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Abstract. In this paper, we discuss a class of spaces with a locally

countable sn-network. We give some characterizations of this class and

investigate variance and inverse invariance of this class under certain

mappings.

1. Introduction

sn-networks is a class of important networks between weak-bases and

cs-networks. In past years, spaces with a locally countable weak-base

and spaces with a locally countable cs-network had been investigated

and many interesting results had been obtained ([17, 21, 22, 23, 24, 30,

31, 32, 33]). In this paper, we will discuss spaces with a locally countable

sn-network. We give some characterizations of this class and investigate

variance and inverse invariance of this class under certain mappings.

Throughout this paper, all spaces are assumed to be regular T1 and

all mappings are continuous and onto. N, ω and ω1 denote the set of

all natural numbers, the first infinite ordinal and the first uncountable

ordinal respectively. For a set D, |D| denotes the cardinal of D. {xn}

denotes a sequence, where the n-th term is xn. Let X be a space and

P ⊂ X. A sequence {xn} converging to x in X is eventually in P if

{xn : n > k}
⋃
{x} ⊂ P for some k ∈ N; is frequently in P if {xnk

}

is eventually in P for some subsequence {xnk
} of {xn}. Let P be a

Key words and phrases. sn-network, cs-network, weak-base, perfect-

mapping, (strongly) Lindelöf mapping, finite subsequence-covering mapping.
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family of subsets of X and f be a mapping defined on X. Then f(P) =

{f(P ) : P ∈ P},
⋃
P and

⋂
P denote the union

⋃
{P : P ∈ P} and the

intersection
⋂
{P : P ∈ P} respectively. Let Px be a family of subsets of

X. Px is a network at x in X, if x ∈
⋂

Px and for each neighborhood U

of x in X there is P ∈ Px such that P ⊂ U . We refer the reader to [7]

for notations and terminology not explicitly given here.

2. Spaces with a Locally Countable sn-Network

Definition 2.1. [8, 9]. Let X be a space and let x ∈ X.

(1) P ⊂ X is called a sequential neighborhood of x if each sequence

{xn} converging to x is eventually in P .

(2) A subset U of X is called sequentially open if U is a sequential

neighborhood of each of its points; a subset F of X is called sequentially

closed if X − F is sequentially open.

(3) X is called a sequential space if each sequentially open subset of

X is open in X, equivalently, if each sequentially closed subset of X is

closed in X.

(4) X is called a k-space if for each A ⊂ X, A is closed in X if and

only if A
⋂

K is closed in K for each compact subset K of X.

Remark 2.2. (1) P is a sequential neighborhood of x if and only if each

sequence {xn} converging to x is frequently in P .

(2) The intersection of finite sequential neighborhoods of x is a sequen-

tial neighborhood of x.

(3) the sequential spaces are the k-spaces.

Definition 2.3. Let P be a cover of a space X.

(1) P is called a k-network of X [27], if whenever K ⊂ U with K

compact in X and U open in X, there is a finite F ⊂ P such that

K ⊂
⋃

F ⊂ U .

(2) P is called a cs∗-network of X [10], if each convergent sequence S

converging to a point x ∈ U with U open in X, then S is frequently in

P ⊂ U for some P ∈ P.

(3) P is called a cs-network of X [15], if each convergent sequence S

converging to a point x ∈ U with U open in X, then S is eventually in

P ⊂ U for some P ∈ P.

Definition 2.4. Let P =
⋃
{Px : x ∈ X} be a cover of a space X, such

that for each x ∈ X, the following conditions (a) and (b) are satisfied.

(a) Px is a network at x in X.

(b) If U, V ∈ Px, then W ⊂ U
⋂

V for some W ∈ Px.
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(1) P is called a weak-base of X [1], if for G ⊂ X, G is open in X if

and only if for each x ∈ G there is P ∈ Px such that P ⊂ G, where Px

is called a weak neighborhood base at x in X.

(2) P is called an sn-network of X [11], if each element of Px is a

sequential neighborhood of x for each x ∈ X, where Px is called an

sn-network at x in X.

Remark 2.5. [23]. (1) weak-bases =⇒ sn-networks =⇒ cs-networks =⇒

cs∗-networks.

(2) In a sequential space, weak-bases ⇐⇒ sn-networks.

(3) sn-networks are called universal cs-networks in [20].

Example 2.6. In a k-space, sn-networks6=⇒ weak-bases.

Proof. Let X be the Stone-C̆ech compactification βN of N. Then X is

compact, and so it is a k-space. Since each convergent sequence in βN is

trivial, P = {{x} : x ∈ X} is an sn-network of X. It is clear that P is

not a weak-base of X. �

Definition 2.7. (1) A space X is called g-metrizable [8] (respectively sn-

metrizable [12], ℵ [27]) if X has a σ-locally finite weak-base (respectively

sn-network, k-network).

(2) A space X is called g-second countable [29] (respectively sn-second

countable [13], ℵ0 [26]) if X has a countable weak-base (respectively sn-

network, k-network).

(3) A space X is called g-first countable [1] (respectively sn-first count-

able [12]), if there is a countable weak neighborhood base (respectively

sn-network) at x in X for each x ∈ X.

Remark 2.8. (1) g-first countable ⇐⇒ sequential and sn-first countable.

(2) If X has a point countable weak-base (respectively sn-network),

then X is g-first countable (respectively sn-first countable). So each

g-metrizable (respectively sn-metrizable) space is g-first countable (re-

spectively sn-first countable).

(3) g-metrizable (respectively g-second countable) ⇐⇒ k- and sn-

metrizable (respectively k- and sn-second countable).

(4) X is an ℵ0-space ⇐⇒ X has a countable cs-network ⇐⇒ X has a

countable cs∗-network.

(5) sn-first countable is called universally csf -countable in [20].

The following lemma is obtained by combining [19, Theorem 2.8.6] and

[22, Corollary 5.1.13].

Lemma 2.9. The following are equivalent for a space X.
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(1) X has a locally countable cs-network.

(2) X has a locally countable cs∗-network.

(3) X has a locally countable k-network.

Now we give some set-theoretical axioms.

Set-Theoretical Axioms 2.10.

(1) CH (Continuum Hypothesis): 2ω = ω1.

(2) MA (Martin’s Axiom): Let k be a cardinal.

(i) A space X is called k+-Baire if for each family {Gα : α ∈ A}

consisting of open dense subsets of X,
⋂
{Gα : α ∈ A} 6= ∅, where

|A| < k+.

(ii) A space X is called ccc if each disjoint family consisting of open

subsets of X is countable.

(iii) MA(k): Each compact, ccc space is k+-Baire.

(iv) MA: For each k, MA(k) holds, where ω < k < 2ω.

(3) TOP (Thinning-out Principle): Let (P,≤) be a partial ordered set.

(i) Q ⊂ P is called centered if whenever finite q1, q2, . . . , qn ∈ Q, there

is p ∈ P such that p ≤ qi for all i = 1, 2, . . . , n.

(ii) A family {Bα : α < ω1} is called cofinally centered on a set A if for

each uncountable C ⊂ A there is an α < ω1, such that {Bβ

⋂
C : β ≥ α}

is centered.

(iii) TOP : If Z, B are uncountable subsets of ω1 and {Sα : α ∈ B}

is a family cofinally centered on Z with each Sα ⊂ α, then there is an

uncountable Y ⊂ Z such that (Y
⋂

α) − Sα is finite for all α ∈ B.

Recall a space is an S-space if it is hereditarily separable and not

hereditarily Lindelöf.

Lemma 2.11. [28, Theorem 7.2.3]. Under MA + ¬CH + TOP , there

are no S-spaces.

Theorem 2.12. Under MA+¬CH +TOP , the following are equivalent

for a space X.

(1) X has a locally countable sn-network.

(2) X is an sn-first countable space with a locally countable cs-network

(respectively k-network, cs∗-network).

(3) X is a locally sn-second countable space with a σ-locally countable

sn-network

(4) X is a locally ℵ0-space with a σ-locally countable sn-network.

(5) X is a locally hereditarily separable space with a σ-locally countable

sn-network.
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(6) X is a locally (hereditarily) Lindelöf space with a σ-locally count-

able sn-network.

Proof. (1) =⇒ (2). Note that a space with a locally countable sn-network

is sn-first countable. So (1) =⇒ (2) by Remark 2.5(1) and Lemma 2.9.

(2) =⇒ (1). By Lemma 2.9, let P be a locally countable cs-network of

X. We can assume that P is closed under finite intersections. For each

x ∈ X, let {Bn(x) : n ∈ N} be a countable sn-network at x in X, and let

Px = {P ∈ P : Bn(x) ⊂ P for some n ∈ N}. Then each element of Px is

a sequential neighborhood of X. Put P ′ =
⋃
{Px : x ∈ X}, then P ′ ⊂ P

is locally countable. It suffices to prove that Px is a network at x in X

for each x ∈ X. If not, there is an open neighborhood U of x such that

P 6⊂ U for each P ∈ Px. Let {P ∈ P : x ∈ P ⊂ U} = {Pm(x) : m ∈ N}.
Then Bn(x) 6⊂ Pm(x) for each n, m ∈ N. Choose xn,m ∈ Bn(x) − Pm(x).

For n ≥ m, let xn,m = yk, where k = m + n(n − 1)/2. Then the

sequence {yk : k ∈ N} converges to x. Thus , there is m, i ∈ N such that

{yk : k ≥ i}
⋃
{x} ⊂ Pm(x) ⊂ U . Take j ≥ i with yj = xn,m for some

n ≥ m. Then xn,m ∈ Pm(x). This is a contradiction.

(1) =⇒ (3). Let P be a locally countable sn-network of X. For each

x ∈ X, there is an open neighborhood U of x such that PU = {P
⋂

U :

P ∈ P} is countable. It is easy to prove that PU is a countable sn-

network of subspace U . So U is an sn-second countable space. Thus X

is a locally sn-second countable space.

(3) =⇒ (4) =⇒ (5). It is known that sn-second countable =⇒ ℵ0 =⇒

hereditarily separable. So (3) =⇒ (4) =⇒ (5).

(5) =⇒ (6). It suffices to prove that X is locally hereditarily Lindelöf.

Let x ∈ X and U be a hereditarily separable neighborhood of x. By

Lemma 2.11, U is hereditarily Lindelöf. So X is locally hereditarily

Lindelöf.

(6) =⇒ (1). Let P =
⋃
{Pn : n ∈ N} be a σ-locally countable sn-

network of a Locally Lindelöf space X, where each Pn is locally countable

in X. Let x ∈ X and let U be a Lindelöf neighborhood of x. Let

n ∈ N. For each y ∈ U , there is an open neighborhood Uy of y such that

Uy intersects at most countable many elements of Pn. The open cover

{Uy : y ∈ U} of U has countable subcover V. Put V =
⋃

V, then U ⊂ V

and V intersects at most countable many elements of Pn. So U intersects

at most countable many elements of Pn. Moreover, U intersects at most

countable many elements of P. Thus P is a locally countable sn-network

of X. �
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Remark 2.13. In Theorem 2.12, (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (6)

without requiring MA + ¬CH + TOP involved. The reasons are as

follows.

(a) MA + ¬CH + TOP are used only in the proof of (5) =⇒ (6).

(b) Because each ℵ0-space is hereditarily Lindelöf , (4) =⇒ (6) without

requiring MA + ¬CH + TOP involved.

It is natural to ask whether “MA + ¬CH + TOP” in Theorem 2.12

can be omitted. The following Theorem 2.16 shows that the answer is

“yes” if X is a k-space.

Lemma 2.14. [14, 22]. The following hold for a space X.

(1) If X is a compact space with a point countable k-network, then X

is metrizable.

(2) If X is a k-space with a point countable k-network, then X is

sequential.

(3) If X has a point countable cs∗-network and each compact subset of

X is metrizable, then X has a point countable k-network.

Lemma 2.15. If X is a k-space with a σ-locally countable cs∗-network,

then X is sequential.

Proof. Let P be a σ-locally countable cs∗-network of X. Whenever K is a

compact subset of X, put PK = {P
⋂

K : P ∈ P}, then PK is a σ-locally

countable cs∗-network of K. It is easy to see that PK is a countable cs∗-

network of K, and so K has a countable k-network by Remark 2.8(4). By

Lemma 2.14(1), K is metrizable. So X has a point-countable k-network

by Remark 2.14(3), thus X is sequential by Remark 2.14(2). �

Theorem 2.16. The following are equivalent for a k-space X.

(1) X has a locally countable sn-network.

(2) X is a topological sum of sn-second countable spaces.

(3) X is an sn-metrizable, locally (hereditarily) separable space.

(4) X is a locally (hereditarily) separable space with a σ-locally count-

able sn-network.

Proof. (1) =⇒ (2). X is a k-space with a locally countable cs-network,

so X is a topological sum of ℵ0-spaces([17, Theorem 1]). It is easy to

see that sn-first countability is hereditary to subspace. Note that each

sn-first countable, ℵ0-space is sn-second countable([13, Theorem 2.1]).

So X is a topological sum of sn-second countable spaces.

(2) =⇒ (3). Let X = ⊕{Xα : α ∈ Λ}, where each Xα is sn-second

countable. Note that each Xα is a (hereditarily) separable, open subspace
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of X, So X is locally (hereditarily) separable. For each α ∈ Λ, let {Pα,n :

n ∈ N} be a countable sn-network of Xα. Put Pn = {Pα,n : α ∈ Λ} for

each n ∈ N, and put P =
⋃
{Pn : n ∈ N}, then P is a σ-locally finite

sn-network of X. So X is an sn-metrizable space.

(3) =⇒ (4). It is clear.

(4) =⇒ (1). By Remark 2.13, it suffices to prove that X is locally

Lindelöf. Let P be a σ-locally countable sn-network of X. X is a se-

quential space by Lemma 2.15, so P is a σ-locally countable k-network

of X([30, Corollary 1.5]). Recalled a space is meta-Lindelöf if each open

cover of it has a point countable open refinement. Thus X is hereditar-

ily meta-Lindelöf([17, Proposition 1]). Each hereditarily meta-Lindelöf,

locally separable space is locally Lindelöf([14, Proposition 8.7]), so X is

locally Lindelöf. �

C. Liu and M. Dai proved that a space X has a locally countable weak-

base if and only if it is a topological sum of g-second countable spaces

[24, Theorem 2.1]. Combining Remark 2.8(3), we have the following

corollary.

Corollary 2.17. A space X is a k-space with a locally countable sn-

network if and only if X has a locally countable weak-base.

The following examples to shows that “k” in Theorem 2.16 can not be

omitted.

Example 2.18. There is a space with a locally countable sn-network,

which is not a topological sum of ℵ0-spaces.

Proof. Let D is a discrete space, where |D| = 2ω. By [3, Example 4.2],

there is an almost disjoint family {Pα : α < 2ω} consisting of countable

infinite subsets of D such that for each uncountable subset P of D, there

is α < 2ω such that Pα ⊂ P . Let {Pα,n : n ∈ N} be a mutually disjoint

family consisting of infinite subsets of Pα. For each α < 2ω and each

n ∈ N, choose pα,n ∈ Pα,n − Pα,n, where Pα,n is the closure of Pα,n in the

Stone-C̆ech compactification βD of D. Put X = D
⋃
{pα,n : α < 2ω, n ∈

N}, and X is endowed the subspace topology of βD.

Claim 1. X has a σ-locally countable sn-network.

By [22, Example 5.1.18(1)], X has a σ-locally countable cs-network P.

Note that each compact subset of X is finite [22, Example 1.5.5], so each

convergent sequence of X is finite. Thus we can assume that P is closed

under finite intersections. It is easy to see that P is an sn-network of X.

So X has a σ-locally countable sn-network.
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Claim 2. X is not a topological sum of ℵ0-spaces [22, Example 5.1.18(1)].

�

Example 2.19. There is a space with a locally countable sn-network,

which is not an ℵ-spaces.

Proof. Let X = ω1

⋃
(ω1 × {1/n : n ∈ N}). Define a neighborhood base

Bx for each x ∈ X for the desired topology on X as follows.

(1) If x ∈ X − ω1, then Bx = {{x}}.

(2) If x ∈ ω1, then Bx = {{x}
⋃

(
⋃
{V (n, x) × {1/n} : n ≥ m}) : m ∈

N and V (n, x) is a neighborhood of x in ω1 with the order topology}.

By [17, Example 1], X has a locally countable k-network, which is not

an ℵ-space. It suffices to prove that X is sn-first countable by Remark

2.13.

Let x ∈ X. If x ∈ X−ω1, then {{x}} is a countable sn-network at x in

X. If x ∈ ω1, put Px = {Px,m : m ∈ N}, where Px,m = {x}
⋃
{(x, 1/n) :

n ≥ m}. Then Px is a countable network at x in X. We only need to

prove that each Px,m is a sequential neighborhood of x.

Let {xn} be a sequence converging to x. Put K = {x}
⋃
{xn : n ∈ N},

then K is a compact subset of X. By [17, Example 1], we have the

following facts.

Fact 1. K
⋂

ω1 is finite.

Fact 2. K −
⋃
{{y}

⋃
{(y, 1/n) : n ∈ N} : y ∈ K

⋂
ω1} is finite.

Case 1. If there is y ∈ K
⋂

ω1 such that y = xn for infinite many

n ∈ N, i.e., there is a subsequence {xnk
} of {xn} such that y = xnk

for

each k ∈ N, then y = x, So {xn} is frequently in Px,m.

Case 2. If Case 1 does not hold, without loss of the generalization, we

may assume K
⋂

ω1 = {x} by Fact 1. By Fact 2, K − {x}
⋃
{(x, 1/n) :

n ∈ N} is finite. If there is y ∈ K − {x}
⋃
{(x, 1/n) : n ∈ N} such that

y = xn for infinite many n ∈ N, then {xn} is frequently in Px,m by a

similar way in the proof of Case 1. Conversely, there is k0 ∈ N such that

{x}
⋃
{xn : n ≥ k0} ⊂ {x}

⋃
{(x, 1/n) : n ∈ N}. So {xn} is eventually in

Px,m.

By the above Case 1 and Case 2, Px,m is a sequential neighborhood of

x by Remark 2.2(1). �

Recalled a space X is sequentially separable [6] if X has a countable

subset D such that for each x ∈ X, there is a sequence {xn} in D

converging to x, where D is a sequentially dense subset of X. It is know

that each sequentially separable space is separable.
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Proposition 2.20. Let X have a point countable sn-network P. If X is

sequentially separable, then P is countable. So X is sn-second countable.

Proof. Let D be a sequentially dense subset of X, and let P = {Px :

x ∈ X}, where Px is an sn-network at x in X for each x ∈ X. For

each x ∈ D, (P)x is countable because P is point countable, where

(P)x = {P ∈ P : x ∈ P}. Furthermore,
⋃
{(P)x : x ∈ D} is countable.

For each x ∈ X and P ∈ Px, there is a sequence S in D converging to

x. Note that P is a sequential neighborhood of x. S is eventually in P ,

and so P
⋂

D 6= ∅. This proves that each element of P intersects with

D, thus P =
⋃
{(P)x : x ∈ D}. So P is countable. �

Corollary 2.21. Let X have a σ-locally countable (or point countable)

sn-network P. If X is locally sequentially separable, then P is locally

countable in X. So X has a locally countable sn-network.

Proof. Since σ-locally countable =⇒ point countable, we only need to

prove parenthetic part.

Let X be locally sequentially separable. For each x ∈ X, there is

an open neighborhood U of x such that U is sequentially separable. It

is clear that {P
⋂

U : P ∈ P} is a point countable sn-network of U .

{P
⋂

U : P ∈ P} is countable by Proposition 2.20, So P is locally

countable in X. �

The following example shows that “sequentially separable” in Propo-

sition 2.20 can not be relaxed to “separable”, which is due to [16, Exam-

ple 1].

Example 2.22. There is a separable, sn-metrizable space, which is not an

ℵ0-spaces.

Proof. Let Q ⊂ X ⊂ R and |X| > ω, where Q and R are the set of

all rational numbers and the set of all real numbers respectively. Let

Y = X
⋃

(
⋃
{Q × {1/n} : n ∈ N}). Define a neighborhood base By for

each y ∈ Y for the desired topology on Y as follows.

(1) If y ∈ Y − X, then By = {{y}}.

(2) If y ∈ X, then By = {{y}
⋃

(
⋃
{([ay,n, y)

⋂
Q)×{1/m} : n ≥ m}) :

m ∈ N and y > ay,n ∈ R}.

Then Y is a separable, ℵ-space and not an ℵ0-space [16, Example 1].

On the other hand, each compact subset of Y is finite [16, Example 1].

By a similar way as in the proof of Example 2.18(claim 1), we can prove

Y has a σ-locally finite sn-network. That is, Y is an sn-metrizable

space. �
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3. Mappings on Spaces with a Locally Countable

sn-Network

In this section, we discuss invariance and inverse invariance of spaces

with a locally countable sn-network under certain mappings

Definition 3.1. Let f : X −→ Y be a mapping.

(1) f is called a perfect mapping [7] if f is closed and f−1(y) is a

compact subset of X for each y ∈ Y .

(2) f is called a Lindelöf mapping [31] (respectively strongly Lindelöf

mapping [31]) if for each y ∈ Y , f−1(y) is a Lindelöf subset of X (re-

spectively f−1(U) is a Lindelöf subset of X for some neighborhood U of

y in Y ).

(3) f is called a 1-sequence-covering mapping [23] if for each y ∈ Y

there is x ∈ f−1(y), such that whenever {yn} is a sequence converging

to y in Y , there is a sequence {xn} converging to x in X with each

xn ∈ f−1(yn).

(4) f is called a finite subsequence-covering mapping [25] if for each

y ∈ Y there is a finite subset F of f−1(y), such that for any sequence

S in Y converging to y, there is a sequence L in X converging to some

x ∈ F and f(L) is a subsequence of S.

(5) f is a sequentially-quotient mapping [4] if whenever S is a conver-

gent sequence in Y there is a convergent sequence L in X such that f(L)

is a subsequence of S.

(6) f is a quotient mapping [7] if whenever U ⊂ Y , f−1(U) is open in

X if and only if U is open Y .

We call a space X to be point-Gδ if for each x ∈ X, there is a sequence

{Un} of neighborhoods of x in X such that {x} =
⋂
{Un : n ∈ N}. It is

known that if a space X has a locally countable cs-network, then X is

point-Gδ [26, (D)].

Remark 3.2. [19]. (1) 1-sequence-covering mappings (sequentially-quotient

and finite-to-one mappings, respectively) =⇒ finite subsequence-covering

mappings =⇒ sequentially-quotient mappings.

(2) Closed mappings =⇒ quotient mappings.

(3) If the domain is point-Gδ, then closed mappings =⇒ sequentially-

quotient mappings

(4) If the domain is sequential, then quotient mappings =⇒ sequen-

tially-quotient mappings.

(5) Quotient mappings preserve k-spaces and perfect mappings in-

versely preserve k-spaces.
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Definition 3.3. [20]. Let X be a space. Put

σ = {P ⊂ X : P is sequentially open in X}.

The (X, σ), the set X with the topology σ, is called the sequential core-

flection of X, which is denoted by σX.

Definition 3.4. [2]. Let T0 = {an : n ∈ N} be a sequence converging to

x0 6∈ T0, and let Tn be a sequence converging to an 6∈ Tn for each n ∈ N.

Let T be the topological sum of {Tn

⋃
{an} : n ∈ N}. Sω is defined as

a quotient space obtained from T by identifying all point an ∈ T to the

point x0.

The following lemma is obtained by combining [20, Theorem 3.6] and

[20, Theorem 3.13].

Lemma 3.5. [20]. Let X be a point-Gδ space and contain no closed sub-

space having Sω as its sequential coreflection. If X has a point-countable

cs-network, then X is sn-first countable.

Lemma 3.6. [21]. Let f : X −→ Y be a perfect mapping and X have a

Gδ-diagonal. If Y has a locally countable k-network, then X has a locally

countable k-network.

Lemma 3.7. [11]. Let f : X −→ Y be a closed mapping and X be point-

Gδ. If F is sequentially closed in X, then f(F ) is sequentially closed in

Y .

Theorem 3.8. Let f : X −→ Y be a perfect mapping and X have a Gδ-

diagonal. If Y has a locally countable sn-network, then X has a locally

countable sn-network.

Proof. If Y has a locally countable sn-network, then X has a locally

countable cs-network by Remark 2.5(1), Lemma 2.9 and Lemma 3.6. We

only need to prove that X is sn-first countable by Remark 2.13. Since X

has a Gδ-diagonal, X is point-Gδ. By Lemma 3.5, It suffices to prove that

X contains no closed subspace having Sω as its sequential coreflection.

Assume X contains closed subspace S having Sω as its sequential core-

flection. Put g = f |σs : σS −→ σf(S).

Claim 1. g is closed.

Proof. Let A be a closed subset of σS, then A is sequentially closed in

S. It is clear that f : S −→ f(S) is closed and S is point-Gδ. So f(A) is

sequentially closed in f(S) by Lemma 3.7, thus f(A) is closed in σf(S).

Claim 2. g−1(y) is compact in σS for each y ∈ σf(S).
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Proof. Let y ∈ σf(S). Note that X has a Gδ-diagonal and f−1(y)

is compact in X, so f−1(y) is metrizable [5]. Therefore, the topology

on the sequential coreflection of f−1(y)
⋂

S is equivalent to the induced

topology of subspace S of X. Thus g−1(y) = f−1(y)
⋂

S is compact in

σS.

By the above two claims, g is perfect. Since Sω, which is homeomorphic

to σS, is a Fréchet, ℵ-space and perfect mappings preserve Fréchet, ℵ-

spaces, σf(S) is a Fréchet, ℵ-space. On the other hand, Y is sn-first

countable, so f(S), as a subspace of Y , is sn-first countable. By [20,

Theorem 3.13], σf(S) is g-first countable, so σf(S) is metrizable [11,

Theorem 2.4], and so σS is metrizable [5]. This contradicts that Sω is

not metrizable. �

We have the following corollary by Corollary 2.17, Remark 3.2(5) and

Theorem 3.8.

Corollary 3.9. Let f : X −→ Y be a perfect mapping and X have a

Gδ-diagonal. If Y has a locally countable weak-base, then X has a locally

countable weak-base.

Example 3.10. A perfect image of a g-second countable space has not

any locally countable sn-network.

Proof. Let X = {0}
⋃

N
⋃

(N × N), F = {F ⊂ N : F is finite},

NN = {f : f is a correspondence from N to N}. For n, m, k ∈ N, F ∈

F , and f ∈ NN, put V (n, m) = {n}
⋃
{(n, k) : k ≥ m}, H(F, f) =

⋃
{V (n, f(n)) : n ∈ N − F}. Define a neighborhood base Bx for each

x ∈ X for the desired topology on X as follows.

(1) If x ∈ N × N, then Bx = {{x}}.

(2) If x ∈ N, then Bx = {V (x, m) : m ∈ N}.
(3) If x = 0, then Bx = {{x}

⋃
H(F, f) : F ∈ F , f ∈ NN}.

Let Y be the quotient space obtained from X by shrinking the set

{0}
⋃

N to a point, f : X −→ Y be a natural mapping. Then

Claim 1. f is perfect and X is g-second countable [18, Example 3.1].

Claim 2. Y is not sn-first countable [11, Example 3.2], so Y has not

any locally countable sn-network. �

Which mappings preserve spaces with a locally countable sn-network?

We give some answers for this question.

Lemma 3.11. Let f : X −→ Y be a finite subsequence-covering map-

ping. If X is sn-first countable, then Y is sn-first countable.
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Proof. Let y ∈ Y . Then there is a finite subset F of f−1(y), such that

for any sequence S in Y converging to y, there is a sequence L in X

converging to some x ∈ F and f(L) is a subsequence of S. X is sn-first

countable, for each x ∈ F , let Px = {Px,n : n ∈ N} be a decreasing

sn-network at x in X. Put Fy = {
⋃
{f(Px,n) : x ∈ F} : n ∈ N}. Then

Fy is countable decreasing.

(1) Fy is a network at y in Y . In fact, let U be an open neighborhood of

y, then F ⊂ f−1(y) ⊂ f−1(U). For each x ∈ F , there is nx ∈ N such that

x ∈ Px,nx
⊂ f−1(U), so y ∈ f(Px,nx

) ⊂ U . Put n0 = max{nx : x ∈ F},

then Px,n0
⊂ Px,nx

for each x ∈ F . So y ∈
⋃
{f(Px,n0

) : x ∈ F} ⊂
⋃
{f(Px,nx

) : x ∈ F} ⊂ U .

(2) Let
⋃
{f(Px,n1

) : x ∈ F},
⋃
{f(Px,n2

) : x ∈ F} ∈ Fy. Put n0 =

max{n1, n2}, then
⋃
{f(Px,n0

) : x ∈ F} ∈ Fy and
⋃
{f(Px,n0

) : x ∈ F} ⊂

(
⋃
{f(Px,n1

) : x ∈ F})
⋂

(
⋃
{f(Px,n2

) : x ∈ F}).

(3)
⋃
{f(Px,n) : x ∈ F} is a sequential neighborhood of y for each

n ∈ N. In fact, let S be a sequence in Y converging to y. Then there is

a sequence L in X converging to some x0 ∈ F and f(L) is a subsequence

of S. For each n ∈ N. Since Px0,n is a sequential neighborhood of x,

L is eventually in Px0,n. So f(L) is eventually in f(Px0,n), hence S is

frequently in f(Px0,n). Moreover, S is frequently in
⋃
{f(Px,n) : x ∈ F}.

By Remark 2.2(1),
⋃
{f(Px,n) : x ∈ F} is a sequential neighborhood of

y. �

Lemma 3.12. Let f : X −→ Y be a closed, Lindelöf mapping. If P is a

locally countable family of subsets of X, then f(P) is a locally countable

family of subsets of Y .

Proof. Let P = {Pα : α ∈ Λ} be a locally countable family of subsets of

X and let y ∈ Y . For each x ∈ f−1(y), there is an open neighborhood

Ux of x such that {α ∈ Λ : Ux

⋂
Pα 6= ∅} is countable. f−1(y) ⊂

⋃
{Ux :

x ∈ f−1(y)} and f−1(y) is Lindelöf, so there is a countable subset B of

f−1(y) such that f−1(y) ⊂
⋃
{Ux : x ∈ B}. Put U =

⋃
{Ux : x ∈ B}.

It is clear that {α ∈ Λ : U
⋂

Pα 6= ∅} is countable. Note that f is

closed. By [7, Theorem 1.4.13], there is an open neighborhood V of y

such that f−1(V ) ⊂ U . Thus Λ′ = {α ∈ Λ : f−1(V )
⋂

Pα 6= ∅} is

countable. It is easy to check that {α ∈ Λ : V
⋂

f(Pα) 6= ∅} = Λ′. So

{α ∈ Λ : V
⋂

f(Pα) 6= ∅} is countable. This proves that f(P) is a locally

countable family of subsets of Y . �

Theorem 3.13. Let f : X −→ Y be a closed, finite-to-one mapping.

If X has a locally countable sn-network, then Y has a locally countable

sn-network.
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Proof. Let P be a locally countable sn-network of X. Then f is se-

quentially quotient by Remark 3.2(3), and so Y is sn-first countable by

Remark 3.2(1) and Lemma 3.11. Since sequentially quotient mappings

preserve cs∗-networks [19, Proposition 2.7.3], f(P) is a cs∗-network of Y .

f(P) is locally countable by Lemma 3.12, so f(P) is a locally countable

cs∗-network of Y . Thus Y has a locally countable sn-network by Remark

2.13. �

Question 3.14. Do closed, countable-to-one mappings preserve spaces

with a locally countable sn-network?

A clopen mapping means an open and closed mapping.

Theorem 3.15. Let f : X −→ Y be a clopen, Lindelöf mapping. If

X has a locally countable sn-network, then Y has a locally countable

sn-network.

Proof. Let P =
⋃
{Px : x ∈ X} be a locally countable sn-network of X.

Since f is closed, Lindelöf, by a similar way as in the proof of Theorem

3.13, f(P) is a locally countable cs∗-network of Y . It suffices to prove

that Y is sn-first countable by Remark 2.13. Let y ∈ Y . Put Fy =

{f(P ) : P ∈ Px and x ∈ f−1(y)}, then Fy ⊂ f(P), so Fy is locally

countable. Note that y ∈
⋂

Fy, Fy is countable. It is clear that Fy is a

network at y in Y . We only need to prove that each element of Fy is a

sequential neighborhood of y. Let f(P ) ∈ Fy and {yk} be a sequence in

Y converging to y. Then there is x ∈ f−1(y) such that P ∈ Px. Since

X is point-Gδ, {x} =
⋂
{Un : n ∈ N}, where each Un is open in X and

Un+1 ⊂ Un. For each n ∈ N, y ∈ f(Un) and f(Un) is open as f is open,

so there is mn ∈ N such that yk ∈ f(Un) for each k ≥ mn. Pick xn ∈ Un

such that f(xn) = ymn
. Since f is closed, it is not difficult to prove that

the sequence {xn} converges to x ∈ P . P is a sequential neighborhood

of x, so {xn} is eventually in P . Consequently, {f(xn)} is eventually

in f(P ), so {yk} is frequently in f(P ). By Remark 2.2(1), f(P ) is a

sequential neighborhood of y. �

Corollary 3.16. Let f : X −→ Y be an open, perfect mapping. If X has

a locally countable sn-network, then Y has a locally countable sn-network.

Clopen mappings preserve spaces with a locally countable weak-base

[24, Theorem 4.7]. But the following question is still open.

Question 3.17. Do clopen mappings preserve spaces with a locally

countable sn-network (respectively cs-network)?
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Lemma 3.18. Let f : X −→ Y be a strongly Lindelöf mapping. If P is

a locally countable family of subsets of X, then f(P) is a locally countable

family of subsets of Y .

Proof. Let P = {Pα : α ∈ Λ} be a locally countable family of subsets

of X and let y ∈ Y . Then there is a neighborhood W of y in Y such

that f−1(W ) is a Lindelöf subset of X. It suffices to prove that {α ∈ Λ :

W
⋂

f(Pα) 6= ∅} is countable. For each x ∈ f−1(W ), there is an open

neighborhood Ux of x such that {α ∈ Λ : Ux

⋂
Pα 6= ∅} is countable.

f−1(W ) ⊂
⋃
{Ux : x ∈ f−1(W )} and f−1(W ) is Lindelöf, so there is a

countable subset B of f−1(W ) such that f−1(W ) ⊂
⋃
{Ux : x ∈ B}. It

is easy to see that {α ∈ Λ : (
⋃
{Ux : x ∈ B})

⋂
Pα 6= ∅} is countable, so

Λ′ = {α ∈ Λ : f−1(W )
⋂

Pα 6= ∅} is countable. It is easy to check that

{α ∈ Λ : W
⋂

f(Pα) 6= ∅} = Λ′. This completes the proof. �

Theorem 3.19. Let X have a locally countable sn-network. If one of

the following holds, then Y has a locally countable sn-network.

(1) f is finite subsequence-covering, strongly Lindelöf .

(2) f is 1-sequence-covering, strongly Lindelöf .

(3) f is sequentially-quotient, finite-to-one, strongly Lindelöf .

Proof. We only need to prove part (1) by Remark 3.2(1). Let f : X −→ Y

be a finite subsequence-covering, strongly Lindelöf mapping and P be

a locally countable sn-network of X. Then Y is sn-first countable by

lemma 3.11 and f(P) is a locally countable family of subsets of Y by

Lemma 3.18. By a similar way as in the proof of Theorem 3.13, we

can prove f(P) is a cs∗-network of Y . So Y has a locally countable

sn-network by Remark 2.13. �

The following corollary is obtained by Remark 3.2, Corollary 2.17,

Theorem 3.13 and Theorem 3.19.

Corollary 3.20. Let X have a locally countable weak-base. If one of the

following holds, then Y has a locally countable weak-base.

(1) f is closed, finite-to-one.

(2) f is finite subsequence-covering, quotient, strongly Lindelöf .

(3) f is 1-sequence-covering, quotient, strongly Lindelöf .

(4) f is quotient, finite-to-one, strongly Lindelöf .
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