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Abstract. Let A be a von Neumann J-algebra of type (B) acting in

an indefinite metric space. The aim of the paper is to study J-projections

from A.

In ([1], Chapter XII) the problem of construction of probability theory

for quantum mechanics is posed. An analog of boolean algebra of events

is quantum logic. An important interpretation of a quantum logic is

the set B(H)pr of all orthogonal projections on a Hilbert space H . In

construction of measure theory on logics of projections it is important

to know the properties and the structure of projections. The problem to

construct a quantum field theory sometimes leads to an indefinite metric

space ([3]). In indefinite case, the set P of all J-orthogonal projections

is an analog of the logics B(H)pr. In the present paper we study J-

projections from von Neumann J-algebras of type (B). The main results

of this paper were announced in [6].
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1. Introduction

Let H be a complex Hilbert space with an inner product (. , .) and

let B(H) be the set of all bounded linear operators in H . Fix a self-

adjoint symmetry operator J (J = J∗ = J−1, J 6= ±I). The form

[x, y] := (Jx, y) is said to be an indefinite metric, and H with [. , .] is

said to be the Krein space (J-space) (see [2]). Put P + := 1

2
(I + J) and

P− := I − P+. Put also Γ+ ≡ {f ∈ H : [f, f ] = 1} and Γ− ≡ {f ∈ H :

[f, f ] = −1}. It is clear that JΓ± = Γ±. The set Γ := Γ+ ∪ Γ− is an

indefinite analog of the unit sphere S of H . Let A ∈ B(H). The operator

A# := JA∗J is said to be J-adjoint of A. Note that [Ax, y] = [x, By] for

all x, y ∈ H and some B ∈ B(H) if and only if B = A#. An operator

A is said to be J-self-adjoint (J-positive, J-negative) if [Ax, y] = [x, Ay]

([Ax, x] ≥ 0, [Ax, x] ≤ 0) for all x, y ∈ H . Note that A is J-self-

adjoint (J-positive, J-negative) if and only if JA is self-adjoint (positive,

negative, respectively).

An operator p ∈ B(H) is said to be a projection if p2 = p. Any

one-dimensional projection has the form (., x)y where x, y ∈ H with

(y, x) = 1. Let P := {p ∈ B(H) : p2 = p = p#}. Thus P is the set of all

J-orthogonal (J-self-adjoint) projections in B(H). Any p ∈ P is said to

be the J-projection. Let P+ (P−) be the set of all J-positive (J-negative,

respectively) J-projections. It is clear that P+ ∩ P− = {0}. Any one-

dimensional J-projection has the form pf := [f, f ][., f ]f , f ∈ Γ. A vector

f ∈ Γ+ (f ∈ Γ−) if and only if pf , pJf ∈ P+ (∈ P−, respectively).

2. Projections of type (B)

A von Neumann algebra A in H is said to be a von Neumann J-algebra

if A ∈ A implies A# ∈ A. Following [4], a commutative von Neumann

J-algebra Z is said to be a type (B) algebra if Z contains a pair P ,

Q ∈ B(H)pr such that P + Q = I, Q# = P . A von Neumann J-algebra

A is said to be of type (B) if its center (=A ∩A′) is of type (B).

Throughout the rest of the paper, A is a von Neumann J-algebra of

type (B), a pair P, Q of orthogonal projections in A∩A′ satisfying P +

Q = I, Q# = P is assumed to be fixed. Set B := PB(H)P + QB(H)Q.

It is clear that B is a von Neumann J-algebra of type (B) and A ⊆ B.

Put PA = A∩ P, PB = B ∩ P, and J := P − Q. Clearly,

J Γ+ = Γ−, J J = −JJ , i.e., − J = J #. (1)

Let p, q be projections. Put p ≤ q if pq = qp = p. Note that if p,

q ∈ P then pq = p if and only if qp = p. With respect to the standard
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relations, namely, the ordering ≤, the orthogonal relation p ⊥ q if and

only if pq = qp = 0, and the orthocomplementation p 7→ p⊥ := I − p, the

set P is a quantum logic and PA is a sublogic. Any J-projection from

PB is said to be a J-projection of type (B).

Proposition 1. The function σ(P ) := JPJ is an automorphism of P,

for which σ(P+) = P− and σ(P+) = P−.

Proof. Let R ∈ P. Then (σ(R))2 = σ(R) and J(σ(R))∗J = J JR∗JJ =

σ(R). Thus σ(R) ∈ P. It is clear that σ(σ(R)) = R. Hence σ(P) = P.

Furthermore, R1 ≤ R2 implies σ(R1) ≤ σ(R2), R1 ⊥ R2 implies σ(R1) ⊥

σ(R2), and σ(R⊥) = (σ(R))⊥.

Now, let R ∈ P+. Then J(JRJ ) = −J (JR)J is a negative operator.

Hence σ(R) is a J-negative J-projection. By (1), σ(P +) = 1

2
J (I+J)J =

1

2
(I + J JJ ) = 1

2
(I − J) = P−. �

We will see below (Theorem 1) that points of P being invariant under

σ form the logic PB.

Proposition 2. Let AJs be the set of all J-self-adjoint operators in the

von Neumann J-algebra A of type (B) and let A ∈ A. Then A ∈ AJs if

and only if A = AP + JA∗
P J , where AP := PAP .

Proof. Let A = A#. Then A = AP + AQ = PAP + (JP )(JAJ)(PJ) =

AP + JA∗
P J. Conversely, let A = AP + JA∗

P J . Then A# = JA∗J =

J(A∗
P + JAP J)J = JA∗

P J + AP = A. �

Corollary 1. PAP ∩ AJs = {0}, QAQ ∩ AJs = {0}.

Let us denote by LA
P the set of all projections from PAP .

Proposition 3. PA = {q + Jq∗J : q ∈ LA
P }.

Proof. Let R ∈ PA and q := PR. By Proposition 2, R = PRP +

J(PRP )∗J = RP + JR∗
P J . Since (RP )2 + J(R∗

P )2J = R2 = R = RP +

JR∗
P J , (RP )2 = RP . Hence RP ∈ LA

P .

Conversely, let q ∈ LA
P . Then Jq∗J = q# ∈ A. Hence q + Jq∗J ∈ AJs.

In addition, (q+Jq∗J)2 = q+Jq∗J . By Proposition 2, q+Jq∗J ∈ PA. �

If dim H = ∞ then the logic PB is not a σ-logic (cf. [5, Proposition

2]).

To prove this fact, we will construct a sequence of mutually orthogonal

J-projections {Rn}∞1 ⊂ PB such that the supremum
∑

Rn does not exist

in PB. Let {φn}
∞
1 be an orthonormal family in PH . (Note that {Jφn}

∞
1

is an orthonormal family in QH .) Put fk ≡ (k + 1)
1

2 φ2k + k
1

2 φ2k−1 and
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f−
k ≡ (k + 1)

1

2 φ2k − k
1

2 φ2k−1. Then (f−
k , fk) = 1, rk := (., f−

k )fk ∈ LB
P .

By the construction, {Rk := rk + Jr∗kJ}
∞
1 is an orthogonal sequence of

J-projection (by Proposition 3) from PB.

Assume now that there exists the supremum R :=
∞
∑

1

Rn ∈ PB. Put

Pm ≡
m

∑

1

Rk +

∞
∑

2m+1

((., Jφn)Jφn + (., φn)φn).

Then Pm ∈ PB, Pm ≥ Pm+1, ∀m, and Pm ≥ Rn, ∀m, n. Hence Pm ≥

R =
∞
∑

1

Rn ≥
m
∑

1

Rk. Thus Pm −
m
∑

1

Rk ≥ R −
m
∑

1

Rk and Pm −
m
∑

1

Rk ≥

(R −
m
∑

1

Rk)
∗. Finally,

RR∗ = (R −
m

∑

1

Rk)(R −
m

∑

1

Rk)
∗ +

m
∑

1

RkR
∗
k

= (R−
m

∑

1

Rk)(R−
m

∑

1

Rk)
∗ +

m
∑

1

(2k +1)((., fk)fk +(., Jf−
k )Jf−

k ), ∀m.

We get a contradiction, since the norm of the right hand side expression

tends to infinity when m → ∞.

Theorem 1. Let R be a J-projection. The following conditions are equiv-

alent:

1) R has type (B);

2) R = JRJ ;

3) QRP = PRQ = 0.

Proof. Let R have type (B), i. e., R ∈ PB. Then R = PRP + QRQ,

hence R = JRJ .

Now, let R = JRJ . Then JR = RJ , hence PR = 1

2
(I + J )R =

1

2
(R + RJ ) = RP , and consequently, PRQ = RPQ = 0. Similarly,

QRP = 0.

Now, let PRQ = QRP = 0. Then R = PRP + QRQ, hence R ∈

PB. �

Corollary 2. Let f ∈ Γ and [f,J f ] = 0. Then pf + pJ f is a minimal

J-projection of type (B).

It appears interesting to compare Theorem 1 with the following propo-

sition.
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Proposition 4. 1) If either R ∈ P+ or R ∈ P− and either PRQ = 0 or

QRP = 0, then R = 0.

2) Let dim H ≥ 4. Then there is R ∈ P such that PRQ = 0, QRP 6= 0.

3) If R ∈ P and PRQ = 0, then PRP and QRQ are projections.

Proof. 1) Let us consider, for instance, the case R ∈ P+ and PRQ = 0.

We have 0 = JPRQ = Q(JR)Q. Since JR is a positive operator, the

latter implies that P (JR)P = JR. Thus R = JP (JR)P = (JPJ)RP =

QRP . Finally, R = R2 = (QRP )(QRP ) = 0.

2) Let dim H ≥ 4. Then we can find ϕP ∈ PH ∩ S and ϕQ ∈ QH ∩ S

such that (ϕQ, JϕP ) = 0. Put fP := ϕP = gP and fQ := 1

2
JϕP + ϕQ,

gQ := −1

2
JϕP + ϕQ. Let us define f = fP + fQ, g = gP + gQ. It is easy

to verify that f ∈ Γ+, g ∈ Γ− and [f, g] = 0. Thus pf + pg ∈ P. Finally,

P (pf + pg)Q = P ([., f ]f − [., g]g)Q = ((., JfP )fP − (., JgP )gP ) = 0 and

Q(pf + pg)P = (., JfQ)fQ − (., JgQ)gQ 6= 0.

3) Now, let PRQ = 0. Then

PRP = (PRP )(PRP ) + (PRQ)(QRP ) = (PRP )(PRP )

and

QRQ = (PRP )# = (PRP )#(PRP )# = (QRQ)(QRQ).

�

By Theorem 1 and Proposition 4.1), we immediately get

Corollary 3. Let A be a von Neumann J-algebra of type (B). Then

PA ∩ P+ = {0} = PA ∩ P−.

Proposition 5. Let R ∈ P be an orthoprojection. Then:

1) P+R = RP +, P−R = RP−;

2) if, in addition, R has type (B) then JP +RJ = P−R and R =

P+R + J (P+R)J .

Proof. 1) Since R ∈ P and R = R∗, we have JR = R∗J = RJ . Hence

P±R = RP±.

2) If, in addition, R = JRJ then JP +RJ = (JP+J )JRJ = P−R.

This means that R = (P+ + P−)R = P+R + J (P+R)J . �

Proposition 6. Let q, p ∈ P and let q be a J-projection of type (B).

Then p ≤ q if and only if J pJ ≤ q.

Proof. The equality p = qp is equivalent to

J pJ = J qpJ = J pJ (J qJ ) = J pJ q.

�
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In what follows we will use equations (2) (see below). Let A ∈ AJs.

This means that JA = A∗J . Hence

P+AP+ = P+(JA)P ∗ = P+(A∗J)P+ = P+A∗P+,

P−AP+ = −P−(A∗J)P+ = −P−A∗P+ = −(P+AP−)∗, (2)

P−AP− = −P−JAP− = −P−A∗JP− = P−A∗P−.

Consider some properties of projections. Let r be a bounded projection

on H . Let us denote by ror the orthogonal projection onto rH ∩ r∗H .

By Proposition 4 [5], ror is the greatest orthogonal projection with the

property ror ≤ r. A projection r is said to be properly skew projection

if ror = 0. Let x, y ∈ H , (x, y) = 1 and ‖x‖ = ‖y‖. Then (., x)y is the

properly skew projection if and only if ‖x‖ > 1.

The orthoprojection ror is said to be an orthogonal component of r,

and rs := r − ror is said to be a properly skew component of r. It is

clear that J rorJ (J rsJ ) is the orthogonal (properly skew, respectively)

component of J rJ .

Remark 1. 1) Let r be a bounded projection. Then r 6= r∗ implies that

rs is a properly skew projection.

2) R ∈ PA implies Ror ∈ PA. Let R = r + Jr∗J , where r ∈ LA
P . Then

Ror = ror + JrorJ .

3) r ∈ LA
P is a properly skew projection if and only if R = r + Jr∗J is

a properly skew projection.

Now, let r be a properly skew projection. Let us denote by rm the

orthogonal projection onto rH . Then r = (rm + r⊥m)r(rm + r⊥m) = rm +

rmrr⊥m. Let rmrr⊥m = v|rmrr⊥m| be the polar decomposition of rmrr⊥m,

where |B| := (B∗B)1/2. Since r is a properly skew projection, vH =

rmH . Note that v∗|r⊥mr∗rm| is the polar decomposition of r⊥mr∗rm and

|r⊥mr∗rm| = v|rmrr⊥m|v
∗. It is clear that

|r − r∗| = |rmrr⊥m − r⊥mr∗rm| = |rmrr⊥m| + |r⊥mr∗rm|,

the cover projection of |r⊥mr∗rm| (of |rmrr⊥m|) is equal to v∗v (vv∗, respec-

tively) and

(v−v∗)|r−r∗| = v|rmrr⊥m|−v∗|r⊥mr∗rm| = rmrr⊥m−r⊥mr∗rm = r−r∗. (3)

Put r′m := v∗rmv. By definition, r′mrm = 0 and (v − v∗)(rm + r′m)(v −

v∗)∗ = r′m + rm. A straightforward verification shows that

(v − v∗)[2(rm + r′m) − (r + r∗)](v − v∗)∗ = r + r∗. (4)
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Put x := r + r∗ and note that

x2 − 2x = (r − r∗)∗(r − r∗) = |r − r∗|2 ≥ 0. (5)

Let Ai ∈ B(H), i = 1, .., 4, be such that PAiP = Ai, for all i. Let us

identify A1 + A2J + JA3 + JA4J with the matrix

(

A1 A2

A3 A4

)

. Thus

P+ =
1

2
(I+J) =

1

2
(I+JP+JQ) =

1

2
((P+JPJ)+JP+PJ) =

1

2

(

P P

P P

)

and P− = 1
2

(

P −P

−P P

)

. Put X := 1
4

(

x x

x x

)

.

Theorem 2. Let A be a von Neumann J-algebra of type (B), R =

r + Jr∗J , where r ≤ P and r is a properly skew projection from A, and

let P−RP+ = U |P−RP+| be the polar decomposition for P−RP+. Then

X = P+RP+, JUJ = −U and

R = X + U(X2 − X)1/2 − (X2 − X)1/2U∗ + U(I − X)U∗. (6)

Conversely, let x ∈ PAP be such that x = x∗, x2 − 2x ≥ 0 and

w ∈ PAP be a partial isometry with the initial subspace xH. Then the

formula (6) defines a J-projection. Here U := 1

2

(

w w

−w −w

)

. If, in

addition, for x, w the equalities

x = w(2P − x)w∗ and w(x2 − 2x)1/2 = −(x2 − 2x)1/2w∗ (7)

hold, then R is a J-projection from A.

Proof. A simple matrix computation shows that

P+RP+ = X and P−XP− =
1

4

(

x −x

−x x

)

(8)

Using (2) with R in place of A and (5) we obtain

|P−RP+| = [(P−RP+)∗(P−RP+)]1/2 = [(−P+RP−)(P−RP+)]1/2 =

[(P+RP+)(P+RP+)−P+RP+]1/2 = (X2−X)1/2 =
1

4

(

|r − r∗| |r − r∗|
|r − r∗| |r − r∗|

)

.

Put V := 1

2

(

(v − v∗) 0

0 −(v − v∗)

) (

P P

P P

)

= 1

2

(

v − v∗ v − v∗

−(v − v∗) −(v − v∗)

)

.

Then

V V ∗ =
1

2

(

(vv∗ + v∗v) −(vv∗ + v∗v)

−(vv∗ + v∗v) (vv∗ + v∗v)

)

=
1

2

(

(rm + r
′

m) −(rm + r
′

m)

−(rm + r
′

m) (rm + r
′

m)

)

≤ P−,
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and V ∗V = 1
2

(

(vv∗ + v∗v) (vv∗ + v∗v)

(vv∗ + v∗v) (vv∗ + v∗v)

)

≤ P+. This means that V is a

partial isometry. Since the cover projection of |r−r∗| is equal to rm+r
′

m,

the cover projection of |P−RP+| is equal to 1

2

(

(rm + r
′

m) (rm + r
′

m)

(rm + r
′

m) (rm + r
′

m)

)

.

Hence we have

V (X2 − X)1/2 =
1

4

(

(v − v∗) 0

0 −(v − v∗)

) (

|r − r∗| |r − r∗|

|r − r∗| |r − r∗|

)

=

by (3) =
1

4

(

r − r∗ r − r∗

r − r∗ r − r∗

)

= P−RP+.

Thus V = U , U(X2 − X)1/2 = P−RP+, and, by (2),

−(X2 − X)1/2U∗ = P+RP−. (9)

Moreover,

U(I − X)U∗ = U(P+ − X)U∗

=
1

4

(

(v − v∗) 0

0 −(v − v∗)

) (

2P − x 2P − x

2P − x 2P − x

) (

v∗ − v 0

0 −(v∗ − v)

)

= by (4) =
1

4

(

x −x

−x x

)

= by (8) = P−RP−. (10)

Summarizing (8), (9), and (10) we have (6). By simple calculations we

prove the equality JUJ = −U .

Conversely, let x ∈ PAP be such that x = x∗, x2 − 2x ≥ 0 and let

w ∈ PAP be a partial isometry with the initial subspace xH . Then one

can directly show that (6) defines a J-projection.

Now, let (7) hold true for x, w. The matrix entry of R at the first row

and the second column is equal to

1

4
(x + w(x2 − 2x)1/2 + (x2 − 2x)1/2w∗ − w(2P − x)w∗) = 0,

and the matrix entry of R at the first row and the first column is equal

to

1

4
(x+w(x2−2x)1/2−(x2−2x)1/2w∗+w(2P−x)w∗) =

1

2
(x+w(x2−2x)1/2).

This means that R =

(

r 0

0 r∗

)

is a J-projection from A. Here r :=

1

2
(x + w(x2 − x)1/2) is a projection from PAP . �
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Using Proposition 5.2) we see that (6) is not true if Ror 6= 0.

Note that for any J-projection p there exists (non unique!) represen-

tation p = p+ + p−, where p+ ∈ P+, p− ∈ P−. Let us show that for any

R ∈ PB there is a unique special representation of such form.

Let us denote by (pJ)+ ((pJ)−) the positive (the negative, respectively)

part of self-adjoint operator pJ , p ∈ P.

Lemma 1. If p = p+ + p−, p ∈ P, p+ ∈ P+, p− ∈ P− and the

subspaces p+H, p−H are mutually orthogonal then p+ = (pJ)+J and

p− = −(pJ)−J .

Proof. By the assumption on p+ and p−, we have p+J = (pJ)+ and

p−J = −(pJ)−. Hence p+ = (p+J)J = (pJ)+J and p− = (p−J)J =

−(pJ)+J . �

Theorem 3. For any J-projection R of type (B) there exists a unique

J-positive J-projection R0
+ such that R = R0

+ +JR0
+J and the subspaces

R0
+H, JR0

+JH are mutually orthogonal.

Proof. Let us prove that the projection R0
+ exists.

1) First, let R be an orthogonal J-projection of type (B). The J-

projection P+R (P−R) is J-positive (J-negative, respectively). By Propo-

sition 5.2), R = P+R + JP+RJ . By the construction, the subspaces

P+RH and JP+RJH ⊆ P−H are mutually orthogonal.

2) Now, let R be a properly skew J-projection. By Remark 1.3) and

Theorem 2, (6) holds. By Theorem 1 and (10),

JXJ = JP+RP+J = P−(JRJ )P− = U(I − X)U∗. (11)

Hence J (X2 − X)1/2J = U(X2 − X)1/2U∗. Thus

(X2 − X)1/2JU = JU(X2 − X)1/2. (12)

By Theorem 1 and (9),

J (U(X2−X)1/2)J = J (P−RP+)J = P+(JRJ )P− = −(X2−X)1/2U∗.

Hence

−(X2 − X)1/2U∗J = JU(X2 − X)1/2. (13)

By (12) and (13), JU = −U∗J , i. e.

−U = JU∗J . (14)

Let us denote by F+ (F−) the cover projection of positive (= X+) (neg-

ative (= X−)) part of self-adjoint operator X, respectively. By (11),

JX+J +J (−X−)J = JXJ = U(F− +X−)U∗ +U(F+−X+)U∗. (15)
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Since [U(F− + X−)U∗][U(F+ − X+)U∗] = 0,

JX+J = U(F− + X−)U∗ and − JX−J = U(F+ − X+)U∗. (16)

By (14) and (16),

JU(X2
+ − X+)1/2J = −U∗J (X2

+ − X+)1/2J =

−U∗U(X2
− + X−)1/2U∗ = −(X2

− + X−)1/2U∗. (17)

Put

R0
− := −X− + U(X2

− + X−)1/2 − (X2
− + X−)1/2U∗ + U(F− + X−)U∗,

R0
+ := X+ + U(X2

+ − X+)1/2 − (X2
+ − X+)1/2U∗ + U(F+ − X+)U∗.

It is easy to verify that R0
± ∈ P±, R0

+R0
− = 0, R = R0

+ + R0
−. Since R0

+J

is a positive operator, R0
−J is a negative operator, and (R0

+J)(R0
−J) = 0,

the subspaces R0
+H and R0

−H are mutually orthogonal. By (16), (17),

JR0
+J = JX+J + JU(X2

+ − X+)1/2J

−J (X2
+ − X+)1/2U∗J + JU(F+ − X+)U∗J =

U(F− + X−)U∗ − (X2
− + X−)1/2U∗ + U(X2

− + X−)1/2 − X− = R0
−

3) Now, let us consider the general case of R. We have R = Ror + Rs.

We know that Ror is an orthogonal J-projection of type (B), and Rs is

a properly skew J-projection of type (B). Let (Ror)+ := P+Ror and let

(Rs)+ be the J-projection from step 2), generated by Rs. Put R0
+ :=

(Ror)+ + (Rs)+. Thus the projection R0
+ is that in question.

By Lemma 1, the J-projection R0
+ is unique. �

A J-projection R ∈ P+ is said to be a generator (for a J-projection

R) if R = R + JRJ and the subspaces RH , JRH are mutually or-

thogonal. Let F+ (F−) be the cover projection of P+RP+ (of P−RP−,

respectively).

Theorem 4. Let R ∈ P+ and let P−RP+ = U |P−RP+| be the polar

decomposition of P−RP+. Then R is a generator if and only if the

subspaces JF+H and UH are mutually orthogonal.

Proof. 1) Let R be a generator. Put R := R + JRJ . By Theorem 3,

R = R0
+. Here R0

+ is the generator for R from the proof of Theorem 3.

From (16) it follows that UH and JF+H are mutually orthogonal.

2) Let us prove some properties. Let R ∈ P+. Then

P+RP+ = P+(JR)P+ is a positive operator and

P−RP− = −P−(JR)P− is a negative operator. (18)
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Furthermore, P+R∗RP+ = P+(JR∗)RP+ = P+RR∗JP+ = P+RR∗P+

and P−R∗RP− = P−RR∗P−. We have (P+RP+x, x) ≥ (F+x, x) for all

x ∈ H (see Proposition 1, [7]) and

|RP+|2 = P+R∗RP+ = P+RJRP + =

P+R(2P+ − I)RP + = 2(P+RP+)2 − P+RP+.

a) Hence follows that the initial projection of RP + is equal to the cover

projection of P+RP+ (i.e., is equal to F+).

In the same way we can prove the following assertion.

b) The final projection of P−R is equal to the cover projection of

P−RP− (i.e. F−). We have

(P−RP+)(P+R∗P−) = −P−RP+JP+RP− = −P−RP+RP− =

−P−R(I − P−)RP− = (P−RP−)2 − P−RP−.

c) From (18) it follows that the final projection of P−RP+ (and hence

of U) is equal to the cover projection of P−RP− (i.e., is equal to F−)

By b), P−R = F−P−R. By a), RP + = RP+F+. Hence

RP+JRJ = RP +JP−RJ = RP +(F+JF−)P−RJ .

Now, let R ∈ P+ be a J-projection such that UH and JF+H are mu-

tually orthogonal. Hence 0 = JF+J (UU∗), i.e. by c), F+JF− = 0. Fi-

nally, RP +JRJ = RP +(F+JF−)P−RJ = 0. Similarly, RP−(JRJ ) =

0. Thus R(JRJ ) = R(P+ + P−)JRJ = 0. Hence

R + JRJ ∈ PB, RJ(JRJ ) = R(P + − P−)(JRJ ) = 0.

This means that RH and JRH are mutually orthogonal. Thus R is a

generator. �

Let R, R be J-projections of type (B) and R+, R+ be their generators.

Then RR = 0 (i.e., the subspaces RH , RH are J-mutually orthogonal)

implies R + R = (R+ + R+) + J (R+ + R+)J . But the J-positive J-

projection R+ + R+ is not a generator for R + R, in general.

3. Two-dimensional (minimal) J-projections of type (B)

In what follows we denote by ℜ and ℑ the real and the imaginary part

of a complex number.

Let f ∈ H . Put fP := Pf , fQ := Qf . In terms of fP , fQ we can give

another simple description for vectors from Γ.
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Proposition 7. 1) ‖fP‖ = ‖fQ‖ if and only if (f,J f) = 0 if and only

if ℜ(JP+f, P−f) = 0;

2) f ∈ Γ+ (∈ Γ−) if and only if 2ℜ[fQ, fP ] = 1 (= −1) if and only if

2[fQ, fP ] − [f,J f ] = 1 (= −1);

3) [f,J f ] = 2ℑ[fQ, fP ] ∀ f ∈ H.

In connection with Corollary 2 we formulate the following elementary

proposition.

Proposition 8. Let f ∈ Γ. The following conditions are equivalent:

1) pfpJ f = 0;

2) [f,J f ] = 0;

3) ℑ[fQ, fP ] = 0;

4) (2[fQ, fP ])2 = 1;

5) ℑ(JP+f, P−f) = 0.

Lemma 2. Let x, y ∈ PH, (x, y) = 1. The set K := {f ∈ Γ+ : [f,J f ] =

0, fP = αy, fQ = βJx} is infinite.

Proof. Let α, β be real numbers such that 2βα = 1. Put gP = αy,

gQ = βJx and g = gP + gQ. Then 1 = 2βα = 2[gQ, gP ] = 2ℜ[gQ, gP ].

By Proposition 7 (2), g ∈ Γ+. Since ℑ[gQ, gP ] = 0, we have [g,J g] = 0,

by Proposition 7 (3). Thus g ∈ K. Since the set {(α, β) : 2βα = 1} is

infinite, the set K is infinite too. �

Thus we have

Corollary 4. For any non-zero J-projection R of type (B) there exists

an infinite set of J-positive J-projections R0 such that

R = R0 + JR0J .

Proof. 1) First, let Q be a two-dimensional J-projection of type (B).

Then Q = (., x)y + (., Jy)Jx, where x, y ∈ PH and (x, y) = 1. Let K

be from Lemma 2 and let f ∈ K. Since [f,J f ] = 0, we have pfpJ f = 0,

by Proposition 8. This means that pf + pJ f is a two-dimensional J-

projection of type (B). Since J f, f ∈ ran(Q), we have Q = pf + pJ f .

Since K is infinite and pf is a J-positive J-projection, Corollary 4 is true

for the case of two-dimensional J-projection.

2) Let us consider the general case. For any non-zero J-projection R of

type (B) we can find a two-dimensional J-projection Q of type (B) such

that Q ≤ R. Then R−Q is also a J-projection of type (B). Let R0
+ be the

J-positive J-projection such that R0
+H , JR0

+H are mutually orthogonal

(Theorem 3) and R − Q = R0
+ + JR0

+J . The set {R0
+ + pf : f ∈ K} is
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infinite. The operator R0 := R0
+ + pf , f ∈ K is a J-positive J-projection

and R = R0 + JR0J . �

We shall show that there is a unique special f0 ∈ K. In order to prove

Proposition 11 we need the following proposition.

Proposition 9. Let x, y ∈ PH be such that (x, y) = 1, ‖x‖ = ‖y‖, and

let N := {f ∈ Γ+ : (f,J f) = [f,J f ] = 0 and fP = αy, fQ = βJx}.

Then N = {λf0}, where f0 := 1√
2
(y + Jx) and |λ| = 1.

Proof. Let f ∈ N . By Proposition 7 (2) and 7 (3),

1 = 2[fQ, fP ] = 2βα(x, y) = 2βα. (19)

We have 0 = (f,J f) = ‖fP‖2 − ‖fQ‖2 = (|α|2 − |β|2)‖x‖2. Hence

|α| = |β|. By (19), α = β and |α| = 1√
2
. Finally, f = λ√

2
(y + Jx),

|λ| = 1. �

Note the following. Let x, y ∈ PH be such that (x, y) = 1 and

‖x‖ = ‖y‖ and let f0 be from Proposition 9. Then f0 ∈ P+H if and only

if ‖x‖ = 1 if and only if (., x)y is an orthogonal projection.

A vector f ∈ Γ+ is said to be a generator (for a two-dimensional J-

projection R of type (B)) if R = pf + pJ f and pfH ⊥ pJ fH . It is clear

that a vector f ∈ Γ+ is a generator if and only if the J-projection pf is

a generator.

Proposition 10. The following conditions are equivalent:

1) a vector f is a generator;

2) f ∈ Γ+ and (f,J f) = 0 = [f,J f ];

3) f ∈ Γ+ and (JP+f, P−f) = 0;

4) 2[fQ, fP ] = 1 and ‖fP‖ = ‖fQ‖.

Proof. It is clear that conditions 1) and 2) are equivalent.

2)⇒3). Let (f,J f) = 0 = [f,J f ]. By Proposition 7 (1), we have

ℜ(JP+f, P−f) = 0. By Proposition 8, ℑ(JP+f, P−f) = 0. Hence

(JP+f, P−f) = 0.

3)⇒4). Since f ∈ Γ+, we have 2ℜ[fQ, fP ] = 1, by Proposition 7 (2).

Since (JP+f, P−f) = 0, we have ℑ[fQ, fP ] = 0, by Proposition 8. Hence

2[fQ, fP ] = 1. Finally, (JP+f, P−f) = 0 implies (see Proposition 7 (1))

‖fP‖ = ‖fQ‖.

4)⇒2). The equality 2[fQ, fP ] = 1 implies f ∈ Γ+ (see Proposition

7 (2), and by Proposition 8, [f,J f ] = 0. By Proposition 7 (1), ‖fP‖ =

‖fQ‖ implies (f,J f) = 0. �
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The following proposition is a two-dimensional analog of Theorem 3

specifying the structure of J-projection R0
+.

Proposition 11. Let x, y ∈ PH be such that (x, y) = 1, ‖x‖ = ‖y‖, and

let R := (., x)y+(., Jy)Jx be a two-dimensional J-projection of type (B).

Then M := {p ∈ P+ : R = p+J pJ , (JR)+ = Jp, (JR)− = −JJ pJ } =

{pf0
}, where the vector f0 is from Proposition 9.

Proof. Let p ∈ M. By the definition of R, p = pf , where f ∈ Γ+.

It is clear that pf(J pfJ ) = pfpJ f = 0. Hence [f,J f ] = 0. Since

(JR)+(JR)− = 0, 0 = (Jpf )(JJ pfJ ). This means (f,J f) = 0. Since

pf < R, f ∈ RH . By the definition of R again, fP = αy, fQ = βJx. By

Proposition 9, f = λf0, |λ| = 1. Hence pf = pf0
. �

If dim H > 2, then, for any J-projection pf , f ∈ Γ, the set of two-

dimensional J-projections q such that pf < q is infinite. Therefore the

following proposition seems to be interesting.

Proposition 12. For any J-projection pf , f ∈ Γ, there is a unique

two-dimensional J-projection R of type (B) such that pf < R.

Proof. Let us consider, for instance, the case f ∈ Γ+. Fix α such that

α[fQ, fP ] = 1. Put y0 := αfP , x0 := JfQ. Then (x0, y0) = 1. Thus

(., x0)y0 is a projection. By the construction, (., x0)y0 ≤ P . Note that

[f, fp] = [fP + fQ, fP ] = [fQ, fP ], [f, fQ] = [fP , fQ]. (20)

Let us define the two-dimensional J-projection

R := (., x0)y0 + (., Jy0)Jx0

of type (B). From the equality α[fQ, fP ] = 1 and (20), it follows that

Rpf = pf . Thus pf < R. By Proposition 6, pJ f < R. This means that

f , J f ∈ RH . Hence the lineal generated by the set {f,J f} is equal to

the subspace RH . Any J-projection is uniquely determined by its range

space. Therefore R is the unique two-dimensional J-projection with the

property pf < R. �

Problem: Does there exist sup{p,J pJ } in PB for any p ∈ P with

respect to the order ≤? (cf. Proposition 12).

The author expresses deep gratitude to O.E.Tikhonov for his valuable

comments and suggestions.
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