Note that we have intentionally excluded from the data additional phase fluctuations due to the GW signal, and noises such as the optical-path noise, proof-mass noise, etc. Since our immediate goal is to cancel the laser frequency noise we have only kept the relevant terms. Combining the streams for cancelling the laser frequency noise will introduce transfer functions for the other noises and the GW signal. This is important and will be discussed subsequently in the article.
The goal of the analysis is to add suitably delayed beams together so that the laser frequency noise terms
add up to zero. This amounts to seeking data combinations that cancel the laser frequency noise. In the
notation/formalism that we have invoked, the delay is obtained by applying the operators to the
beams
and
. A delay of
is represented by the operator
acting
on the data, where
,
, and
are integers. In general a polynomial in
, which is a
polynomial in three variables, applied to, say,
combines the same data stream
with different
time-delays of the form
. This notation conveniently rephrases the problem.
One must find six polynomials say
,
,
, such that
It is useful to express Equation (15) in matrix form. This allows us to obtain a matrix operator equation
whose solutions are
and
, where
and
are written as column vectors. We can similarly
express
,
,
as column vectors
,
,
, respectively. In matrix form Equation (15
)
becomes
![]() |
http://www.livingreviews.org/lrr-2005-4 |
© Max Planck Society and the author(s)
Problems/comments to |