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ABSTRACT. Let A be a von Neumann J-algebra of type (B) acting in
an indefinite metric space. The aim of the paper is to study J-projections
from A.

In ([1], Chapter XII) the problem of construction of probability theory
for quantum mechanics is posed. An analog of boolean algebra of events
is quantum logic. An important interpretation of a quantum logic is
the set B(H)P" of all orthogonal projections on a Hilbert space H. In
construction of measure theory on logics of projections it is important
to know the properties and the structure of projections. The problem to
construct a quantum field theory sometimes leads to an indefinite metric
space ([3]). In indefinite case, the set P of all J-orthogonal projections
is an analog of the logics B(H)?". In the present paper we study J-
projections from von Neumann J-algebras of type (B). The main results
of this paper were announced in [6].
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1. INTRODUCTION

Let H be a complex Hilbert space with an inner product (.,.) and
let B(H) be the set of all bounded linear operators in H. Fix a self-
adjoint symmetry operator J (J = J* = J~', J # +I). The form
[z,y] == (Jz,y) is said to be an indefinite metric, and H with [.,.] is
said to be the Krein space (J-space) (see [2]). Put Pt := 1(I + J) and
P~ :=1—Pf. PutalsoT"={feH:[f,fl=1}and " ={f € H:
[f, f] = —1}. It is clear that JI'* = T'*. The set I := T UT~ is an
indefinite analog of the unit sphere S of H. Let A € B(H). The operator
A# .= JA*J is said to be J-adjoint of A. Note that [Az,y| = [z, By] for
all z,y € H and some B € B(H) if and only if B = A#. An operator
A is said to be J-self-adjoint (J-positive, J-negative) if [Az,y| = [z, Ay]
([Az,z] > 0, [Az,z] < 0) for all z,y € H. Note that A is J-self-
adjoint (J-positive, J-negative) if and only if JA is self-adjoint (positive,
negative, respectively).

An operator p € B(H) is said to be a projection if p> = p. Any
one-dimensional projection has the form (.,z)y where z, y € H with
(y,z) =1. Let P:={p € B(H): p*> =p=p*}. Thus P is the set of all
J-orthogonal (J-self-adjoint) projections in B(H). Any p € P is said to
be the J-projection. Let PT (P~) be the set of all J-positive (J-negative,
respectively) J-projections. It is clear that P* NP~ = {0}. Any one-
dimensional .J-projection has the form py := [f, f][., f]f, f € I'. A vector
felt (fel')if and only if ps, p;r € PT (€ P, respectively).

2. PROJECTIONS OF TYPE (B)

A von Neumann algebra A in H is said to be a von Neumann J-algebra
if A e Aimplies A* € A. Following [4], a commutative von Neumann
J-algebra Z is said to be a type (B) algebra if Z contains a pair P,
Q € B(H)P" such that P+ Q = I, Q¥ = P. A von Neumann J-algebra
A is said to be of type (B) if its center (=A N .A’) is of type (B).

Throughout the rest of the paper, A is a von Neumann J-algebra of
type (B), a pair P, @ of orthogonal projections in AN A’ satisfying P +
Q =1, Q¥ = P is assumed to be fixed. Set B := PB(H)P + QB(H)Q.
It is clear that B is a von Neumann J-algebra of type (B) and A C B.
Put PA=ANP, PP =BNP, and J := P — Q. Clearly,

JIt=1", JJ=-JJ, ie, —J=J7" (1)

Let p, q be projections. Put p < ¢ if pg = qp = p. Note that if p,
q € P then pq = p if and only if gp = p. With respect to the standard
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relations, namely, the ordering <, the orthogonal relation p L q if and
only if pg = gp = 0, and the orthocomplementation p — p* := I — p, the
set P is a quantum logic and P4 is a sublogic. Any .J-projection from
P58 is said to be a J-projection of type (B).

Proposition 1. The function o(P) := JPJ is an automorphism of P,
for which o(P*) =P~ and o(P*) = P~.

Proof. Let R € P. Then (¢(R))? = o(R) and J(o(R))*J = JJR*JT =
o(R). Thus o(R) € P. It is clear that o(¢c(R)) = R. Hence o(P) = P.
Furthermore, R; < R, implies 0(R;) < 0(R»), Ry L Ry implies o(Ry) L
o(Ry), and o(RY) = (o(R))*.

Now, let R € PT. Then J(JRJ) = —J(JR)J is a negative operator.
Hence o(R) is a J-negative J-projection. By (1), o(PT) =17 (I+J)J =
YI+JJJ) =4I~ J)=P O

We will see below (Theorem 1) that points of P being invariant under
o form the logic P5.

Proposition 2. Let A’ be the set of all J-self-adjoint operators in the
von Neumann J-algebra A of type (B) and let A € A. Then A € A% if
and only if A= Ap+ JA}J, where Ap := PAP.

Proof. Let A= A#. Then A= AP + AQ = PAP + (JP)(JAJ)(PJ) =
Ap + JA%J. Conversely, let A = Ap + JApJ. Then A% = JA*J =
J(Ap + JApT)] = JABT + Ap = Al O

Corollary 1. PAP N A’* = {0}, QAQ N A’* = {0}.
Let us denote by £7 the set of all projections from PAP.
Proposition 3. PA = {q+ Jg*J : q € L$}.

Proof. Let R € P* and ¢ := PR. By Proposition 2, R = PRP +
J(PRP)*J = Rp + JR3J. Since (Rp)?> + J(Rp)?J = R* = R = Rp +
JR5J, (Rp)?> = Rp. Hence Rp € LF.

Conversely, let ¢ € L. Then Jg*J = ¢* € A. Hence q+ Jq*J € A5,
In addition, (¢+Jq*J)? = ¢+.Jq*J. By Proposition 2, ¢+Jg¢*J € PA. O

If dim H = oo then the logic P® is not a o-logic (cf. [5, Proposition
2]).

To prove this fact, we will construct a sequence of mutually orthogonal
J-projections { R, }3° C P" such that the supremum Y R,, does not exist
in P5. Let {¢,}5° be an orthonormal family in PH. (Note that {J¢, }5°
is an orthonormal family in QH.) Put fp = (k + 1)%@5% + k3 o1 and



94 MATVEJCHUK M.S., IONOVA A. M.

fio=(k+ 120 — k2op_y. Then (f, fo) = 1, r := (., f ) fw € LB.
By the construction, {Ry := r + JrjJ}{° is an orthogonal sequence of
J-projection (by Proposition 3) from P5.

Assume now that there exists the supremum R := Y R, € P5. Put
1

Pu=) Ret Y ((J0n)Tbn+ (. 0n)dn).

1 2m+1

Then P € 738 P, > Py, ‘v’m and P, > Rn, Ym, n. Hence P,
R = ZR >2Rk ThusP _ZRk>R ZRk andP ZRk
1

v I\/

(R— ZRk) . Finally,
1

m

RR*=(R=Y R)(R—=> Rp)*+ ) RiR;

1 1

m m m

= (R=)  R)(R=) Ry + ) (2k+1)((, fi fi+ (, TF)Ifi), ¥m
1 1 1

We get a contradiction, since the norm of the right hand side expression

tends to infinity when m — oo.

Theorem 1. Let R be a J-projection. The following conditions are equiv-
alent:

1) R has type (B);

9) R=JRJ;

3) QRP = PRQ = 0.

Proof. Let R have type (B), i.e., R € P5. Then R = PRP + QRQ,
hence R = JRJ.

Now, let R = JRJ. Then JR = RJ, hence PR = (I + J)R =
%(R + RJ) = RP, and consequently, PRQ = RP(Q = 0. Similarly,
QRP = 0.

Now, let PRQ = QRP = 0. Then R = PRP + QRQ), hence R €
PB. O

Corollary 2. Let f € I and [f,Jf] = 0. Then ps + pyy is a minimal
J-projection of type (B).

It appears interesting to compare Theorem 1 with the following propo-
sition.
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Proposition 4. 1) If either R € Pt or R € P~ and either PRQ = 0 or
QRP =0, then R = 0.
2) Letdim H > 4. Then there is R € P such that PRQ) = 0, QRP # 0.
3) If R€ P and PRQ =0, then PRP and QRQ) are projections.

Proof. 1) Let us consider, for instance, the case R € PT and PRQ = 0.
We have 0 = JPRQ = Q(JR)Q. Since JR is a positive operator, the
latter implies that P(JR)P = JR. Thus R = JP(JR)P = (JPJ)RP =
QRP. Finally, R = R? = (QRP)(QRP) = 0.

2) Let dim H > 4. Then we can find ¢pp € PHN S and pg € QHN S
such that (pq, Jop) = 0. Put fp := pp = gp and fg := LJpp + pq,
9o = —%JgoP + . Let us define f = fp+ fg, 9 = gp + go. It is easy
to verify that f € I'", g € ' and [f, g] = 0. Thus p; + p, € P. Finally,
P(ps +pg)Q = P([., fIf = [.,9l9)Q = ((, Jfp) fr — (., Jgp)gp) = 0 and
Qpr +pg)P = (., Jfo)fo — (. J9q)9q # 0.

3) Now, let PR = 0. Then

PRP = (PRP)(PRP)+ (PRQ)(QRP) = (PRP)(PRP)

and

QRQ = (PRP)* = (PRP)*(PRP)* = (QRQ)(QRQ).

By Theorem 1 and Proposition 4.1), we immediately get

Corollary 3. Let A be a von Neumann J-algebra of type (B). Then
PANPT ={0} =PANP.

Proposition 5. Let R € P be an orthoprojection. Then:

1) PP R=RP*, P R=RP~;

2) if, in addition, R has type (B) then JPTRJ = PR and R =
PTR+ J(PTR)J.
Proof. 1) Since R € P and R = R*, we have JR = R*J = RJ. Hence
P*R = RP*.

2) If, in addition, R = JRJ then JP*RT = (JP*J)JRJ = P R.
This means that R = (PT+ P")R= PR+ J(P™R)J. O

Proposition 6. Let ¢, p € P and let q be a J-projection of type (B).
Then p < q if and only if TpJ < q.

Proof. The equality p = qp is equivalent to
IpT =TT = IpI(TqT) = TpJq.
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In what follows we will use equations (2) (see below). Let A € A”s.
This means that JA = A*J. Hence

PTAPY = PT(JA)P* = PT(A*J)PT = PTA*PT,
P APT = —P (A*J)P" = —P~ APt = —(PTAP™)", (2)
P AP  =—-P JAP  =—P A*"JP =P A*P".

Consider some properties of projections. Let r be a bounded projection
on H. Let us denote by r,,. the orthogonal projection onto rH N r*H.
By Proposition 4 [5], r,, is the greatest orthogonal projection with the
property 7., < r. A projection r is said to be properly skew projection
if ro, =0. Let x, y € H, (z,y) =1 and ||z|| = ||y||. Then (.,z)y is the
properly skew projection if and only if ||z| > 1.

The orthoprojection r,,. is said to be an orthogonal component of r,
and ry := r — 71, is said to be a properly skew component of r. It is

clear that Jr,.J (JrsJ) is the orthogonal (properly skew, respectively)
component of JrJ.

Remark 1. 1) Let r be a bounded projection. Then r # r* implies that
rs 1S a properly skew projection.

2) Re PA implies R, € PA. Let R =1+ Jr*J, wherer € E“I‘}. Then
Ry =71or + Jrond.

3) r € L3 is a properly skew projection if and only if R =1+ Jr*J is
a properly skew projection.

Now, let r be a properly skew projection. Let us denote by r,, the
orthogonal projection onto rH. Then r = (r,, + 7)1 (rpm +7h) = T +
Tt Let rprr: = v|r,rrk| be the polar decomposition of 7,7k,
where |B| := (B*B)Y2. Since r is a properly skew projection, vH =
rmH. Note that v*|rtr*r,| is the polar decomposition of rir*r,, and
|rLr*r,| = v|rpmrrE vt Tt is clear that

[ — 1% = [rrrs — i | = s A |,

the cover projection of |[r-r*r,,| (of |r,rrk|) is equal to v*v (vv*, respec-
tively) and

1 1

(v—v")|r —7*| = Vrprr s | =Vt T | = P =, = =1, (3)

Put . := v*r,v. By definition, 7/ r,, = 0 and (v — v*)(rp, + ) (v —
v ) =1l + 1. A straightforward verification shows that

(v—=v)2(rm + 7)) — (r+79)](v—0v") =r+1r" (4)
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Put z :=r + r* and note that
2 —20=(r—r)(r—r)=r—r>0. (5)
Let A; € B(H),i=1,..,4, be such that PA;P = A;, for all i. Let us
identify A; + AsJ + JA3 + JA,J with the matrix (j; ﬁz) Thus

P %([+j) - %(I+JP+JQ) - %((PJFJPJHJPHDJ) -3 <P P)

2\P P
P -P Tz
-_1 1
and P 2(_ ).Put)(. 4<x x)

Theorem 2. Let A be a von Neumann J-algebra of type (B), R =
r—+ Jr*J, where r < P and r is a properly skew projection from A, and
let PRPT = U|P~RP™"| be the polar decomposition for P~ RP*. Then
X =P"RPT, JUJ = -U and
R=X+UX*-X)"2 (X2 X)"2U" +U(I - X)U*. (6)
Conversely, let v € PAP be such that x = z*, 2> — 2z > 0 and
w € PAP be a partial isometry with the initial subspace xH. Then the

formula (6) defines a J-projection. Here U := % ( wow ) If, in

—w —w
addition, for x, w the equalities
r=w2P —z)w* and w(@? —22)Y? = —(2® — 22)Y%w*  (7)
hold, then R is a J-projection from A.

Proof. A simple matrix computation shows that
1 _
P*RPt =X and P XP =- ( o 9’) (8)
4 \—x «w
Using (2) with R in place of A and (5) we obtain

|P"RP*| = [(P"RP*)*(P”RP™)]"? = [(~PTRP™)(P~RP™")]'/? =

(PYRP)(PYRPT)—P*RPHY? = (X2—X)V2 — 1 <|7’ —r* |r—r |) '

4 \|r—=r* |r—r*

Puvi=3 (07 ) (6 m) (L )

Then
1 * * _ * *
VY = ( (vv* +v*v) (vv* + v v))

2 \—(vv* +v*v)  (vv* + )

2

() i) <
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and V*V =1

((vv* +v*v)  (vv* + v*v)
3

(vv* +v*v)  (vo* + v*V)
partial isometry. Since the cover projection of |r —r*| is equal to rp, +7,,
(rm + 7ﬂ;n) (rm + T;n))

(rm + T;n) (rm + T;n) '

) < P7. This means that V is a

the cover projection of [P~RP™| is equal to 3 <

Hence we have

voc -2 =3 (57 L) (o o) -

by (3) =1<T_T T_T):P‘RPJF.

A4 \r—r* r—r*
Thus V = U, U(X? — X)"?2 = P"RP™, and, by (2),
—(X? - X)Y?U* = PTRP". (9)

Moreover,

Ul - X)U* =U(P* — X)U*
0

X)
(T ) GRS
1 [ —

= by (4) = 1 (—x . ) = by (8) =P RP~. (10)

Summarizing (8), (9), and (10) we have (6). By simple calculations we
prove the equality JUJ = —U.

Conversely, let # € PAP be such that x = z*, 22 — 22 > 0 and let
w € PAP be a partial isometry with the initial subspace H. Then one
can directly show that (6) defines a J-projection.

Now, let (7) hold true for , w. The matrix entry of R at the first row
and the second column is equal to

1 2

Z(SL’ +w(z? = 22)? + (2 — 22) 2w — w(2P — z)w*) = 0,

and the matrix entry of R at the first row and the first column is equal
to

1 1
2 (z+w(z®—22)Y2 — (22 —22) 2w +w(2P—2)w*) = 5 (z+w(z?—2x)Y?).

,
0

L(z +w(2? — 2)/?) is a projection from PAP. O

This means that R = ( 7?*) is a J-projection from A. Here r :=
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Using Proposition 5.2) we see that (6) is not true if R, # 0.

Note that for any J-projection p there exists (non unique!) represen-
tation p = p, + p_, where p, € PT, p_ € P~. Let us show that for any
R € P5 there is a unique special representation of such form.

Let us denote by (pJ)+ ((pJ)-) the positive (the negative, respectively)
part of self-adjoint operator pJ, p € P.

Lemma 1. If p = p, +p_, p € P, p. € PT, p_ € P~ and the
subspaces py H, p_H are mutually orthogonal then p, = (pJ)+J and

p-=—(pJ)-J.
Proof. By the assumption on p, and p_, we have p,J = (pJ), and

p-J = —(pJ)-. Hence p; = (p+J)J = (pJ)4+J and p_ = (p-J)J =
—(pJ)+J. O

Theorem 3. For any J-projection R of type (B) there exists a unique
J-positive J-projection RY. such that R = RS + JRYJ and the subspaces
RV H, JRYJH are mutually orthogonal.

Proof. Let us prove that the projection RY exists.

1) First, let R be an orthogonal J-projection of type (B). The J-
projection P*R (P~ R) is J-positive (J-negative, respectively). By Propo-
sition 5.2), R = PTR+ JPTRJ. By the construction, the subspaces
P*RH and JPT*RJH C P~ H are mutually orthogonal.

2) Now, let R be a properly skew J-projection. By Remark 1.3) and
Theorem 2, (6) holds. By Theorem 1 and (10),

JIXJ =JP"RP*J =P (JRJ)P =U(I - X)U*.  (11)
Hence J(X? — X)Y27 = U(X? — X)Y2U*. Thus
(X2 - X)'2gU = JU(X?* — X)V2. (12)
By Theorem 1 and (9),
JU(X*=X)V*)J = J(P"RPH)J = P*(JRJ)P~ = —(X*-X)"2U".

Hence
—(X? - X)VUrg = JU(X? - X)V2 (13)
By (12) and (13), JU = -U*J, i.e.
U =JU"J. (14)

Let us denote by F, (F_) the cover projection of positive (= X ) (neg-
ative (= X_)) part of self-adjoint operator X, respectively. By (11),

IX T+T(~X)T =TXT =U(F-+X_)U* +U(F, — X,)U*. (15)
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Since [U(F- + X_)U*|[U(Fy — X{)U*] =0,
IX. J=UF_+X)U* and —JX_J=U(F,—X)U* (16)
By (14) and (16),
JUXE - X)'PT = -U"J(X] - X)'PT =
~U'U(X? + X )Y2U" = —(X2 + X_)V2u~, (17)
Put
R = X +UX*+X )2 (X2 4+ X )V2U "+ U(F_ + XU,

R) =X, +UX2 - X)V? (X2 - X)U" +U(F, — X )U".
It is easy to verify that R} € P*, RQR" =0, R = R% + R°. Since R} J
is a positive operator, R" J is a negative operator, and (R0.J)(R"J) = 0,
the subspaces RS H and R’ H are mutually orthogonal. By (16), (17),
JRVT =JX,J+JUX: - X)'*g
~J(X2 = X)VPUT + JU(F, = X)U'T =
UF_ 4+ XU — (X2 + X )U +UX2+ X )"V -X_=R"

3) Now, let us consider the general case of R. We have R = R, + R;.
We know that R, is an orthogonal J-projection of type (B), and Rj is
a properly skew J-projection of type (B). Let (R,.)+ := PTR,, and let
(Rs)+ be the J-projection from step 2), generated by R,. Put R} :=

(Ror)+ + (Rs)+. Thus the projection RY is that in question.
By Lemma 1, the J-projection R(}r is unique. U

A J-projection R € PT is said to be a generator (for a J-projection
R)if R = R+ JRJ and the subspaces RH, JRH are mutually or-

thogonal. Let F'* (F~) be the cover projection of PTRP* (of P~ RP™,
respectively).

Theorem 4. Let R € P* and let P~RPT = U|P~RP™*| be the polar
decomposition of P~ RPT. Then R is a generator if and only if the
subspaces JFTH and UH are mutually orthogonal.

Proof. 1) Let R be a generator. Put R := R+ JRJ. By Theorem 3,
R = RY. Here RY is the generator for R from the proof of Theorem 3.
From (16) it follows that UH and JF*H are mutually orthogonal.

2) Let us prove some properties. Let R € P*. Then

PYRPTY = PT(JR)P" is a positive operator and
P"RP™ = —-P (JR)P~ is a negative operator. (18)



POSITIVE PROJECTIONS AS GENERATORS 101

Furthermore, P*R*RP* = P+(JR*)RP* = P*RR*JP* = P*RR*P*
and P"R*RP~ = P RR*P~. We have (PTRP*z,z) > (Ftz,z) for all
x € H (see Proposition 1, [7]) and

|IRPY|> = PYR*RP* = PYRJRP" =

PYR(2P* — I)RP" =2(P"RP")* — P*RP™.
a) Hence follows that the initial projection of RP™ is equal to the cover
projection of PYRPT (i.e., is equal to F'T).
In the same way we can prove the following assertion.

b) The final projection of PR is equal to the cover projection of
P~RP~ (i.e. F~). We have

(P~RP*)(PTR*P~) = —P~RP*JP*RP~ = —P~RP*RP~ =
—P~R(I — P")RP~ = (P"RP™)* — P"RP".
c¢) From (18) it follows that the final projection of P~ RP* (and hence

of U) is equal to the cover projection of P~ RP~ (i.e., is equal to F'™)
By b), PPR=F P~ R. By a), RP* = RPTF*. Hence

RPY"JRJ = RPTJP RJ = RP+(F+jF_)P_Rj.
Now, let R € P* be a J-projection such that UH and JF1TH are mu-
tually orthogonal. Hence 0 = JF*J(UU*), i.e. by ¢), FTJF~ = 0. Fi-

nally, RP*JRJ = RPH(F*JF~)P~RJ = 0. Similarly, RP~(J RJ) =
0. Thus R(JRJ) = R(PT™+ P7)JRJ = 0. Hence

R+ JRJT € P2, RJ(JRJ)=R(Pt—P ) (JRJ)=0.

This means that RH and JRH are mutually orthogonal. Thus R is a
generator. U

Let R, R be J-projections of type (B) and Ry, R be their generators.
Then RR = 0 (i.e., the subspaces RH, RH are J-mutually orthogonal)
implies R+ R = (Ry + R4+) + J(Ry + R4)J. But the J-positive J-
projection Ry + R, is not a generator for R + R, in general.

3. TWO-DIMENSIONAL (MINIMAL) J-PROJECTIONS OF TYPE (B)

In what follows we denote by R and & the real and the imaginary part
of a complex number.

Let f € H. Put fp:=Pf, fo := Qf. In terms of fp, fo we can give
another simple description for vectors from I'.
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Proposition 7. 1) || fp|l = ||foll if and only if (f,Tf) = 0 if and only
ifR(TPTf, P f)=0;

2) felt (eI'7) if and only if 2R[fq, fp] = 1 (= —1) if and only if
2[fQ7fP] - [fv jf] =1 (: _1);

3) [, T f1=23fq, fr] V f e H.

In connection with Corollary 2 we formulate the following elementary
proposition.

Proposition 8. Let f € I'. The following conditions are equivalent:
1) pipgy = 0;

2) [fajf] =0;

3) %[fQ’ fP] =0;

1) @2lfo, fP])? =1,

5) S(TPTf. P~ f)=0.

Lemma 2. Letx,y € PH, (x,y) =1. Theset K :={f €T : [f,Tf] =
0, fr = ay, fo = BJz} is infinite.

Proof. Let a, 8 be real numbers such that 20a = 1. Put gp = ay,
go = BJzr and g = gp + gg. Then 1 = 20a = 2[gqg, gp] = 2R[90, gp)-
By Proposition 7 (2), g € I'". Since Sgg, gp] = 0, we have [g, Tg] = 0,
by Proposition 7 (3). Thus g € K. Since the set {(a, ) : 20a =1} is
infinite, the set K is infinite too. U

Thus we have

Corollary 4. For any non-zero J-projection R of type (B) there exists
an infinite set of J-positive J-projections R° such that

R=R'+JR7.

Proof. 1) First, let @@ be a two-dimensional J-projection of type (B).
Then @ = (.,z)y + (., Jy)Jz, where z, y € PH and (z,y) = 1. Let K
be from Lemma 2 and let f € KC. Since [f, J f] = 0, we have pspss = 0,
by Proposition 8. This means that p; + pys is a two-dimensional J-
projection of type (B). Since Jf, f € ran(Q), we have Q = py + pss.
Since K is infinite and py is a J-positive J-projection, Corollary 4 is true
for the case of two-dimensional J-projection.

2) Let us consider the general case. For any non-zero J-projection R of
type (B) we can find a two-dimensional J-projection @ of type (B) such
that @ < R. Then R—Q is also a J-projection of type (B). Let R} be the
J-positive J-projection such that R} H, J R} H are mutually orthogonal
(Theorem 3) and R — Q = RY + JRYJ. The set {RY +ps: f € K} is
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infinite. The operator Ry := R} +py, f € K is a J-positive J-projection
and R =R+ JR°J. O

We shall show that there is a unique special fy € K. In order to prove
Proposition 11 we need the following proposition.

Proposition 9. Let x, y € PH be such that (x,y) = 1, ||z|| = ||y||, and

let N ={felt:(f,Tf)=1f,Tfl=0 and f[fp=ay, fo=[Jx}.
Then N = {\fo}, where fo .= ==(y + Jx) and |\ = 1.

V2
Proof. Let f € N. By Proposition 7(2) and 7 (3),
1 =2[fq, fr] = 20a(z,y) = 260. (19)

We have 0 = (f,Jf) = IIfell* = Ifoll> = (lal* = [8]*)]|=]|*. Hence
o] = |6]. By (19), @« = 8 and |a| = % Finally, f = %(yjt Jx),
Al = 1. O

Note the following. Let x, y € PH be such that (z,y) = 1 and
|z|| = |ly|]| and let fo be from Proposition 9. Then f, € PTH if and only
if ||z|| = 1 if and only if (., 2)y is an orthogonal projection.

A vector f € T'" is said to be a generator (for a two-dimensional J-
projection R of type (B)) if R = ps+pys and psH L pspH. It is clear
that a vector f € I'" is a generator if and only if the J-projection py is
a generator.

Proposition 10. The following conditions are equivalent:
1) a vector f is a generator;
2) feltand (f,Tf)=0=[f,Tfl;
3) felT and (JPTf,P~f)=0;
4) 2fq, fr] =1 and || fpll = [ foll-

Proof. 1t is clear that conditions 1) and 2) are equivalent.

2)=3). Let (f,Jf) =0 = [f,Jf]. By Proposition 7(1), we have
R(ITP*Tf,P~f) = 0. By Proposition 8, S(JP"f,P~f) = 0. Hence
(TPYf, P f)=0.

3)=4). Since f € I'*, we have 2R[fy, fp] = 1, by Proposition 7 (2).
Since (JP* f, P~ f) = 0, we have S[fq, fr] = 0, by Proposition 8. Hence
2[fo, fr] = 1. Finally, (JP* f, P~ f) = 0 implies (see Proposition 7 (1))
el = llfell-

4)=2). The equality 2[fq, fr] = 1 implies f € I'" (see Proposition
7(2), and by Proposition 8, [f, J f] = 0. By Proposition 7(1), || fp| =
I fell implies (f, 7 f) = 0. O
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The following proposition is a two-dimensional analog of Theorem 3
specifying the structure of J-projection RY.

Proposition 11. Let z, y € PH be such that (z,y) = 1, ||z|| = ||y, and
let R := (.,x)y+(., Jy)Jzx be a two-dimensional J-projection of type (B).
Then M :={peP":R=p+IpJ,(JR)+ = Jp,(JR)_ = -JTpJT} =
{ps,}, where the vector fy is from Proposition 9.

Proof. Let p € M. By the definition of R, p = ps, where f € I'T.
It is clear that pr(JpsJ) = prpys = 0. Hence [f,Jf] = 0. Since
(JR)+(JR)- = 0,0 = (Jps)(JTpsJ). This means (f, Jf) = 0. Since
pr < R, f € RH. By the definition of R again, fp = ay, fo = fJz. By
Proposition 9, f = Afy, |A\| = 1. Hence py = py,. O

If dim A4 > 2, then, for any J-projection py, f € I', the set of two-
dimensional J-projections ¢ such that py < ¢ is infinite. Therefore the
following proposition seems to be interesting.

Proposition 12. For any J-projection ps, f € I', there is a unique
two-dimensional J-projection R of type (B) such that py < R.

Proof. Let us consider, for instance, the case f € I'". Fix « such that
alfo, frl = 1. Put yo :== @fp, zo := Jfg. Then (z9,y0) = 1. Thus
(.,20)yo is a projection. By the construction, (.,z¢)yo < P. Note that

s ol = U+ fa, frl = lfa, [l fs fol = P fal- (20)

Let us define the two-dimensional J-projection
R = (., z0)y0 + (-, Jyo) Jxo

of type (B). From the equality «[fg, fr] = 1 and (20), it follows that
Rps = py. Thus py < R. By Proposition 6, pyy < R. This means that
f, Jf € RH. Hence the lineal generated by the set {f, 7 f} is equal to
the subspace RH. Any J-projection is uniquely determined by its range
space. Therefore R is the unique two-dimensional J-projection with the
property py < R. 0

Problem: Does there exist sup{p, 7pJ} in P? for any p € P with
respect to the order <7 (cf. Proposition 12).

The author expresses deep gratitude to O.FE.Tikhonov for his valuable
comments and suggestions.
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