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Abstract. In the present paper, the authors introduce two new

subclasses S
(k)
sc (λ, α) of close-to-convex functions and C

(k)
sc (λ, α) of quasi-

convex functions with respect to 2k-symmetric conjugate points. The

integral representations and convolution conditions for these classes are

provided. Some coefficient inequalities for functions belonging to these

classes and their subclasses with negative coefficients are also provided.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +

∞
∑

n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Let S,

S∗, K, C and C∗ denote the familiar subclasses of A consisting of functions

which are univalent, starlike, convex, close-to-convex and quasi-convex

in U , respectively (see, for details, [2, 3, 4, 5]).

Al-Amiri, Coman and Mocanu [1] once introduced and investigated a

class of functions starlike with respect to 2k-symmetric conjugate points,
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which satisfy the following inequality

ℜ

{

zf ′(z)

f2k(z)

}

> 0 (z ∈ U),

where k ≥ 2 is a fixed positive integer and f2k(z) is defined by the

following equality

f2k(z) =
1

2k

k−1
∑

ν=0

[

ε−νf(ενz) + ενf(ενz)
]

(ε = exp(2πi/k); z ∈ U).

(1.2)

In the present paper, we introduce the following two classes of ana-

lytic functions with respect to 2k-symmetric conjugate points, and obtain

some interesting results.

Definition 1. Let S
(k)
sc (λ, α) denote the class of functions in A satis-

fying the following inequality

ℜ

{

zf ′(z) + λz2f ′′(z)

(1 − λ)f2k(z) + λzf ′
2k(z)

}

> α (z ∈ U), (1.3)

where 0 ≤ λ ≤ 1, 0 ≤ α < 1 and f2k(z) is defined by equality (1.2).

And a function f(z) ∈ A is in the class C
(k)
sc (λ, α) if and only if zf ′(z) ∈

S
(k)
sc (λ, α).

In our proposed investigation of the classes S
(k)
sc (λ, α) and C

(k)
sc (λ, α),

we shall also make use of the following lemmas.

Lemma 1. Let γ ≥ 0 and f ∈ C, then

F (z) =
1 + γ

zγ

∫ z

0

f(t)tγ−1dt ∈ C.

This lemma is a special case of Theorem 4 in [6].

Lemma 2 [3]. Let 0 < λ ≤ 1 and f ∈ C∗, then

F (z) =
1

λ
z1− 1

λ

∫ z

0

f(t)t
1

λ
−2dt ∈ C∗ ⊂ C.

Lemma 3. Let 0 ≤ λ ≤ 1 and 0 ≤ α < 1, then we have S
(k)
sc (λ, α) ⊂

C ⊂ S.

Proof. Let F (z) = (1 − λ)f(z) + λzf ′(z), F2k(z) = (1 − λ)f2k(z) +

λzf ′
2k(z) with f(z) ∈ S

(k)
sc (λ, α), substituting z by εµz (µ = 0, 1, 2, . . . , k−

1) in (1.1), we get

ℜ

{

εµzf ′(εµz) + λ(εµz)2f ′′(εµz)

(1 − λ)f2k(εµz) + λεµzf ′
2k(ε

µz)

}

> α. (1.4)
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From inequality (1.4), we have

ℜ

{

εµz f ′(εµz) + λ(εµz)2 f ′′(εµz)

(1 − λ)f2k(εµz) + λεµz f ′
2k(ε

µz)

}

> α. (1.5)

Note that f2k(ε
µz) = εµf2k(z), f ′

2k(ε
µz) = f ′

2k(z), f2k(εµz) = ε−µf2k(z)

and f ′
2k(ε

µz) = f ′
2k(z), thus, inequalities (1.4) and (1.5) can be written

as

ℜ

{

zf ′(εµz) + λz2εµf ′′(εµz)

(1 − λ)f2k(z) + λzf ′
2k(z)

}

> α, (1.6)

and

ℜ

{

zf ′(εµz) + λz2ε−µf ′′(εµz)

(1 − λ)f2k(z) + λzf ′
2k(z)

}

> α. (1.7)

Summing inequalities (1.6) and (1.7), we can obtain

ℜ







z
[

f ′(εµz) + f ′(εµz)
]

+ λz2
[

εµf ′′(εµz) + ε−µf ′′(εµz)
]

(1 − λ)f2k(z) + λzf ′
2k(z)







> 2α.

(1.8)

Let µ = 0, 1, 2, . . . , k − 1 in (1.8), respectively, and summing them we

can get

ℜ







z 1
2k

∑k−1
µ=0

[

f ′(εµz) + f ′(εµz)
]

+ λz2 1
2k

∑k−1
µ=0

[

εµf ′′(εµz) + ε−µf ′′(εµz)
]

(1 − λ)f2k(z) + λzf ′
2k(z)







> α,

or equivalently,

ℜ

{

zf ′
2k(z) + λz2f ′′

2k(z)

(1 − λ)f2k(z) + λzf ′
2k(z)

}

= ℜ

{

zF ′
2k(z)

F2k(z)

}

> α,

that is F2k(z) ∈ S∗(α), which is the class of starlike functions of order α in

U . Note that S∗(0) = S∗, this implies that F (z) = (1−λ)f(z)+λzf ′(z) ∈

C. We now split it into two cases to prove.

Case 1. When λ = 0. It is obvious that f(z) = F (z) ∈ C.

Case 2. When 0 < λ ≤ 1. From F (z) = (1 − λ)f(z) + λzf ′(z) and

0 < λ ≤ 1, we have

f(z) =
1

λ
z1− 1

λ

∫ z

0

F (t)t
1

λ
−2dt.

Since γ = 1
λ
− 1 ≥ 0, by Lemma 1, we obtain that f(z) ∈ C. Hence

S
(k)
sc (λ, α) ⊂ C ⊂ S, and the proof is complete.

By means of Lemma 2, using the similar method as in Lemma 3, we

may prove the following Lemma.
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Lemma 4. Let 0 ≤ λ ≤ 1 and 0 ≤ α < 1, then we have C
(k)
sc (λ, α) ⊂

C∗ ⊂ C.

In the present paper, we shall provide the integral representations and

convolution conditions for the classes S
(k)
sc (λ, α) and C

(k)
sc (λ, α), we shall

also provide some coefficient inequalities for functions belonging to these

classes and their subclasses with negative coefficients.

2. Integral Representations

We first give the integral representations of functions in the classes

S
(k)
sc (λ, α) and C

(k)
sc (λ, α).

Theorem 1. Let f(z) ∈ S
(k)
sc (λ, α) with 0 < λ ≤ 1, then we have

f2k(z) =
1

λ
z1− 1

λ

∫ z

0

exp

{

1

2k

k−1
∑

µ=0

∫ u

0

2(1 − α)

ζ

[

ω(εµζ)

1 − ω(εµζ)
+

ω(εµζ)

1 − ω(εµζ)

]

dζ

}

u
1

λ
−1du, (2.1)

where f2k(z) is defined by equality (1.2), ω(z) is analytic in U and ω(0) =

0, |ω(z)| < 1.

Proof. Suppose that f(z) ∈ S
(k)
sc (λ, α), we know that the condition

(1.3) can be written as

zf ′(z) + λz2f ′′(z)

(1 − λ)f2k(z) + λzf ′
2k(z)

≺
1 + (1 − 2α)z

1 − z
,

where “≺” stands for the usual subordination, it follows that

zf ′(z) + λz2f ′′(z)

(1 − λ)f2k(z) + λzf ′
2k(z)

=
1 + (1 − 2α)ω(z)

1 − ω(z)
, (2.2)

where ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1. By applying the

similar method as in Lemma 3 to equality (2.2), we can obtain

(1 − λ)zf ′
2k(z) + λz(zf ′

2k(z))′

(1 − λ)f2k(z) + λzf ′
2k(z)

=
1

2k

k−1
∑

µ=0

[

1 + (1 − 2α)ω(εµz)

1 − ω(εµz)
+

1 + (1 − 2α)ω(εµz)

1 − ω(εµz)

]

. (2.3)
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From equality (2.3), we get

(1 − λ)f ′
2k(z) + λ(zf ′

2k(z))′

(1 − λ)f2k(z) + λzf ′
2k(z)

−
1

z

=
1

2k

k−1
∑

µ=0





2(1 − α)ω(εµz)

z(1 − ω(εµz))
+

2(1 − α)ω(εµz)

z
(

1 − ω(εµz)
)



 . (2.4)

Integrating equality (2.4), we have

log

{

(1 − λ)f2k(z) + λzf ′
2k(z)

z

}

=
1

2k

k−1
∑

µ=0

∫ z

0





2(1 − α)ω(εµζ)

ζ(1 − ω(εµζ))
+

2(1 − α)ω(εµζ)

ζ
(

1 − ω(εµζ)
)



 dζ,

that is,

(1 − λ)f2k(z) + λzf ′
2k(z)

= z · exp

{

1

2k

k−1
∑

µ=0

∫ z

0

2(1 − α)

ζ

[

ω(εµζ)

1 − ω(εµζ)
+

ω(εµζ)

1 − ω(εµζ)

]

dζ

}

. (2.5)

From equality (2.5), we can get equality (2.1) easily. Hence the proof is

complete.

Theorem 2. Let f(z) ∈ S
(k)
sc (λ, α) with 0 < λ ≤ 1, then we have

f(z) =
1

λ
z1− 1

λ

∫ z

0

∫ u

0

exp

{

1

2k

k−1
∑

µ=0

∫ t

0

2(1 − α)

ζ

[

ω(εµζ)

1 − ω(εµζ)
+

ω(εµζ)

1 − ω(εµζ)

]

dζ

}

·
1 + (1 − 2α)ω(t)

1 − ω(t)
dtu

1

λ
−2du, (2.6)

where ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1.
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Proof. Suppose that f(z) ∈ S
(k)
sc (λ, α), from equalities (2.2) and (2.5),

we can get

(1 − λ)f ′(z) + λ(zf ′(z))′

=
(1 − λ)fk(z) + λzf ′

k(z)

z
·
1 + (1 − 2α)ω(z)

1 − ω(z)

= exp

{

1

2k

k−1
∑

µ=0

∫ z

0

2(1 − α)

ζ

[

ω(εµζ)

1 − ω(εµζ)
+

ω(εµζ)

1 − ω(εµζ)

]

dζ

}

·
1 + (1 − 2α)ω(z)

1 − ω(z)
.

Integrating this equality, we can get equality (2.6) easily. Hence the proof

is complete.

Similarly, for the class C
(k)
sc (λ, α), we have

Corollary 1. Let f(z) ∈ C
(k)
sc (λ, α) with 0 < λ ≤ 1, then we have

f2k(z) =
1

λ
z1− 1

λ

∫ z

0

∫ u

0

exp

{

1

2k

k−1
∑

µ=0

∫ ξ

0

2(1 − α)

ζ

[

ω(εµζ)

1 − ω(εµζ)
+

ω(εµζ)

1 − ω(εµζ)

]

dζ

}

dξu
1

λ
−2du,

where f2k(z) is defined by equality (1.2), ω(z) is analytic in U and ω(0) =

0, |ω(z)| < 1.

Corollary 2. Let f(z) ∈ C
(k)
sc (λ, α) with 0 < λ ≤ 1, then we have

f(z) =
1

λ
z1− 1

λ

∫ z

0

∫ u

0

1

ξ

∫ ξ

0

exp

{

1

2k

k−1
∑

µ=0

∫ t

0

2(1 − α)

ζ

[

ω(εµζ)

1 − ω(εµζ)
+

ω(εµζ)

1 − ω(εµζ)

]

dζ

}

·
1 + (1 − 2α)ω(t)

1 − ω(t)
dtdξu

1

λ
−2du,

where ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1.

3. Convolution Conditions

In this section, we give the convolution conditions for the classes

S
(k)
sc (λ, α) and C

(k)
sc (λ, α). Let f, g ∈ A, where f(z) is given by (1.1)
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and g(z) is defined by

g(z) = z +

∞
∑

n=2

bnzn,

then the Hadamard product (or convolution) f ∗ g is defined (as usual)

by

(f ∗ g)(z) = z +

∞
∑

n=2

anbnzn = (g ∗ f)(z).

Theorem 3. A function f(z) ∈ S
(k)
sc (λ, α) if and only if

1

z

{

f ∗

{

(1 − λ)

[

z

(1 − z)2
(1 − eiθ) −

1 + (1 − 2α)eiθ

2
h

]

+ λz

[

z

(1 − z)2
(1 − eiθ) −

1 + (1 − 2α)eiθ

2
h

]′
}

(z)

−
[

1 + (1 − 2α)eiθ
]

· f ∗

(

1 − λ

2
h +

λ

2
zh′

)

(z)

}

6= 0 (3.1)

for all z ∈ U and 0 ≤ θ < 2π, where h(z) is given by (3.6).

Proof. Suppose that f(z) ∈ S
(k)
sc (λ, α), since (1.3) is equivalent to

zf ′(z) + λz2f ′′(z)

(1 − λ)f2k(z) + λzf ′
2k(z)

6=
1 + (1 − 2α)eiθ

1 − eiθ
(3.2)

for all z ∈ U and 0 ≤ θ < 2π. And the condition (3.2) can be written as

1

z

{

[(1 − λ)zf ′(z) + λz(zf ′(z))′ ](1 − eiθ)

−[(1 − λ)f2k(z) + λzf ′
2k(z)][1 + (1 − 2α)eiθ]

}

6= 0. (3.3)

On the other hand, it is well known that

zf ′(z) = f(z) ∗
z

(1 − z)2
. (3.4)

And from the definition of f2k(z), we know

f2k(z) =
1

2

[

(f ∗ h)(z) + (f ∗ h)(z)
]

, (3.5)

where

h(z) =
1

k

k−1
∑

υ=0

z

1 − ευz
. (3.6)

Substituting (3.4) and (3.5) into (3.3), we can get (3.1) easily. This

completes the proof of Theorem 3.
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Similarly, for the class C
(k)
sc (λ, α), we have

Corollary 3. A function f(z) ∈ C
(k)
sc (λ, α) if and only if

1

z

{

f ∗

{

z

{

(1 − λ)

[

z

(1 − z)2
(1 − eiθ) −

1 + (1 − 2α)eiθ

2
h

]

+ λz

[

z

(1 − z)2
(1 − eiθ) −

1 + (1 − 2α)eiθ

2
h

]′
}′}

(z)

−
[

1 + (1 − 2α)eiθ
]

· f ∗

[

z

(

1 − λ

2
h +

λ

2
zh′

)′ ]

(z)

}

6= 0

for all z ∈ U and 0 ≤ θ < 2π, where h(z) is given by (3.6).

4. Coefficient Inequalities

In this section, we first provide the sufficient conditions for functions

belonging to the classes S
(k)
sc (λ, α) and C

(k)
sc (λ, α).

Theorem 4. Let 0 ≤ λ ≤ 1 and 0 ≤ α < 1. If

∞
∑

n=1

[(1−λ)+λ(nk+1)][|(nk + 1)ank+1 − ℜ(ank+1)|+(1−α) |ℜ(ank+1)|]

+
∞

∑

n=2

n 6=lk+1

n[(1 − λ) + λn] |an| ≤ 1 − α, (4.1)

then f(z) ∈ S
(k)
sc (λ, α).

Proof. It suffices to show that
∣

∣

∣

∣

zf ′(z) + λz2f ′′(z)

(1 − λ)f2k(z) + λzf ′
2k(z)

− 1

∣

∣

∣

∣

< 1 − α.

Note that for |z| = r < 1, we have

∣

∣

∣

∣

zf ′(z) + λz2f ′′(z)

(1 − λ)f2k(z) + λzf ′
2k(z)

− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∑∞
n=2[(1 − λ) + λn](nan −ℜ(an)cn)zn−1

1 +
∑∞

n=2[(1 − λ) + λn]ℜ(an)cnzn−1

∣

∣

∣

∣

≤

∑∞
n=2[(1 − λ) + λn] |nan −ℜ(an)cn| |z|

n−1

1 −
∑∞

n=2[(1 − λ) + λn]cn |ℜ(an)| |z|n−1

≤

∑∞

n=2[(1 − λ) + λn] |nan − ℜ(an)cn|

1 −
∑∞

n=2[(1 − λ) + λn]cn |ℜ(an)|
,
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where

cn =
1

k

k−1
∑

ν=0

ε(n−1)ν =







1, n = lk + 1,

0, n 6= lk + 1.

(4.2)

This last expression is bounded above by 1 − α if

∞
∑

n=2

[(1 − λ) + λn][|nan − ℜ(an)cn| + cn(1 − α) |ℜ(an)|] ≤ 1 − α. (4.3)

Since inequality (4.3) can be written as inequality (4.1), hence f(z) sat-

isfies the condition (1.3). This completes the proof of Theorem 4.

Similarly, for the class C
(k)
sc (λ, α), we have

Corollary 4. Let 0 ≤ λ ≤ 1 and 0 ≤ α < 1. If

∞
∑

n=1

(nk + 1)[(1 − λ) + λ(nk + 1)]

· [|(nk + 1)ank+1 −ℜ(ank+1)| + (1 − α) |ℜ(ank+1)|]

+
∞

∑

n=2

n 6=lk+1

n2[(1 − λ) + λn] |an| ≤ 1 − α,

then f(z) ∈ C
(k)
sc (λ, α).

Let T be the subclass of A consisting of all functions which are of the

form

f(z) = z −
∞

∑

n=2

anzn (an ≥ 0).

For convenience, we write S
(k)
sc (λ, α) ∩ T as T S(k)

sc (λ, α) and C
(k)
sc (λ, α) ∩

T simple as T C(k)
sc (λ, α). We now provide the necessary and sufficient

coefficient conditions for functions belonging to the classes T S(k)
sc (λ, α)

and T C(k)
sc (λ, α).

Theorem 5. Let 0 ≤ λ ≤ 1, 0 ≤ α < 1 and f(z) ∈ T , then

f(z) ∈ T S(k)
sc (λ, α) if and only if

∞
∑

n=1

[(1 − λ) + λ(nk + 1)][(nk + 1)− α]ank+1 +
∞

∑

n=2

n 6=lk+1

n[(1 − λ) + λn]an

≤ 1 − α. (4.4)
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Proof. In view of Theorem 4, we need only to prove the necessity.

Suppose that f(z) ∈ T S(k)
sc (λ, α), then from (1.3), we can get

ℜ

{

1 −
∑∞

n=2 n[(1 − λ) + λn]anz
n−1

1 −
∑∞

n=2[(1 − λ) + λn]cnanzn−1

}

> α, (4.5)

where cn is given by (4.2). By letting z → 1− through real values in

(4.5), we can get

1 −
∑∞

n=2 n[(1 − λ) + λn]an

1 −
∑∞

n=2[(1 − λ) + λn]cnan

≥ α,

or equivalently,

∞
∑

n=2

[(1 − λ) + λn](n − αcn)an ≤ 1 − α. (4.6)

Substituting (4.2) into inequality (4.6), we can get inequality (4.4) easily.

This completes the proof of Theorem 5.

Similarly, for the class T C(k)
sc (λ, α), we have

Corollary 5. Let 0 ≤ λ ≤ 1, 0 ≤ α < 1 and f(z) ∈ T , then

f(z) ∈ T C(k)
sc (λ, α) if and only if

∞
∑

n=1

(nk+1)[(1−λ)+λ(nk+1)][(nk+1)−α]ank+1+
∞

∑

n=2

n 6=lk+1

n2[(1−λ)+λn]an

≤ 1 − α.
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