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ABSTRACT. In [1] the author extended n-line splitting from graphs
to binary matroids and characterized the circuits of the result matroid,
i.e. line-splitting matroid (es-splitting). In this paper, we character-
ize dependent, independent and base sets in line-splitting matroid M.
Moreover, we determine rank function of M$.

1. INTRODUCTION

Fleischner [2] introduced the idea of splitting a vertex of degree at least
three in a connected graph and Raghunathan, Shikare and Waphare [4]
extended the splitting operation from graphs to binary matroids. Shikare,
Azadi and Waphare [6] further generalized this operation and also in [7]
extended the n-point splitting operation from graphs to a binary matroid.
Moreover, in [5] Shikare and Azadi determined the base of splitting ma-
troids and the author in [1] extended the n-line splitting operation [§]
from graphs to the binary matroids by the following way.

Definition 1.1. Let M be a binary matroid on a set S and X be a subset
of S,e € X. Suppose that A is a matrix over GF'(2), that represents the
matroid M. Let AS be the matrix that is obtained by adjoining an extra
row to A with this row being zero everywhere except in the columns
corresponding to the elements of X, where it takes the value 1 and then
adjoining two columns a and 7 to the resulting matrix such that the
column a is zero everywhere except in the last row (new row), where it
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takes the value 1, and v is a sum of two column vectors corresponding
to a and e.

Let M be the vector matroid of the matrix AS. We say that M§ has
been obtained from M by splitting e and X in M. The transition from M
to M% is called splitting of M with respect to e and X. For convenience,
we say that M§ is an element-set splitting (es-splitting) matroid.

Proposition 1.1 ([1]). Let M = (S,C) be a binary matroid, X C S,
ee X, anda,y ¢ S. Then Mg = (SU{a,~v},C%), where C = CoUC U
Co UC3 U{A} with A ={e,a,v} and
Co ={C € C | C contains an even number of elements of X };
Cy =the set of minimal members of {C1UCy | C1,Cy € C,C1NCy =1
and each Cy and Cy contains an odd number of element of X
such that Cy U Cy contains no member of Co};
Co ={CU{a} | C €C and C contains an odd number of elements of X }.
C3 =C31 U C32 U Cs3,
where
Cs1 ={CU{e,v},| C €Ced C and C contains an odd number
of elements of X},
Cso ={(C\e)U{n} | CelC,eec C and C contains an odd number
of elements of X},
Css ={(C\e)U{a,v} | C€lCee C and C\ e contains an odd number
of elements of X'}.

The terminology from matroid theory which we use can be obtained
from Oxely [3].

2. INDEPENDENT SET IN MY

Next theorem characterize the dependent set in es-splitting matroid
Ms.
Theorem 2.1. Let M be a binary matroid on a set S and D be a
dependent set in M. Then D is dependent in M§ if and only if D
does not contain precisely one circuit of M containing an odd number of
elements of X.
Proof. Let D be a dependent set in M and suppose D does not contain
precisely one circuit of M containing an odd number of elements of X.
Then we have the following two cases:
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(i) D contains a circuit C' of M with even number of elements of X.
Then C' is a circuit of M5 and is contained in D. Therefore, D
is dependent set in M.

(ii) D contains at least two circuits, say C' and C’, with odd number
of elements of X. Then

CAC' =C1UCyU...UC,.

If for any of the 1 < ¢ < m, C; contains an even number of elements
of X, then it is a circuit in M§ and is contained in D. Suppose there is
no such C;. Let C} and C}, be two circuits each of which contains an odd
number of elements of X. If C; U C} contains a member of Cy, say C”,
then C” C D and we are done. Otherwise C; UC}, or a minimal member
of Cy, contained in it, is a circuit of M% contained in D.

Conversely, let D be a dependent set of M which is also dependent
in M§. Since D C S, a or v or both do not belong to D. Suppose C
is a circuit of M§ contained in D. Then C contains an even number of
elements of X. We have two cases:

(i) C is a circuit of M containing an even number of elements of X.

(ii) C is a disjoint union of two circuits of M each of which contains
an odd number of elements of X.

In both cases D cannot contain precisely one circuit of M containing
an odd number of elements of X. O

Lemma 2.2. Every independent set in M is independent in M.

Remark 2.3. Converse of the lemma is not true. By Theorem 2.1, every
circuit of M containing an odd number of element of X is a independent
set of M§.

The next theorem characterizes the independent sets of M.

Theorem 2.4. Let I C SU{a,v}. Then I is independent in M§ if and
only if one of the following conditions hold.

(1) I = I;UJ, where I is an independent set in M and J € {¢, {a}}.

(2) I =1, U{y}, where I; is an independent set in M and no circuit
of M is contained in I; U {e}.

(3) I = (1 \ {e}) U{a,~v}, where I; is an independent set in M
containing e.

(4) I = (U, C;) U J, where J € {¢,{7}}, each C; contains an odd
number of element of X,C; N C; # ¢,1 # 4,5 = 1,2,...,m, I



8 H. AZANCHILER

contains no member of Cy, and I U {e} contains no circuit of M
other than C; fori=1,2,...,m.

Proof. (1) Let I; be an independent set in M. By Lemma 2.2, I; is
independent in M. Thus, [ = I; U J, where J = ¢, is independent in
M. Further, by Definition 1.1 of A%, I; U {a} is an independent set in
M¢..

(2) We show that [; U{~} is independent in M, where I and ~ satisfy
conditions in (2). On the contrary, suppose I; U{~v} is dependent in M§
and let C” be a circuit of M§ contained in I; U{~v}. We have the following
cases:

(i) C" € Cy or Cy. Then C'" C I; and we know C” is a circuit or contains
a circuit of M. This shows that I; is dependent in M, a contradiction.

(ii) C" € Cy. Then C" = C' U {a}, where C is a cocircuit of M. But
then C' C Iy, a contradiction.

(iii) C" € C3. Then ¢ = Cy U {e,v} or C" = (Cy \ {e}) U {~} or
C" = (C3\ {e}) U{a,~}, where C1,Cy, Cs are circuits in M and C, Cy
and C3\ {e} each contain an odd number of elements of X. Consequently,
CrU{e,v} C Iy U{y} implies that Cy C I1. (Ca \ {e}) U{y} C Ly U{v}
implies Cy\ {e} C I1; and (C3\{e})U{a,v} C [;U{y} implies C5\ {e} C
I, contradictions to hypotheses in (2).

(3) Let I; be an independent set in M containing e. We show that
(I \ {e}) U{a,v} is independent in M. On the contrary, suppose
(11 \ {e}) U{a,~} is dependent in M§. By similar argument as in (2),
we get contradictions.

(4) Let Cy,Cy, ... and C,, be circuits in M, where each C; contains an
odd number of elements of X and C;NC; # ¢ fori # 7,4, =1,2,...,m.
Clearly each C; is independent in M§ and [; = UjX,C; is independent in
M. Further, v ¢ U™ ,C; and by hypothesis, I = (U",C;)U{~} contains
no circuit of Cy and I U {e} contains no circuit of M other than C; for
1 =1,2,...,m. Therefore, I is a independent set in M¥.

Conversely, let I C S'U{a,v} be an independent set in M%. We have
the following cases:

(I) Let I N {a,v} = ¢. Then I C S and we have two subcases:

(i) I be independent in M. Then I, = I.

(ii) I be dependent set in M. Let Cy,Cy, ..., C,, be the circuits of M,
contained in /. Then each C; must contain an odd number of elements
of X and C;NC; # ¢ fori # 5. I —-(CrUCU...UC,) = ¢,
then I = C; UCyU...UC,, is independent in M% such that I does not
contain a member of Cy and I U {e} does not contain any circuit of M
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other than C; for i = 1,2,...,m. Thus, I is of type (4), where J = ¢. If
I—(CiUCyU...UCy,) #¢then I =(CrUC,U...UC,)UY, where
Y CSU{a,v}, Y N{a,v} =¢,s0Y CS. ButY does not contain a
circuit of M with even number of elements of X, and also Y does not
contain any C; for i = 1,2,...,m, thus Y = ¢; a contradiction.

(IT) Suppose I N{a,v} # ¢. We have the following cases:

(i)ae Iandy & I. Then I —{a} is independent in M, if I —{a} = I,
then I = I U{a}.

(ii) Let a ¢ I and v € I. We show that I — {7} is independent in
M. On the contrary, suppose I — {7} contains a circuit say C' of M.
Then C' C (I —{y})U{e} and (C'\{e})U{y} € I. But (C'\{e}) U{r}
is a circuit of M% contained in I, a contradiction. So, if I — {y} = I,
then I = I, U{vy}. Now, suppose I — {7} contains more than one circuit
of M, say C1,Cs,...,C,,, where each C; contains an odd number of
elements of X and C; N C; # ¢ for @ # j,i,5 = 1,2,...,m. Thus
C1UCU...UC,, CI—{y}and U™ ,C; C (I —{v})U{e}. Consequently,
(U, C)\{e}) U{~r} CI. For 1 <j <m,(C;\{e})U{y}is a circuit
of M$, contained in ((U2,C;)\ {e}) U{~}, that is, in I; a contradiction.
So I = (U",C;) U{y} is a independent set in M. Moreover, I U {e}
contains no circuit of M other than C;,2 =1,2,...,m. Thus I is of type
(4), where j = {7}.

(iii) Let a,y € I. Then we show that I — {a,~} is independent in M.
On the contrary, suppose I — {a, v} contains a circuit say C' of M. Thus
C < (I—{a,v})U{e} and (C\{e})U{a,~} € 1. But (C'\{e}) U{a, 7}
is a circuit of M%, where C contains an odd number of elements of
X. If C contains an even number of elements of X, then C' C [; a
contradiction. We conclude that I; = (I | {a,v}) U {e} is independent
in M and I = (I; \ {e}) U{a,v}. I is of type (3). This completes the
proof of the theorem. O

3. BASES IN M%

In the next theorem, we characterize the bases of the matroid M in
terms of the bases of M.
Theorem 3.1. Let B be a collection of bases of M. A subset B’ of
S U{a,v} is a base of M if and only if one of the following conditions
hold:
(1) B'=BU{a}
(2) B'= BU {7}, where B € B and no circuit C' of M containing e
contains an odd number of elements of X such that C'\ {e} C B.
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(3) B' = (B\{e})U{a,~}, where B € B, no circuit C' of M containing
e contains an odd number of elements of X such that C'\ {e} C B.

(4) B' = BU {z}, where B € B, z € S — B and the fundamental
circuit of M contained in B U {z} contains an odd number of
elements of X.

Proof. (1) Let B be a base of M. Then B is independent in M and, by
Lemma 2.2, B is independent in M%. Further, by Theorem 2.4, BU {a}
is independent in M. Then

r(BU{a})=|BU{a} =|B|+1=r(M)+1=1r"(Mg).

Thus, B = BU {a} is a base of M%.

(2) Let B U {~} satisfies the conditions in (2). We show that B U {v}
is independent in M§. On the contrary, suppose B U {~v} is dependent
in Mg and C' is a circuit of M§ contained in BU {v}. If C" € Cy or
Cy, then C" C B and this leads to a contradiction. If ¢ = C' U {a},
where C'is a circuit in M and a ¢ C, then C'U {a} C B U {v} implies
C U {a} € B and again C C B; a contradiction. If C' € Cy, then
C" = CiU{en}, " = (Go\ {e}) Uf{r} or €7 = (Cs\ {e}) U {a,7}.
If CyU{e,v} € BU{~y}, then C; U {e} C B, that is, C; C B. If
(Co\ {e}) U{y} € BU{y}, then Cy \ {e} C B, that is, Cy C B. If
(Cs\{e}) U{a,7} € BU {7}, then (C5\ {e}) U{a} C B or C5 C {e},
contradictions to hypothesis in (2). Further,

r'(BU{y}) = BU{y} | =|B[+1=r(M)+1=r"(My).

This shows that B U {7} is a base of M.

(3) Let (B\{e})U{a,~} satisfies the conditions in (3). By the argument
similar to one as given above, we show that it is a independent subset of
M5;. Moreover,

r'(B\{e}) U{a,7} = (B\{e}) U{a,7} | =] B |+1
=r(M)+1=1r"(M%).

Thus, (B \ {e}) U{a,~} is a base of M.
(4) Let BU{z}, where z € S — B, satisfies the condition given in (4).
By Theorem 4.2.7, B U {z} is independent in M$ and so

r'(BU{z}) = r'(M).

Therefore B U {z} is a base for M%.
Conversely, let B’ be a base for M§. We consider the following cases:
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(I) Let a € B" and v ¢ B’. Then B’ — {a} is independent in M. We
show that B’ — {a} is also independent in M. On the contrary, suppose
B’ — {a} contains a circuit C' of M. We have two subcases.

(i) C contains an even number of elements of X. Then C' C B’; a
contradiction.

(ii) C contains an odd number of elements of X. Then C' C B’ —{a}
and C'U{a} C B’; a contradiction, because C' U {a} is a circuit
of M%. Next,

r(B'—{a}) =| B'—{a} | =| B' | - 1 =7r/(M}) — 1 =r(M).

Therefore, B' — {a} is a base for M.

(IT) Let a ¢ B" and v € B’. We show that B’ — {~} is a base for M.
Firstly, we prove that B’ — {~} is independent in M. On the contrary,
suppose B’ —{v} is dependent in M. Let C be a circuit of M, contained
in B" — {v}. We have two subcases:

(i) Let C' contains an even number of elements of X. Then C' is a
circuit of M§ and C' C B’ —{v}. But C' C B, is a contradiction.

(ii) Let C contains an odd number of elements of X. Then C' C B’ —
{7} and so C'\{e} C B'—{~}. This implies that (C'\{e})U{~} C
B’ which is a contradiction, since (C'\ {e}) U {v} is a circuit of
M$. Secondly, B — {7} is maximal independent in M, follows
from the fact that (B’ — {v}) = r(M).

(IT1) Let a,v € B’. We show that (B’ \ {a,7}) U {e} is a base for
M. Clearly e € B, for e € B’ implies that {e,a,v} C B’ and this is a
contradiction.

Firstly, we show that (B" — {a,~v}) U {e} is independent in M. On
the contrary, suppose it is dependent in M and let C' be a circuit of M
contained in (B"\ {a,7}) U {e}. We have two subcases:

(i) C contains an even number of elements of X. Then C' is a circuit
of M% and C C (B'\{a,v})U{e}. Thus (C'\{e})U{a,v} C B';
a contradiction because (C'\ {e}) U {a, 7} is a circuit of M§.

(ii) C contains an odd number of elements of X and C' C (B'\{a,v})U
{e}. Hence (C'\ {e})U{y} C B'". But (C'\{e})U{~} is a circuit
of M, so we get a contradiction. Further, (B’ \ {a,v}) U {e} is
maximal independent in M, since

r(B'\{a,7})ufe}) = [(B"\{a,7}) U{e}
— | B |—1=7(M§)—1=r(M).
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(IV) Let a,y ¢ B'. Then B’ C S and B’ is not independent in M
since 1'(B') = r'(M%) = r(M)+1. Thus B’ is dependent in M. So there
is a circuit C' of M contained in B’. If C contains an even number of
elements of X, then C is a circuit of M§ and we get a contradiction. So

C must contain an odd number of elements of X and suppose z; be an
element of X contained in C. Then B = B’ — {z;} is a base of M. [

4. RANK FUNCTION OF M%

Lemma 4.1. Let M be a binary matroid on S and M be a es-splitting
of M with ground set S U {a,~}. Let r and ' be the rank functions of
M and M¥, respectively. Then for Z C S the following properties hold:
(1) r"(Zuda})=r(Z2)+1
, r(Z)+1 if ee”Z

(2) (Z Va7 :{ rZ)+2 if ed Z
Proof. (1) Let T be a base for Ain M. Then r(Z) = | T |. We show that
T U{a} is a base for Z U {a} in M%. On the contrary, suppose T'U {a}
is dependent in M$ and C is circuit of M§ contained in T'U {a}. We
consider the following cases:

(i) C € Cyor C;. Then C' C T'U{a} and hence C' C T'; a contradiction.

(ii) C' € Cy. Then C' = Cy U {a}, where C is a circuit in M. Conse-
quently C7 C T gives a contradiction.

(iii) Let C' € C3. Then there is a circuit of M, say C; with C; C T, a
contradiction.

Now, we prove that T'U {a} is a maximal independent set in M§. On
the contrary, suppose T'U{a}U{z} is maximal independent in M, where
ze€Z —(TU{a}). Then TU{z}U{a} C ZU{a}. Thus TU{z} C Z,
a contradiction. Now,

r(ZU{a})=|TU{a} |=|T |+1=r(Z)+1
By the same argument as above, we can show that
r(ZU{~y}) =r(Z)+ 1.

(2) Let T be a base for Z in M. Then r(Z) = | T |. We have the
following two cases:

(I) Let e € T. Then we claim that (7' \ {e}) U {a,v} is a base for
Z U{a,v} in M%. On the contrary, suppose that it is dependent set of
M$ and contains a circuit C' of M. We have the following subcases:

(i) Let C € Cy or C;. Then C C (T\ {e}) U {a,~} implies that
C C T\ {e} CT; a contradiction.
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(ii) Let C' € Cy and C' = Cy U {a}, where C} is a circuit of M. Then
CiU{a} C(T'\{e})U{a,v} and C; C T\ {e} C T} a contradiction.

(iii) Let C' € C3 and C = (C; \ e) U {a,v},e € C1, where C is a
circuit in M. Clearly Cy C T again; a contradiction. Now, we show
that (T"\ {e}) U{a,~} is maximal independent in M%. On the contrary,
suppose (T'\ {e}) U{a,v} U{z} for z € Z is maximal. Then (T"\ {e}) U
{z} C Z\{e} CTU{z} C Z. Consequently, TU{z} C Z; a contradiction.
If e e T, then (T'\ {e})U{a,~} is a base for ZU{a,~} in M% and hence

r(ZU{a}) =1T\{e} [+ {e} [=|T [+1=r(2)+1.

(IT) Let e ¢ T'. Then we show that T"U{a,~} is a base for ZU{a,~} in
M$. We prove that T'U {a,~} is maximal independent in M%. On the
contrary, suppose it is dependent in M5. By the same argument as in
case (I), we obtain a contradiction. Thus T"U{a,~} is base of ZU {a,~}.
Finally,

r(ZU{a,7}) = [TU{a} =T |+ |{a,7} |
= |T|+2=r(Z)+2.

This completes the proof. O

Lemma 4.2. If Z C S, then

r(Z)+1 if Z contains a circuit of M, containing
r'(Z) = an odd number of elements of X;
r(2) otherwise.

Proof. Let Z C S. We have the following cases:

(1) Suppose Z does not contain any circuit of M. Then Z is inde-
pendent in M, and by Lemma 2.2, it is independent in M and hence
m"(Z) =1 2 | =r(2).

(2) Suppose Z does not contain a circuit of M containing an odd
number of elements of X. Suppose Z contains a circuit say C', containing
an even number of elements of X. Then C' is a circuit in M§ and Z is
dependent in M, as well as in M§. Consequently, a base of Z in M is
also a base of it in M$. Thus, 7(Z) = r(Z).

(3) Let Z contains a circuit of M, say C' containing an odd number of
elements of X. For a € C, the set C'—{a} is independent in M|Z. Now,
we extend C'—{a} toabase T of Z. Let T = (C—{a})U{pb1, B2, ..., Bk},
where 5; € Z,1=1,2,...,k, is a base of Z in M. Then

r(Z)=|T|=|C|-1+k. (%)
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On the other hand, C'is independent in M$§ and 77 = CU{f4, Bs, . . . Br}
is independent in M§. If 7" is not a base of Z in M§%, then T" =
CU{p,Pa, ..., 0k 0} for some 6 € Z is independent subset of Z in M.
Now C'U{p1, 02, ..., 0k} is a dependent subset of Z in M. Let C’ be a
circuit of M contained in it. We have the following cases:

(i) C" contains an even number of elements of X. Then C’ is a circuit
of M§ with C" C CU{pSy, fa, ..., Bk} a, contradiction.

(ii) C" contains an odd number of element of X. Consider

CAC'=Cciucyu...ucC! (%)

where C} are circuits of M and C{NC} = ¢,i# jand 4,5 =1,2,...,m.
If some C] contains an even number of elements of X, then it leads to a
contradiction. If not, consider the circuits C7, C from (**). Then either
C% U (Y} is a circuit or a subset of it, is a circuit of M§ contained in T".
We conclude that 7" must be a maximal independent subset of Z in M§.
Now,

" (Z)=|T |=|CU{B,Pa..., 0} = |C| + k. ( * %)
From (%) and (* % *), we deduce that r'(Z) = r(Z) 4+ 1. This completes
the proof. O

Corollary 4.3. Let M = (5,r) and M§ = (S U{a,~v},r") be matroids
with usual meaning. Let J = {a,~v}. If Y C SU {a,~}, then

(r(Y) + 1, if | YNJ|=0andY contains a circuit
of M containing an odd number
of elements of X;
r(Y), if | YNJ|=0andY does not contain
(V) = any circuit of M containing odd
number of elements of X;
r(YNS)+1, if | YNnJ|=1lor|YNJ|=2ecY,
and
L (Y NS)+2, if|[YNJ|=2andegV

The proof follows from Lemmas 4.1 and 4.2.

Corollary 4.4.4. Let M = (S,r) be a binary matroid. Let ry, 75,73 be
the rank functions of the matroids My, M% and M$, respectively. Then
r3(Y) =ro(Y)=mr(Y) for Y C S.
Proof. 1t is known [3] that for a matroid M on S with 7" C S and
XCSsS-T,

rane(X) = ru(X), (*)
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where r)s is a rank function of M. We have
M5\ {7} = My and M \ {a} = M.

Thus from (*), it follows that, r3(Y) = ro(Y) and m(Y) = ri(Y) for
Y CS. U
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