∂1|, |∂2|) [∂2, ∂1]

σ)

= −σ (|∂1|, |∂2|)K∇ (∂2, ∂1) .
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(iii):

K∇ (a∂1, ∂2) = [∇ (a∂1) ,∇∂2]
σ −∇ ([a∂1, ∂2]

σ)

= a

(

[(∇∂1) ,∇∂2]
σ − σ (|a| + |∂1|, |∂2|)∇ (∂2) (a)∇ (∂1)

−a∇ [∂1, ∂2]
σ + σ (|a| + |∂1|, |∂2|)∇ (∂2 (a) ∂1)

)

= a ([(∇∂1) ,∇∂2]
σ −∇ [∂1, ∂2]

σ) .

(iv):

K∇ (∂1, a∂2) = [∇∂1,∇ (a∂2)]
σ −∇ ([∂1, a∂2]

σ)

= [∇∂1, a (∇∂2)]
σ − σ (|∂1|, |a|)∇ (a [∂1, ∂2]

σ)

= σ (|∂1|, |a|) a [∇∂1, (∇∂2)]
σ + ∇ (∂1) (a)∇ (∂2)

−σ (|∂1|, |a|)a∇ ([∂1, ∂2]
σ) + ∇ (∂1 (a) ∂2)

= σ (|∂1|, |a|) a ([∇∂1,∇∂2]
σ −∇ [∂1, ∂2]

σ) .

5.1. Quantization of braided connections and curvature.

Definition 23. Let ∇ be a σ-connection in E. The quantization of ∇,

∇q : Derσq (Aq) → Der(σq,Aq) (Eq) .

is defined by

∇q
def
= Qq ◦ ∇ ◦ Q−1

q , (23)

that is, the following diagram commutes

Der(σ,A)(E) �
∇

Derσ(A)

Der(σq ,Aq)(Eq)

Qq

?

�
∇q

Derσq(Aq)

Qq

?

.

Hence, ∇q is a splitting of the lower sequence in (21).

Proposition 24. The quantization of a connection ∇, ∇q, is a σq-

connection in Eq.

Let ∇q be a σq-connection in Eq. Then the σq − q-curvature of ∇q

Kq
∇q

: Derσq (Aq) ⊗ Derσq (Aq) → EndAq
(Eq) ,

is defined by

Kq
∇q

(∂1, ∂2) = [∇q∂1,∇q∂2]
σq

q
−∇q

(

[∂1, ∂2]
σq

q

)

. (24)
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Theorem 25. The σq − q-curvature satisfies

Kq
∇q

(∂1, ∂2) (ax) = σq (|∂1| + |∂2|, a) aKq
∇q

(∂1, ∂2) (x) , (i)

and is skew σq-symmetric,

Kq
∇q

(∂1, ∂2) = −σq (|∂1|, |∂2|) Kq
∇q

(∂2, ∂1) .

Furthermore, the σq − q-curvature satisfies the σq-symmetric Aq-module

homomorphisms

Kq
∇q

(a∂1, ∂2) =aKq
∇q

(∂1, ∂2) , (ii)

Kq
∇q

(∂1, a∂2) =σq (|∂1|, |a|)aKq
∇q

(∂1, ∂2) , (iii)

a ∈ Aq.

We get the following picture for dequantizations of braided derivations.

Theorem 26. The σq − q-curvature Kq
∇ of the σ-connection ∇ of E

defined by

Kq
∇ ((∂1)c , (∂2)c) = [∇ (∂1)c ,∇ (∂2)c]

σq

q
−∇

(

[(∂1)c , (∂2)c]
σq

q

)

, (25)

and the σq-curvature of the σq-connection ∇q defined by

K∇q
(∂1, ∂2) = [∇q∂1,∇q∂2]

σq −∇q ([∂1, ∂2]
σq) (26)

are related as follows,
(

K∇q
(∂1, ∂2)

)

c
= Kq

∇ ((∂1)c , (∂2)c) , (27)

∂1, ∂2 ∈ Derσq (Aq). If ∇ is flat σ-connection in E with respect to the

σ-curvature K∇, then is ∇ is flat in E with respect to the σq−q-curvature

Kq
∇ and ∇q is a flat σq-connection in Eq with respect to the σq-curvature

K∇q
.

Proof. Proof of (27):

K∇q
(∂1, ∂2)

= [∇q∂1,∇q∂2]
σq −∇q ([∂1, ∂2]

σq)

=
[

Qq ◦ ∇ ◦ Q−1
q (∂1) , Qq ◦ ∇ ◦ Q−1

q (∂2)
]σq

− Qq ◦ ∇ ◦ Q−1
q ([∂1, ∂2]

σq)

= Qq

(

[∇ ((∂1)c) ,∇ ((∂2)c)]
σq

q

)

− Qq ◦ ∇
(

[(∂1)c , (∂2)c]
σq

q

)

= Qq

(

[∇ ((∂1)c) ,∇ ((∂2)c)]
σq

q
−∇

(

[(∂1)c , (∂2)c]
σq

q

))

= Qq (Kq
∇ ((∂1)c , (∂2)c)) .
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If K∇ (∂1, ∂2) = 0, then

Kq
∇ ((∂1)c , (∂2)c) = [∇ (∂1)c ,∇ (∂2)c]

σq

q
−∇

(

[(∂1)c , (∂2)c]
σq

q

)

= q (|∂1|, |∂2|) ([∇ (∂1)c ,∇ (∂2)c]
σ −∇ ([(∂1)c , (∂2)c]

σ)) = 0.

The formula (27) means that

K∇q
(∂1, ∂2) (x) = Qq (Kq

∇ ((∂1)c , (∂2)c)) (x)

= q (|∂1|, |∂2|)Qq (K∇ ((∂1)c , (∂2)c)) (x)

= q (|∂1| + |∂2|, |x|) q (|∂1|, |∂2|)K∇ ((∂1)c , (∂2)c) (x) ,

for x ∈ E.

6. Application to γ-densities and γ-forms on R.

Consider the real line, R, and γ-densities on R,

θ = f (x) (|dx|)γ ,

and γ-forms on R

θ′ = f (x) (dx)γ ,

γ ∈ R and f is a function on R. Denote by Ωγ the set of all γ-densities

on R.

If γ = 1, then we have differential 1-forms on R, if γ = −1, then we

have vector fields on R and if γ = 0, then we have functions on R.

For a function on y, g (y), a γ-change of variable is

g (y) dy 7−→ g (F (x)) |F ′|γ (dx)γ ,

if y = F (x).

Ω = ⊕γ∈RΩγ is an algebra with the multiplication

Ωβ ⊗ Ωγ → Ωβ+γ,

f (x) (|dx|)α ⊗ g (x) (|dx|)β 7→ fg (x) (|dx|)α+β .

Definition 27. Define a bracket on Ω by
[

fβ|dx|β, gγ|dx|γ
]

= [fβ , gγ] |dx|β+γ−1,

where

[gβ, fγ] = γg′
βfγ − βgβf ′

γ ,

gβ ∈ Ωβ and fγ ∈ Ωγ.

Clearly,

[Ωβ , Ωγ] ⊆ Ωβ+γ−1,

since f ′
γ ∈ Ωγ−1 when fγ ∈ Ωγ .
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Proposition 28. Ω is a R-graded Lie algebra. That is,

[gβ, fγ] = − [fβ, gγ] ,

and the Jacobi identity is satisfied,

[hα, [gβ, fγ]] = [[hα, gβ] , fγ ] + [gβ, [hα, fγ]] ,

hα ∈ Ωα, gβ ∈ Ωβ , fγ ∈ Ωγ.

Now consider a collection of n-tuples

Γ = {γ = (γ1, . . . , γn)} ⊂ R
n,

such that for γ, γ′ ∈ Γ the sum γ + γ′ ∈ Γ and γ + γ′ − 1i ∈ Γ for all

i = 1, . . . , n, where 1i = (0, . . . , 1, . . . , 0), 1 in the ith place.

For each γ = (γ1, . . . , γn) ∈ Γ consider Ωγ = ⊕γi
Ωγi

and the Γ-graded

module ΩΓ = ⊕γΩγ . Clearly is ΩΓ a Γ-graded Lie algebra.

Any quantization of ΩΓ is given by

q (γ, γ′) = exp (i 〈Pγ, γ′〉) ,

where P is a skew symmetric n × n-matrix and the quantization of the

standard twist, τ q = q−1 ◦ τ ◦ q, is realized by

q−1 (γ′, γ) q (γ, γ′) = exp (2i 〈Pγ, γ′〉) .

Then the quantization of ΩΓ by q is a Γ-graded τ q-Lie algebra, that is,

[gγ, fγ′] = − exp (2i 〈Pγ, γ′〉) [fγ′, gγ] ,

and the Jacobi identity is satisfied,

[hγ, [gγ′ , fγ′′]] = [[hγ , gγ′ ] , fγ′′] + exp (2i 〈Pγ, γ′〉) [gγ′ , [hγ, fγ′′ ]] ,

hγ ∈ Ωγ , gγ′ ∈ Ωγ′ , fγ′′ ∈ Ωγ′′ .

Note that even if Γ is infinite there is no problem to extend the theory

in this paper to this case as long as there is some minimal grading ς such

that there is no f ∈ ΩΓ with grading by γ < ς .

7. Braided differential operators

We shall see how the picture is for braided differential operators. Let

G be a finite abelian group.
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7.1. Braided differential operators in graded algebras. Let A be

a σ-symmetric G-graded algebra.

Define a graded σ-differential operator f of degree |f | ∈ G and order

at most k as the linear map f : A → A, such that

f : Ag → Ag+|f |,

g ∈ G, and

[a0, [a1, . . . [ak, f ]σ · · · ]
σ
]
σ

= 0, (28)

∀a0, . . . , ak ∈ A.

Denote by Diffσ
k,i (A, A) the σ-differential operators of order at most

k and degree i and by Diffσ
k (A, A) the set of all of order at most k.

Let’s consider Diffσ (A, A) = ∪Diffσ
k (A, A).

From [16] we have the two following results. The σ-commutator of two

σ-differential operators f1 ∈ Diffσ
i (A, A) and f2 ∈ Diffσ

j (A, A) is a

σ-differential operator of order at most i + j − 1,

[f1, f2]
σ ∈ Diffσ

i+j−1 (A, A) .

and Diffσ (A, A) is a σ-Lie algebra. Furthermore, clearly,

[f1, f2]
σ ∈ Diffσ

i+j−1,|f1|+|f2| (A, A) ,

for homogeneous f1 ∈ Diffσ
i,|f1|

(A, A) and f2 ∈ Diffσ
j,|f2|

(A, A).

Proposition 29. There is an A − A-module structure on Diffσ (A, A)

defined by

ν l (a ⊗ f) (b) = af (b) ,

νr (f ⊗ a) (b) = f (ab) ,

a, b ∈ A, f ∈ Diffσ (A, A) and af, fa ∈ Diffσ
k,|f |+|a| (A, A), for homo-

geneous f ∈ Diffσ
k,|f | (A, A).

Proof.

[a0, [a1, . . . [ak, bf ]σ · · · ]
σ
]
σ

= [a0, [a1, . . . [ak−1, (ak (bf) − σ (|ak|, |b| + |f |) (bf) ak)]
σ · · · ]

σ
]
σ

= [a0, [a1, . . . [ak−1, (σ (|ak|, |b|) (bak) f − σ (|ak|, |b| + |f |) bf (ak))]
σ · · · ]

σ
]
σ

= σ (|ak|, |b|)
[

a0, [a1, . . . [ak−1, b [ak, f ]σ]
σ
· · · ]

σ]σ

...

= σ (|ak| + · · ·+ |a0|, |b|) b [a0, [a1, . . . [ak, f ]σ · · · ]
σ
]
σ

= 0
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Also the right action on a braided differential operator again is a braided

differential operator,

[a0, [a1, . . . [ak, fb]σ · · · ]
σ
]
σ

= [a0, [a1, . . . [ak−1, (ak (fb) − σ (|ak|, |f | + |b|) (fb) ak)]
σ · · · ]

σ
]
σ

= [a0, [a1, . . . [ak−1, ((akf) b − σ (|ak|, |f |) f (akb))]
σ · · · ]

σ
]
σ

=
[

a0, [a1, . . . [ak−1, [ak, f ]σ b]
σ
· · · ]

σ]σ

...

= [a0, [a1, . . . [ak, f ]σ · · · ]
σ
]
σ
b = 0,

for homogeneous a0, . . . , ak, b ∈ A, f ∈ Diffσ
k (A, A).

Consider the symbol of the differential operators which is the leading

part with respect to derivatives,

Smblσk (A, A) = Diffσ
k (A, A) /Diffσ

k−1 (A, A) ,

then we have the Z-graded object

Smblσ (A, A) =
∑

k∈Z

Smblσk (A, A) .

The class of [f1, f2]
σ ∈ Diffσ

i+j−1,|f1|+|f2|
(A, A),

[f1, f2]
σ ∈ Smblσi+j−1,|f1|+|f2| (A, A) ,

depends on the class of the two homogeneous σ-differential operators

f1 ∈ Diffσ
i,|f1|

(A, A) and f2 ∈ Diffσ
j,|f2|

(A, A), and there is a graded

σ-Poisson structure on the braided symbol algebra.

7.2. Braided differential operators in graded modules. Let A be

a σ-symmetric algebra and let E be a σ-symmetric A-module.

Define a graded σ-differential operator f of E of degree |f | ∈ G and

order at most k as the linear map f : E → E, such that

f : Eg → Eg+|f |,

g ∈ G, and

[x, [a0, . . . [ak−1, f ]σ · · · ]
σ
]
σ

= 0, (29)

∀a0, . . . , ak−1 ∈ A, x ∈ E.

Denote by Diffσ
k,i (E, E) the σ-differential operators of order at most

k and degree i, the σ-differential operators in order at most k of E by

Diff
(σ,A)
k (E, E) and we consider Diff (σ,A) (E, E) = ∪Diff

(σ,A)
k (E, E).
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From [16] we have the two following results. The σ-commutator of two

σ-differential operators f1 ∈ Diffσ
i (E, E) and f2 ∈ Diffσ

j (E, E) is a

σ-differential operator of order at most i + j,

[f1, f2]
σ ∈ Diffσ

i+j (E, E) .

and Diffσ (E, E) is a σ-Lie algebra. Furthermore,

[f1, f2]
σ ∈ Diffσ

i+j,|f1|+|f2|
(E, E) ,

for homogeneous f1 ∈ Diffσ
i,|f1|

(E, E) and f2 ∈ Diffσ
j,|f2|

(E, E).

Proposition 30. There is an A − A-module structure on Diffσ (E, E)

defined by

ν l (a ⊗ f) (x) = af (x) ,

νr (f ⊗ a) (x) = f (ax) ,

and af, fa ∈ Diffσ
k,|f |+|a| (E, E), for homogeneous a ∈ A and f ∈

Diffσ
k,|f | (E, E).

Proof. The proof is the same as for proposition 29.

Consider the symbol of the differential operators which is the leading

part with respect to derivatives,

Smblσk (E, E) = Diffσ
k (E, E) /Diffσ

k−1 (E, E) ,

then we have the Z-graded object

Smblσ (E, E) =
∑

k∈Z

Smblσk (E, E) .

The class of [f1, f2]
σ ∈ Diffσ

i+j,|f1|+|f2|
(E, E),

[f1, f2]
σ ∈ Smblσi+j,|f1|+|f2|

(E, E) ,

depends on the class of the two homogeneous σ-differential operators

f1 ∈ Diffσ
i,|f1|

(E, E) and f2 ∈ Diffσ
j,|f2|

(E, E), and there is a graded

σ-Poisson structure on the braided symbol algebra.

7.3. Quantizations of braided differential operators in algebras.

We define quantization of σ-differential operators in algebras.

Definition 31. Given a quantization q and f ∈ Diffσ
|f | (A, A) define the

quantization of f by

Qq (f) (a) = q (|f |, |a|) f (a) ,

for homogeneous a ∈ A. Sometimes we use the notation fq = Qq (f).
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Qq (f) is an operator of the quantized graded algebra Aq. Denote

by Diffσq (Aq, Aq) the quantization of all σ-differential operators of A

equipped with the quantization of composition.

From [15] we have the following result. Given a braiding σ, let A be a

σ-commutative algebra. Let σq be the quantization of σ. The operator

Qq : (Diffσ (A, A) , [, ]σ) →
(

Diffσq (Aq, Aq) , [, ]σq

q

)

, (30)

f ∈ Diffσ (A, A) 7−→ Qq (f) ∈ Diffσq (Aq, Aq) ,

is an isomorphism of modules. The symbol of Qq is an isomorphism of

modules

Smbl (Qq) : (Smblσ (A, A) , [, ]σ) →
(

Smblσq (Aq, Aq) , [, ]σq

q

)

, (31)

f ∈ Smblσ (A, A) 7−→ Smbl (Qq) (f) ∈ Smblσq (Aq, Aq) .

By proposition 29 is Diffσq (Aq, Aq) a σq-symmetric module and a

σq-Lie algebra with respect to the σq − q-bracket and the quantized com-

position.

Furthermore, there is a σq-Poisson structure on the quantized braided

symbol algebra.

The braided differential operators of A satisfy theorem 11 with Der

replaced by Diff and the σq-Lie algebra structure of Diffσq (Aq, Aq)

can be realized within the classical one by dequantization.

7.4. Quantizations of braided differential operators in modules.

Let A be a σ-symmetric algebra and let E be a σ-symmetric A-module.

Definition 32. Let q be a quantization and f ∈ Diff
(σ,A)
|f | (E, E) be

homogeneous. Then the quantization of f is defined by

Qq (f) (x) = q (|f |, |x|) f (x) ,

where x ∈ E is homogeneous.

Sometimes we use the notation fq = Qq (f).

Qq (f) is an operator of the quantized graded module Eq. Denote by

Diff (σq,Aq) (Eq, Eq) the quantization of all σ-differential operators of A

equipped with the quantization of composition.

Given a braiding σ, let E be a σ-commutative A-module. Let σq be

the quantization of σ. The operator

Qq :
(

Diff (σ,A) (E, E) , [, ]σ
)

→
(

Diff (σq ,Aq) (Eq, Eq) , [, ]σq

q

)

, (32)

f ∈ Diff (σ,A) (E, E) 7−→ Qq (f) ∈ Diff (σq,Aq) (Eq, Eq) ,
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is an isomorphism of modules. The symbol of Qq is an isomorphism of

modules

Smbl (Qq) :
(

Smbl(σ,A) (E, E) , [, ]σ
)

→
(

Smbl(σq,Aq) (Eq, Eq) , [, ]σq

q

)

, (33)

f ∈ Smbl(σ,A) (E, E) 7−→ Smbl (Qq) (f) ∈ Smbl(σq,Aq) (Eq, Eq) .

This is shown in [15].

Diff (σq,Aq) (Eq, Eq) a σq-symmetric module and a σq-Lie algebra with

respect to the σq − q-bracket and the quantized composition. Further-

more, there is a σq-Poisson structure on the quantized braided symbol

algebra, Smbl(σq,Aq) (Eq, Eq).

The braided differential operators of E satisfy theorem 18 with Der

replaced by Diff so the σq-Lie algebra structure of Diff (σq,Aq) (Eq, Eq)

can be realized within the classical one by dequantization.

7.5. Braided symbol and G ⊕ Z-grading. Any G-graded differential

operator has a fibration by Z. However, the symbol of the braided dif-

ferential operators of G-graded algebras A and modules E, Smblσ (A, A)

and Smbl(σ,A) (E, E), is Z-graded and so there is a grading by G ⊕ Z.

Instead of only considering quantizations and braidings with respect

to the G-grading, we consider such with respect to the grading G ⊕ Z.

In [11] we consider such quantizations and braidings in connection with

exterior and symmetric algebras. We recall the following description of

symmetries and quantizations for this case.

Let Ḡ = G ⊕ Z and denote its elements by ḡ = (g, gZ).

Any symmetry

σ̄ : (G ⊕ Z) × (G ⊕ Z) → U (C)

of the monoidal category of Ḡ = G ⊕ Z-graded modules is defined by

σ̄ (ḡ, ḡ′) = σ (g, g′) τ (gZ, g′
Z
) γ (g,g

′
Z
) γ−1 (g′, gZ) , (34)

where we have a symmetry of Ḡ-graded modules,

σ̄|(G⊕{0})×(G⊕{0}) = σ : G × G → U (R) ,

a symmetry of Z-graded modules,

σ̄|({0}⊕Z)×({0}⊕Z) = τ : Z × Z → U (R) ,

and a bihomomorphism,

σ̄|(G⊕{0})×({0}⊕Z) = γ : G × Z → U (R) .
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A quantization q̄ of Ḡ = G × Z-graded modules is of the form

q̄ (ḡ, ḡ′) = q (g, g′) κ (g, g′
Z
) κ

−1 (g′, gZ) p (gZ, g′
Z
)

= q (g, g′) κ (g, g′
Z
) κ

−1 (g′, gZ) , (35)

where ḡ, ḡ′ ∈ Ḡ,

q̄|(G⊕{0})×({0}⊕Z) = κ : G × Z → U (R)

is a bihomomorphism,

q̄|(G⊕{0})×(G⊕{0}) = q : G × G → U (R) ,

is quantization of G-graded modules and p, which is a representative of

the second cohomology of Z, is trivial.

Considering Smblσ (A, A) and Smbl(σ,A) (E, E) as Ḡ-graded, they are

equipped with a symmetry σ̄ of Ḡ, where σ̄|({0}⊕Z)×({0}⊕Z) = τ and

σ̄|(G⊕{0})×({0}⊕Z) = γ trivial, that is σ̄ = σ.

Remark 33. If we quantize Smblσ (A, A) and Smbl(σ,A) (E, E) by the

quantizer γ = σ̄|(G⊕{0})×({0}⊕Z) then the resulting algebra is Smblσ̄ (A, A)

and Smbl(σ̄,A) (E, E) that are σ̄-Poisson algebras with respect to the braid-

ing

σ̄ (ḡ, ḡ′) = σ (g, g′) γ (g,g
′
Z
) γ−1 (g′, gZ) .

We show the quantized braided Poisson structure for the quantization of

Smblσ̄ (A, A) and Smbl(σ̄,A) (E, E) for a general braiding σ̄ in theorems

34 and 35.

Note that σ̄|({0}⊕Z)×({0}⊕Z) = τ always will be trivial since the structure

arises from Smblσ (A, A) and Smbl(σ,A) (E, E).

Assume we have a braided symbols Smblσ̄ (A, A) and Smbl(σ̄,A) (E, E)

with respect to a symmetry σ̄, σ̄|({0}⊕Z)×({0}⊕Z) = τ = 1.

We use quantizations of the form (35). A quantization of a symbol

f ∈ Smblσ̄k,|f | (A, A) or f ∈ Smbl
(σ̄,A)
k,|f | (E, E) is

fq̄ (x) = q̄ ((|f |, k) , (|x|, 1)) f (x) ,

where the homogeneous x (in either E or A) is given the grading (|x|, 1),

|x| ∈ G.

The Qq̄ is an isomorphism of modules

Smbl (Qq̄) :
(

Smblσ̄ (A, A) , [, ]σ̄
)

→
(

Smblσ̄q̄ (Aq̄, Aq̄) , [, ]σ̄q̄

q̄

)

, (36)

f ∈ Smblσ̄ (A, A) 7−→ Smbl (Qq̄) (f) ∈ Smblσ̄q̄ (Aq̄, Aq̄) ,
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and

Smbl (Qq̄) :
(

Smbl(σ̄,A) (E, E) , [, ]σ̄
)

→
(

Smbl(σ̄q̄,Aq̄) (Eq̄, Eq̄) , [, ]σ̄q̄

q̄

)

(37)

f ∈ Smbl(σ̄,A) (E, E) 7−→ Smbl (Qq̄) (f) ∈ Smbl(σ̄q̄,Aq̄) (Eq̄, Eq̄) .

We obtain the following properties for the quantization of Smblσ̄ (A, A).

Theorem 34. Smblσ̄q̄ (Aq̄, Aq̄) is a Ḡ = G⊕Z-graded σ̄q̄-Poisson algebra

with respect to the σ̄q̄ − q̄-bracket, that is the following properties are

satisfied:

[Smblσ̄q̄ (Aq̄, Aq̄) , Smblσ̄q̄ (Aq̄, Aq̄)]
σ̄q̄

q̄
⊆ Smblσ̄q̄ (Aq̄, Aq̄) , (i)

[

Smbl
σ̄q̄

i,|f | (Aq̄, Aq̄) , Smbl
σ̄q̄

j,|g| (Aq̄, Aq̄)
]σ̄q

q̄

⊆ Smbl
σ̄q̄

i+j−1,|f |+|g| (Aq̄, Aq̄) , (i’)

skew σ̄q̄-symmetricity,

[f1, f2]
σ̄q̄

q̄ = −σ̄q̄ ((|f1|, i) , (|f2|, j)) [f2, f1]
σ̄q̄

q̄ , (ii)

the σ̄q̄-Jacobi identity,

[

f1, [f2, f3]
σ̄q̄

q̄

]σ̄q̄

q̄

=
[

[f1, f2]
σ̄q̄

q̄ , f3

]σ̄q̄

q̄
+ σ̄q̄ ((|f1|, i) , (|f2|, j))

[

f2, [f1, f3]
σ̄q̄

q̄

]σ̄q̄

q̄
, (iii)

and

[f1, f2f3]
σ̄q̄

q̄ = [f1, f2]
σ̄q̄

q̄ f3 + σ̄q̄ ((|f1|, i) , (|f2|, j)) f2 [f1, f3]
σ̄q̄

q̄ , (iv)

for f1 ∈ Smbl
σ̄q̄

i,|f1|
(Aq̄, Aq̄), f2 ∈ Smbl

σ̄q̄

j,|f2|
(Aq̄, Aq̄), f3 ∈ Smbl

σ̄q̄

k,|f3|
(Aq̄, Aq̄).

Except for (i’) we obtain the same properties for the quantization of

Smbl(σ̄,A) (E, E).

Theorem 35. Smbl(σ̄q̄,Aq̄) (Eq̄, Eq̄) is a Ḡ = G ⊕ Z-graded σ̄q̄-Poisson

algebra with respect to the σ̄q̄ − q̄-bracket, that is the properties (i), (ii),

(iii) and (iv) of theorem 34 are satisfied when replacing Aq̄ by Eq̄ and

Smblσ̄q̄ by Smbl(σ̄q̄ ,Aq̄), and
[

Smbl
(σ̄q̄,Aq̄)
i,g (Eq̄, Eq̄) , Smbl

(σ̄q̄ ,Aq̄)
j,h (Eq̄, Eq̄)

]σ̄q̄

q̄

⊆ Smbl
(σ̄q̄ ,Aq̄)
i+j,g+h (Eq̄, Eq̄) , (i’)

g, h ∈ G.
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