 |
1 |
Ajith, P., Iyer, B.R., Robinson, C.A.K., and Sathyaprakash, B.S., “New class of post-Newtonian
approximants to the waveform templates of inspiralling compact binaries: Test mass in the
Schwarzschild spacetime”, Phys. Rev. D, 71, 044029-1-21, (2005). Related online version (cited
on 26 April 2006):
http://arXiv.org/abs/gr-qc/0412033.
|
 |
2 |
Anderson, J.L., and DeCanio, T.C., “Equations of hydrodynamics in general relativity in
the slow motion approximation”, Gen. Relativ. Gravit., 6, 197-238, (1975).
|
 |
3 |
Apostolatos, T.A., Cutler, C., Sussman, G.J., and Thorne, K.S., “Spin-induced orbital
precession and its modulation of the gravitational waveforms from merging binaries”, Phys.
Rev. D, 49, 6274-6297, (1994).
|
 |
4 |
Arun, K.G., Blanchet, L., Iyer, B.R., and Qusailah, M.S., “The 2.5PN gravitational wave
polarisations from inspiralling compact binaries in circular orbits”, Class. Quantum Grav., 21,
3771, (2004). Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0404185. Erratum Class. Quantum Grav., 22, 3115, (2005).
|
 |
5 |
Arun, K.G., Iyer, B.R., Qusailah, M.S., and Sathyaprakash, B.S., “Probing the non-linear
structure of general relativity with black hole mergers”, (2006). URL (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0604067.
|
 |
6 |
Arun, K.G., Iyer, B.R., Sathyaprakash, B.S., and Sundararajan, P.A., “Parameter estimation
of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The
nonspinning case”, Phys. Rev. D, 71, 084008-1-16, (2005). Related online version (cited on 26
April 2006):
http://arXiv.org/abs/gr-qc/0411146.
|
 |
7 |
Barker, B.M., and O’Connell, R.F., “Gravitational two-body problem with arbitrary masses,
spins, and quadrupole moments”, Phys. Rev. D, 12, 329-335, (1975).
|
 |
8 |
Barker, B.M., and O’Connell, R.F., “The gravitational interaction: Spin, rotation, and quantum
effects - A review”, Gen. Relativ. Gravit., 11, 149-175, (1979).
|
 |
9 |
Baumgarte, T.W., “Innermost stable circular orbit of binary black holes”, Phys. Rev. D, 62,
024018-1-8, (2000).
|
 |
10 |
Bekenstein, J.D., “Gravitational Radiation Recoil and Runaway Black Holes”, Astrophys. J.,
183, 657-664, (1973).
|
 |
11 |
Bel, L., Damour, T., Deruelle, N., Ibañez, J., and Martin, J., “Poincaré-invariant
gravitational-field and equations of motion of 2 point-like objects - The post-linear
approximtion of general-relativity”, Gen. Relativ. Gravit., 13, 963-1004, (1981).
|
 |
12 |
Blanchet, L., “Radiative gravitational fields in general-relativity. II. Asymptotic-behaviour at
future null infinity”, Proc. R. Soc. London, Ser. A, 409, 383-399, (1987).
|
 |
13 |
Blanchet, L., Contribution à l’étude du rayonnement gravitationnel émis par un système
isolé, Habilitation, (Université Paris VI, Paris, France, 1990).
|
 |
14 |
Blanchet, L., “Time-asymmetric structure of gravitational radiation”, Phys. Rev. D, 47,
4392-4420, (1993).
|
 |
15 |
Blanchet, L., “Second-post-Newtonian generation of gravitational radiation”, Phys. Rev. D,
51, 2559-2583, (1995). Related online version (cited on 24 January 1995):
http://arXiv.org/abs/gr-qc/9501030.
|
 |
16 |
Blanchet, L., “Energy losses by gravitational radiation in inspiralling compact binaries to 5/2
post-Newtonian order”, Phys. Rev. D, 54, 1417-1438, (1996).
|
 |
17 |
Blanchet, L., “Gravitational Radiation from Relativistic Sources”, in Marck, J.A., and Lasota,
J.P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches
School of Physics, held in Les Houches, Haute Savoie, 26 September - 6 October, 1995, 33-66,
(Cambridge University Press, Cambridge, U.K., 1997). Related online version (cited on 11 July
1996):
http://arXiv.org/abs/gr-qc/9607025.
|
 |
18 |
Blanchet, L., “Gravitational radiation reaction and balance equations to post-Newtonian
order”, Phys. Rev. D, 55, 714-732, (1997). Related online version (cited on 20 September 1996):
http://arXiv.org/abs/gr-qc/9609049.
|
 |
19 |
Blanchet, L., “Gravitational-wave tails of tails”, Class. Quantum Grav., 15, 113-141, (1998).
Related online version (cited on 7 October 1997):
http://arXiv.org/abs/gr-qc/9710038.
|
 |
20 |
Blanchet, L., “On the multipole expansion of the gravitational field”, Class. Quantum Grav.,
15, 1971-1999, (1998). Related online version (cited on 29 January 1998):
http://arXiv.org/abs/gr-qc/9710038.
|
 |
21 |
Blanchet, L., “Quadrupole-quadrupole gravitational waves”, Class. Quantum Grav., 15,
89-111, (1998). Related online version (cited on 7 October 1997):
http://arXiv.org/abs/gr-qc/9710037.
|
 |
22 |
Blanchet, L., “Post-Newtonian Gravitational Radiation”, in Schmidt, B.G., ed., Einstein’s Field
Equations and Their Physical Implications: Selected Essays in Honour of Jürgen Ehlers, vol.
540 of Lecture Notes in Physics, 225-271, (Springer, Berlin, Germany; New York, U.S.A., 2000).
|
 |
23 |
Blanchet, L., “Innermost circular orbit of binary black holes at the third post-Newtonian
approximation”, Phys. Rev. D, 65, 124009, (2002). Related online version (cited on 26 April
2006):
http://arXiv.org/abs/gr-qc/0112056.
|
 |
24 |
Blanchet, L., “On the accuracy of the post-Newtonian approximation”, in Ciufolini, I.,
Dominici, D., and Lusanna, L., eds., 2001: A Relativistic Spacetime Odyssey, Proceedings of the
Johns Hopkins Workshop on Current Problems in Particle Theory 25, Firenze, 2001 (September
3-5), 411, (World Scientific, River Edge, U.S.A., 2003). Related online version (cited on 26
April 2006):
http://arXiv.org/abs/gr-qc/0207037.
|
 |
25 |
Blanchet, L., Buonanno, A., and Faye, G., “Higher-order spin effects in the dynamics of compact
binaries II. Radiation field”, in preparation, (2006).
|
 |
26 |
Blanchet, L., and Damour, T., “Radiative gravitational fields in general relativity. I. General
structure of the field outside the source”, Philos. Trans. R. Soc. London, Ser. A, 320, 379-430,
(1986).
|
 |
27 |
Blanchet, L., and Damour, T., “Tail-transported temporal correlations in the dynamics of a
gravitating system”, Phys. Rev. D, 37, 1410-1435, (1988).
|
 |
28 |
Blanchet, L., and Damour, T., “Post-Newtonian generation of gravitational waves”, Ann.
Inst. Henri Poincare A, 50, 377-408, (1989).
|
 |
29 |
Blanchet, L., and Damour, T., “Hereditary effects in gravitational radiation”, Phys. Rev. D,
46, 4304-4319, (1992).
|
 |
30 |
Blanchet, L., Damour, T., and Esposito-Farèse, G., “Dimensional regularization of the third
post-Newtonian dynamics of point particles in harmonic coordinates”, Phys. Rev. D, 69,
124007, (2004). Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0311052.
|
 |
31 |
Blanchet, L., Damour, T., Esposito-Farèse, G., and Iyer, B.R., “Gravitational radiation from
inspiralling compact binaries completed at the third post-Newtonian order”, Phys. Rev. Lett.,
93, 091101, (2004). Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0406012.
|
 |
32 |
Blanchet, L., Damour, T., Esposito-Farèse, G., and Iyer, B.R., “Dimensional regularization
of the third post-Newtonian gravitational wave generation of two point masses”, Phys.
Rev. D, 71, 124004-1-36, (2005).
|
 |
33 |
Blanchet, L., Damour, T., and Iyer, B.R., “Gravitational waves from inspiralling compact
binaries: Energy loss and waveform to second-post-Newtonian order”, Phys. Rev. D, 51,
5360-5386, (1995). Related online version (cited on 24 January 1995):
http://arXiv.org/abs/gr-qc/9501029. Erratum Phys. Rev. D, 54, 1860, (1996).
|
 |
34 |
Blanchet, L., Damour, T., and Iyer, B.R., “Surface-integral expressions for the multipole
moments of post-Newtonian sources and the boosted Schwarzschild solution”, Class. Quantum
Grav., 22, 155, (2005). Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0410021.
|
 |
35 |
Blanchet, L., Damour, T., Iyer, B.R., Will, C.M., and Wiseman, A.G., “Gravitational-Radiation
Damping of Compact Binary Systems to Second Post-Newtonian Order”, Phys. Rev. Lett., 74,
3515-3518, (1995). Related online version (cited on 23 January 1995):
http://arXiv.org/abs/gr-qc/9501027.
|
 |
36 |
Blanchet, L., and Faye, G., “Hadamard regularization”, J. Math. Phys., 41, 7675-7714, (2000).
Related online version (cited on 28 July 2000):
http://arXiv.org/abs/gr-qc/0004008.
|
 |
37 |
Blanchet, L., and Faye, G., “On the equations of motion of point-particle binaries at the third
post-Newtonian order”, Phys. Lett. A, 271, 58-64, (2000). Related online version (cited on 22
May 2000):
http://arXiv.org/abs/gr-qc/0004009.
|
 |
38 |
Blanchet, L., and Faye, G., “General relativistic dynamics of compact binaries at the third
post-Newtonian order”, Phys. Rev. D, 63, 062005-1-43, (2001). Related online version (cited
on 18 November 2000):
http://arXiv.org/abs/gr-qc/0007051.
|
 |
39 |
Blanchet, L., and Faye, G., “Lorentzian regularization and the problem of point-like particles
in general relativity”, J. Math. Phys., 42, 4391-4418, (2001). Related online version (cited on
4 April 2001):
http://arXiv.org/abs/gr-qc/0006100.
|
 |
40 |
Blanchet, L., Faye, G., Iyer, B.R., and Joguet, B., “Gravitational-wave inspiral of compact
binary systems to 7/2 post-Newtonian order”, Phys. Rev. D, 65, 061501-1-5, (2002). Related
online version (cited on 26 May 2001):
http://arXiv.org/abs/gr-qc/0105099.
|
 |
41 |
Blanchet, L., Faye, G., and Nissanke, S., “Structure of the post-Newtonian expansion in general
relativity”, Phys. Rev. D, 72, 044024, (2005).
|
 |
42 |
Blanchet, L., Faye, G., and Ponsot, B., “Gravitational field and equations of motion of compact
binaries to 5/2 post-Newtonian order”, Phys. Rev. D, 58, 124002-1-20, (1998). Related online
version (cited on 11 August 1998):
http://arXiv.org/abs/gr-qc/9804079.
|
 |
43 |
Blanchet, L., and Iyer, B.R., “Third post-Newtonian dynamics of compact binaries: Equations
of motion in the center-of-mass frame”, Class. Quantum Grav., 20, 755, (2003). Related online
version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0209089.
|
 |
44 |
Blanchet, L., and Iyer, B.R., “Hadamard regularization of the third post-Newtonian
gravitational wave generation of two point masses”, Phys. Rev. D, 71, 024004, (2004). Related
online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0409094.
|
 |
45 |
Blanchet, L., Iyer, B.R., and Joguet, B., “Gravitational waves from inspiralling compact
binaries: Energy flux to third post-Newtonian order”, Phys. Rev. D, 65, 064005-1-41, (2002).
Related online version (cited on 26 May 2001):
http://arXiv.org/abs/gr-qc/0105098.
|
 |
46 |
Blanchet, L., Iyer, B.R., Will, C.M., and Wiseman, A.G., “Gravitational waveforms from
inspiralling compact binaries to second-post-Newtonian order”, Class. Quantum Grav., 13,
575-584, (1996). Related online version (cited on 13 February 1996):
http://arXiv.org/abs/gr-qc/9602024.
|
 |
47 |
Blanchet, L., and Sathyaprakash, B.S., “Signal analysis of gravitational wave tails”, Class.
Quantum Grav., 11, 2807-2831, (1994).
|
 |
48 |
Blanchet, L., and Sathyaprakash, B.S., “Detecting a tail effect in gravitational-wave
experiments”, Phys. Rev. Lett., 74, 1067-1070, (1995).
|
 |
49 |
Blanchet, L., and Schäfer, G., “Higher-order gravitational-radiation losses in binary systems”,
Mon. Not. R. Astron. Soc., 239, 845-867, (1989).
|
 |
50 |
Blanchet, L., and Schäfer, G., “Gravitational wave tails and binary star systems”,
Class. Quantum Grav., 10, 2699-2721, (1993).
|
 |
51 |
Bollini, C.G., and Giambiagi, J.J., “Lowest order “divergent” graphs in v-dimensional space”,
Phys. Lett. B, 40, 566-568, (1972).
|
 |
52 |
Bonazzola, S., Gourgoulhon, E., and Marck, J.-A., “Numerical models of irrotational binary
neutron stars in general relativity”, Phys. Rev. Lett., 82, 892, (1999). Related online version
(cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/9810072.
|
 |
53 |
Bondi, H., van der Burg, M.G.J., and Metzner, A.W.K., “Gravitational waves in general
relativity VII. Waves from axi-symmetric isolated systems”, Proc. R. Soc. London, Ser. A,
269, 21-52, (1962).
|
 |
54 |
Bonnor, W.B., “Spherical gravitational waves”, Philos. Trans. R. Soc. London, Ser. A, 251,
233-271, (1959).
|
 |
55 |
Bonnor, W.B., and Rotenberg, M.A., “Transport of momentum by gravitational waves - Linear
approximation”, Proc. R. Soc. London, Ser. A, 265, 109, (1961).
|
 |
56 |
Bonnor, W.B., and Rotenberg, M.A., “Gravitational waves from isolated sources”, Proc. R.
Soc. London, Ser. A, 289, 247-274, (1966).
|
 |
57 |
Breitenlohner, P., and Maison, D., “Dimensional renormalization and the action principle”,
Commun. Math. Phys., 52, 11-38, (1977).
|
 |
58 |
Buonanno, A., Chen, Y., and Vallisneri, M., “Detecting gravitational waves from precessing
binaries of spinning compact objects: Adiabatic limit”, Phys. Rev. D, 67, 104025-1-31, (2003).
Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0211087.
|
 |
59 |
Buonanno, A., Chen, Y., and Vallisneri, M., “Detection template families for gravitational
waves from the final stages of binary black-holes binaries: Nonspinning case”, Phys. Rev. D,
67, 024016, (2003). Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0205122.
|
 |
60 |
Buonanno, A., and Damour, T., “Effective one-body approach to general relativistic two-body
dynamics, ADM formalism”, Phys. Rev. D, 59, 084006, (1999). Related online version (cited
on 26 April 2006):
http://arXiv.org/abs/gr-qc/9811091.
|
 |
61 |
Buonanno, A., and Damour, T., “Transition from inspiral to plunge in binary black hole
coalescences”, Phys. Rev. D, 62, 064015, (2000). Related online version (cited on 26 April
2006):
http://arXiv.org/abs/gr-qc/0001013.
|
 |
62 |
Burke, W.L., “Gravitational radiation damping of slowly moving systems calculated using
matched asymptotic expansions”, J. Math. Phys., 12(3), 401-418, (1971).
|
 |
63 |
Burke, W.L., and Thorne, K.S., “Gravitational Radiation Damping”, in Carmeli, M., Fickler,
S.I., and Witten, L., eds., Relativity, Proceedings of the Relativity Conference in the Midwest,
held at Cincinnati, Ohio, June 2-6, 1969, 209-228, (Plenum Press, New York, U.S.A.; London,
U.K., 1970).
|
 |
64 |
Campbell, W.B., Macek, J., and Morgan, T.A., “Relativistic time-dependent multipole analysis
for scalar, electromagnetic, and gravitational fields”, Phys. Rev. D, 15, 2156-2164, (1977).
|
 |
65 |
Campbell, W.B., and Morgan, T.A., “Debye Potentials For Gravitational Field”, Physica,
53(2), 264, (1971).
|
 |
66 |
Chandrasekhar, S., “The Post-Newtonian Equations of Hydrodynamics in General Relativity”,
Astrophys. J., 142, 1488-1540, (1965).
|
 |
67 |
Chandrasekhar, S., and Esposito, F.P., “The 5/2-Post-Newtonian Equations of Hydrodynamics
and Radiation Reaction in General Relativity”, Astrophys. J., 160, 153-179, (1970).
|
 |
68 |
Chandrasekhar, S., and Nutku, Y., “The Second Post-Newtonian Equations of Hydrodynamics
in General Relativity”, Astrophys. J., 158, 55-79, (1969).
|
 |
69 |
Chicone, C., Kopeikin, S.M., Mashhoon, B., and Retzloff, D.G., “Delay equations and radiation
damping”, Phys. Lett. A, 285, 17-26, (2001). Related online version (cited on 2 May 2001):
http://arXiv.org/abs/gr-qc/0101122.
|
 |
70 |
Cho, H.T., “Post-Newtonian approximation for spinning particles”, Class. Quantum Grav., 15,
2465, (1998). Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/9703071.
|
 |
71 |
Christodoulou, D., “Nonlinear Nature of Gravitation and Gravitational-Wave Experiments”,
Phys. Rev. Lett., 67, 1486-1489, (1991).
|
 |
72 |
Christodoulou, D., and Schmidt, B.G., “Convergent and asymptotic iteration methods in
general-relativity”, Commun. Math. Phys., 68, 275-289, (1979).
|
 |
73 |
Collins, J.C., Renormalization: An introduction to renormalization, the renormalization group,
and the operator-product expansion, (Cambridge University Press, Cambridge, U.K.; New York,
U.S.A., 1984).
|
 |
74 |
Cook, G.B., and Pfeiffer, H.P., “Excision boundary conditions for black-hole initial data”, Phys.
Rev. D, 70, 104016-1-24, (2004).
|
 |
75 |
Cooperstock, F.I., and Booth, D.J., “Angular-Momentum Flux For Gravitational Radiation
To Octupole Order”, Nuovo Cimento, 62(1), 163, (1969).
|
 |
76 |
Crowley, R.J., and Thorne, K.S., “Generation of gravitational waves. II. Post-linear formalism
revisited”, Astrophys. J., 215, 624-635, (1977).
|
 |
77 |
Cutler, C., Apostolatos, T.A., Bildsten, L., Finn, L.S., Flanagan, É.É., Kennefick, D.,
MarkoviÄ, D.M., Ori, A., Poisson, E., Sussman, G.J., and Thorne, K.S., “The last three
minutes: Issues in gravitational wave measurements of coalescing compact binaries”, Phys. Rev.
Lett., 70, 2984-2987, (1993).
|
 |
78 |
Cutler, C., Finn, L.S., Poisson, E., and Sussman, G.J., “Gravitational radiation from a particle
in circular orbit around a black hole. II. Numerical results for the nonrotating case”, Phys.
Rev. D, 47, 1511-1518, (1993).
|
 |
79 |
Cutler, C., and Flanagan, É.É., “Gravitational waves from merging compact binaries: How
accurately can one extract the binary’s parameters from the inspiral waveform?”, Phys. Rev.
D, 49, 2658-2697, (1994).
|
 |
80 |
Damour, T., “The two-body problem and radiation damping in general-relativity”, C. R. Acad.
Sci. Ser. II, 294, 1355-1357, (1982).
|
 |
81 |
Damour, T., “Gravitational radiation and the motion of compact bodies”, in Deruelle, N., and
Piran, T., eds., Gravitational Radiation, NATO Advanced Study Institute, Centre de physique
des Houches, 2-21 June 1982, 59-144, (North-Holland; Elsevier, Amsterdam, Netherlands; New
York, U.S.A., 1983).
|
 |
82 |
Damour, T., “Gravitational Radiation Reaction in the Binary Pulsar and the
Quadrupole-Formula Controversy”, Phys. Rev. Lett., 51, 1019-1021, (1983).
|
 |
83 |
Damour, T., “An Introduction to the Theory of Gravitational Radiation”, in Carter, B.,
and Hartle, J.B., eds., Gravitation in Astrophysics: Cargèse 1986, Proceedings of a NATO
Advanced Study Institute on Gravitation in Astrophysics, held July 15-31, 1986 in Cargése,
France, vol. 156 of NATO ASI Series B, 3-62, (Plenum Press, New York, U.S.A., 1987).
|
 |
84 |
Damour, T., “The problem of motion in Newtonian and Einsteinian gravity”, in Hawking, S.W.,
and Israel, W., eds., Three Hundred Years of Gravitation, 128-198, (Cambridge University
Press, Cambridge, U.K.; New York, U.S.A., 1987).
|
 |
85 |
Damour, T., and Deruelle, N., “Generalized lagrangian of two point masses in the
post-post-Newtonian approximation of general-relativity”, C. R. Acad. Sci. Ser. II, 293,
537-540, (1981).
|
 |
86 |
Damour, T., and Deruelle, N., “Radiation reaction and angular momentum loss in small angle
gravitational scattering”, Phys. Lett. A, 87, 81-84, (1981).
|
 |
87 |
Damour, T., and Esposito-Farèse, G., “Testing gravity to second post-Newtonian order: A
Field theory approach”, Phys. Rev. D, 53, 5541-5578, (1996). Related online version (cited on
26 April 2006):
http://arXiv.org/abs/gr-qc/9506063.
|
 |
88 |
Damour, T., Gourgoulhon, E., and Grandclément, P., “Circular orbits of corotating binary
black holes: Comparison between analytical and numerical results”, Phys. Rev. D, 66,
024007-1-15, (2002). Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0204011.
|
 |
89 |
Damour, T., and Iyer, B.R., “Multipole analysis for electromagnetism and linearized gravity
with irreducible Cartesian tensors”, Phys. Rev. D, 43, 3259-3272, (1991).
|
 |
90 |
Damour, T., and Iyer, B.R., “Post-Newtonian generation of gravitational waves. II. The
spin moments”, Ann. Inst. Henri Poincare A, 54, 115-164, (1991).
|
 |
91 |
Damour, T., Iyer, B.R., Jaranowski, P., and Sathyaprakash, B.S., “Gravitational waves from
black hole binary inspiral and merger: The span of third post-Newtonian effective-one-body
templates”, Phys. Rev. D, 67, 064028, (2003). Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0211041.
|
 |
92 |
Damour, T., Iyer, B.R., and Sathyaprakash, B.S., “Improved filters for gravitational waves from
inspiraling compact binaries”, Phys. Rev. D, 57, 885-907, (1998). Related online version (cited
on 18 August 1997):
http://arXiv.org/abs/gr-qc/9708034.
|
 |
93 |
Damour, T., Iyer, B.R., and Sathyaprakash, B.S., “Frequency-domain P-approximant filters
for time-truncated inspiral gravitational wave signals from compact binaries”, Phys. Rev. D,
62, 084036, (2000). Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0001023.
|
 |
94 |
Damour, T., Jaranowski, P., and Schäfer, G., “On the determination of the last stable orbit for
circular general relativistic binaries at the third post-Newtonian approximation”, Phys. Rev.
D, 62, 084011-1-21, (2000). Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0005034.
|
 |
95 |
Damour, T., Jaranowski, P., and Schäfer, G., “Poincaré invariance in the ADM Hamiltonian
approach to the general relativistic two-body problem”, Phys. Rev. D, 62, 021501-1-5, (2000).
Related online version (cited on 21 October 2000):
http://arXiv.org/abs/gr-qc/0003051. Erratum Phys. Rev. D, 63, 029903, (2001).
|
 |
96 |
Damour, T., Jaranowski, P., and Schäfer, G., “Dimensional regularization of the gravitational
interaction of point masses”, Phys. Lett. B, 513, 147-155, (2001). Related online version (cited
on 11 May 2001):
http://arXiv.org/abs/gr-qc/0105038.
|
 |
97 |
Damour, T., Jaranowski, P., and Schäfer, G., “Equivalence between the ADM-Hamiltonian
and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact
binaries”, Phys. Rev. D, 63, 044021, (2001). Related online version (cited on 10 November
2000):
http://arXiv.org/abs/gr-qc/0010040. Erratum Phys. Rev. D, 66, 029901, (2002).
|
 |
98 |
Damour, T., and Schäfer, G., “Lagrangians for n point masses at the second post-Newtonian
approximation of general-relativity”, Gen. Relativ. Gravit., 17, 879-905, (1985).
|
 |
99 |
Damour, T., and Schäfer, G., “Higher order relativistic periastron advances in binary pulsars”,
Nuovo Cimento B, 101, 127, (1988).
|
 |
100 |
Damour, T., and Schmidt, B., “Reliability of perturbation theory in general relativity”, J.
Math. Phys., 31, 2441-2458, (1990).
|
 |
101 |
Damour, T., Soffel, M., and Xu, C., “General-relativistic celestial mechanics. I. Method and
definition of reference systems”, Phys. Rev. D, 43, 3273-3307, (1991).
|
 |
102 |
Damour, T., and Taylor, J.H., “On the orbital period change of the Binary Pulsar PSR
1913+16”, Astrophys. J., 366, 501-511, (1991).
|
 |
103 |
de Andrade, V.C., Blanchet, L., and Faye, G., “Third post-Newtonian dynamics of compact
binaries: Noetherian conserved quantities and equivalence between the harmonic-coordinate
and ADM-Hamiltonian formalisms”, Class. Quantum Grav., 18, 753-778, (2001). Related
online version (cited on 19 December 2000):
http://arXiv.org/abs/gr-qc/0011063.
|
 |
104 |
Deruelle, N., Sur les équations du mouvement et le rayonnement gravitationnel d’un système
binaire en Relativité Générale, Ph.D. Thesis, (Université Pierre et Marie Curie, Paris,
1982).
|
 |
105 |
Einstein, A., “Über Gravitationswellen”, Sitzungsber. K. Preuss. Akad. Wiss., 1918, 154-167,
(1918).
|
 |
106 |
Einstein, A., Infeld, L., and Hoffmann, B., “The Gravitational Equations and the Problem
of Motion”, Ann. Math., 39, 65-100, (1938).
|
 |
107 |
Epstein, R., and Wagoner, R.V., “Post-Newtonian generation of gravitational waves”,
Astrophys. J., 197, 717-723, (1975).
|
 |
108 |
Esposito, L.W., and Harrison, E.R., “Properties of the Hulse-Taylor binary pulsar system”,
Astrophys. J. Lett., 196, L1-L2, (1975).
|
 |
109 |
Faye, G., Equations du mouvement d’un système binaire d’objets compact à l’approximation
post-newtonienne, Ph.D. Thesis, (Université Paris VI, Paris, France, 1999).
|
 |
110 |
Faye, G., Blanchet, L., and Buonanno, A., “Higher-order spin effects in the dynamics of compact
binaries I. Equations of motion”, in preparation, (2006).
|
 |
111 |
Finn, L.S., and Chernoff, D.F., “Observing binary inspiral in gravitational radiation: One
interferometer”, Phys. Rev. D, 47, 2198-2219, (1993).
|
 |
112 |
Fock, V.A., “On motion of finite masses in general relativity”, J. Phys. (Moscow), 1(2), 81-116,
(1939).
|
 |
113 |
Fock, V.A., Theory of space, time and gravitation, (Pergamon, London, U.K., 1959).
|
 |
114 |
Friedman, J.L., UryĆ«, K., and Shibata, M., “Thermodynamics of binary black holes and
neutron stars”, Phys. Rev. D, 65, 064035-1-20, (2002).
|
 |
115 |
Futamase, T., “Strong-field point-particle limit and the equations of motion in the binary
pulsar”, Phys. Rev. D, 36, 321-329, (1987).
|
 |
116 |
Gal’tsov, D.V., Matiukhin, A.A., and Petukhov, V.I., “Relativistic corrections to the
gravitational radiation of a binary system and the fine structure of the spectrum”, Phys. Lett.
A, 77, 387-390, (1980).
|
 |
117 |
Gergely, L.Á., “Second post-Newtonian radiative evolution of the relative orientations of
angular momenta in spinning compact binaries”, Phys. Rev. D, 62, 024007-1-6, (2000). Related
online version (cited on 30 June 2006):
http://arXiv.org/abs/gr-qc/0003037.
|
 |
118 |
Gergely, L.Á., “Spin-spin effects in radiating compact binaries”, Phys. Rev. D, 61, 024035-1-9,
(2000). Related online version (cited on 30 June 2006):
http://arXiv.org/abs/gr-qc/9911082.
|
 |
119 |
Gergely, L.Á., Perjés, Z., and Vasúth, M., “Spin effects in gravitational radiation back
reaction. II. Finite mass effects”, Phys. Rev. D, 57, 3423-3432, (1998). Related online version
(cited on 30 June 2006):
http://arXiv.org/abs/gr-qc/980103.
|
 |
120 |
Geroch, R., “Multipole Moments. II. Curved Space”, J. Math. Phys., 11, 2580-2588, (1970).
|
 |
121 |
Geroch, R., and Horowitz, G.T., “Asymptotically simple does not imply asymptotically
Minkowskian”, Phys. Rev. Lett., 40, 203-206, (1978).
|
 |
122 |
Gopakumar, A., and Iyer, B.R., “Gravitational waves from inspiraling compact binaries:
Angular momentum flux, evolution of the orbital elements and the waveform to the second
post-Newtonian order”, Phys. Rev. D, 56, 7708-7731, (1997). Related online version (cited on
15 October 1997):
http://arXiv.org/abs/gr-qc/9710075.
|
 |
123 |
Gourgoulhon, E., Grandclément, P., and Bonazzola, S., “Binary black holes in circular orbits.
I. A global spacetime approach”, Phys. Rev. D, 65, 044020-1-19, (2002). Related online version
(cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0106015.
|
 |
124 |
Gourgoulhon, E., Grandclément, P., Taniguchi, K., Marck, J.-A., and Bonazzola, S.,
“Quasi-equilibrium sequences of synchronized and irrotational binary neutron stars in general
relativity”, Phys. Rev. D, 63, 064029, (2001). Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0007028.
|
 |
125 |
Gradshteyn, I.S., and Ryzhik, I.M., Table of Integrals, Series and Products, (Academic Press,
San Diego, U.S.A.; London, U.K., 1980).
|
 |
126 |
Grandclément, P., Gourgoulhon, E., and Bonazzola, S., “Binary black holes in circular orbits.
II. Numerical methods and first results”, Phys. Rev. D, 65, 044021-1-18, (2002). Related online
version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0106015.
|
 |
127 |
Grishchuk, L.P., and Kopeikin, S.M., “Equations of motion for isolated bodies with relativistic
corrections including the radiation-reaction force”, in Kovalevsky, J., and Brumberg, V.A.,
eds., Relativity in Celestial Mechanics and Astrometry: High Precision Dynamical Theories
and Observational Verifications, Proceedings of the 114th Symposium of the International
Astronomical Union, held in Leningrad, USSR, May 28-31, 1985, 19-34, (Reidel, Dordrecht,
Netherlands; Boston, U.S.A., 1986).
|
 |
128 |
Hadamard, J., Le problème de Cauchy et les équations aux dérivées partielles linéaires
hyperboliques, (Hermann, Paris, France, 1932).
|
 |
129 |
Hansen, R.O., “Multipole moments of stationary space-times”, J. Math. Phys., 15, 46-52,
(1974).
|
 |
130 |
Hunter, A.J., and Rotenberg, M.A., “The double-series approximation method in general
relativity. I. Exact solution of the (24) approximation. II. Discussion of ’wave tails’ in the (2s)
approximation”, J. Phys. A, 2, 34-49, (1969).
|
 |
131 |
Isaacson, R.A., and Winicour, J., “Harmonic and Null Descriptions of Gravitational Radiation”,
Phys. Rev., 168, 1451-1456, (1968).
|
 |
132 |
Itoh, Y., “Equation of motion for relativistic compact binaries with the strong field point
particle limit: Third post-Newtonian order”, Phys. Rev. D, 69, 064018-1-43, (2004).
|
 |
133 |
Itoh, Y., and Futamase, T., “New derivation of a third post-Newtonian equation of motion
for relativistic compact binaries without ambiguity”, Phys. Rev. D, 68, 121501(R), (2003).
|
 |
134 |
Itoh, Y., Futamase, T., and Asada, H., “Equation of motion for relativistic compact binaries
with the strong field point particle limit: Formulation, the first post-Newtonian order, and
multipole terms”, Phys. Rev. D, 62, 064002-1-12, (2000). Related online version (cited on 17
May 2000):
http://arXiv.org/abs/gr-qc/9910052.
|
 |
135 |
Itoh, Y., Futamase, T., and Asada, H., “Equation of motion for relativistic compact binaries
with the strong field point particle limit: The second and half post-Newtonian order”, Phys.
Rev. D, 63, 064038-1-21, (2001). Related online version (cited on 30 January 2001):
http://arXiv.org/abs/gr-qc/0101114.
|
 |
136 |
Iyer, B.R., and Will, C.M., “Post-Newtonian gravitational radiation reaction for two-body
systems”, Phys. Rev. Lett., 70, 113-116, (1993).
|
 |
137 |
Iyer, B.R., and Will, C.M., “Post-Newtonian gravitational radiation reaction for two-body
systems: Nonspinning bodies”, Phys. Rev. D, 52, 6882-6893, (1995).
|
 |
138 |
Jaranowski, P., and Schäfer, G., “Radiative 3.5 post-Newtonian ADM Hamiltonian for
many-body point-mass systems”, Phys. Rev. D, 55, 4712-4722, (1997).
|
 |
139 |
Jaranowski, P., and Schäfer, G., “Third post-Newtonian higher order ADM Hamilton
dynamics for two-body point-mass systems”, Phys. Rev. D, 57, 7274-7291, (1998). Related
online version (cited on 17 December 1997):
http://arXiv.org/abs/gr-qc/9712075. Erratum Phys. Rev. D, 63, 029902, (2001).
|
 |
140 |
Jaranowski, P., and Schäfer, G., “The binary black-hole problem at the third post-Newtonian
approximation in the orbital motion: Static part”, Phys. Rev. D, 60, 124003-1-7, (1999).
Related online version (cited on 23 June 1999):
http://arXiv.org/abs/gr-qc/9906092.
|
 |
141 |
Jaranowski, P., and Schäfer, G., “The binary black-hole dynamics at the third post-Newtonian
order in the orbital motion”, Ann. Phys. (Berlin), 9, 378-383, (2000). Related online version
(cited on 14 March 2000):
http://arXiv.org/abs/gr-qc/0003054.
|
 |
142 |
Kerlick, G.D., “Finite reduced hydrodynamic equations in the slow-motion approximation to
general relativity. Part I. First post-Newtonian equations”, Gen. Relativ. Gravit., 12, 467-482,
(1980).
|
 |
143 |
Kerlick, G.D., “Finite reduced hydrodynamic equations in the slow-motion approximation to
general relativity. Part II. Radiation reaction and higher-order divergent terms”, Gen. Relativ.
Gravit., 12, 521-543, (1980).
|
 |
144 |
Kidder, L.E., “Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V.
Spin effects”, Phys. Rev. D, 52, 821-847, (1995). Related online version (cited on 8 June 1995):
http://arXiv.org/abs/gr-qc/9506022.
|
 |
145 |
Kidder, L.E., Will, C.M., and Wiseman, A.G., “Coalescing binary systems of compact objects
to (post)5/2-Newtonian order. III. Transition from inspiral to plunge”, Phys. Rev. D, 47,
3281-3291, (1993).
|
 |
146 |
Kidder, L.E., Will, C.M., and Wiseman, A.G., “Spin effects in the inspiral of coalescing
compact binaries”, Phys. Rev. D, 47, R4183-R4187, (1993).
|
 |
147 |
Kochanek, C.S., “Coalescing Binary Neutron Stars”, Astrophys. J., 398(1), 234-247, (1992).
|
 |
148 |
Königsdörffer, C., Faye, G., and Schäfer, G., “Binary black-hole dynamics at the
third-and-a-half post-Newtonian order in the ADM formalism”, Phys. Rev. D, 68, 044004-1-19,
(2003). Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0305048.
|
 |
149 |
Kopeikin, S.M., “The equations of motion of extended bodies in general-relativity with
conservative corrections and radiation damping taken into account”, Astron. Zh., 62, 889-904,
(1985).
|
 |
150 |
Kopeikin, S.M., “Celestial Coordinate Reference Systems in Curved Spacetime”, Celest. Mech.,
44, 87, (1988).
|
 |
151 |
Kopeikin, S.M., Schäfer, G., Gwinn, C.R., and Eubanks, T.M., “Astrometric and timing
effects of gravitational waves from localized sources”, Phys. Rev. D, 59, 084023-1-29, (1999).
Related online version (cited on 17 February 1999):
http://arXiv.org/abs/gr-qc/9811003.
|
 |
152 |
Królak, A., Kokkotas, K.D., and Schäfer, G., “Estimation of the post-Newtonian parameters
in the gravitational-wave emission of a coalescing binary”, Phys. Rev. D, 52, 2089-2111, (1995).
Related online version (cited on 7 March 1995):
http://arXiv.org/abs/gr-qc/9503013.
|
 |
153 |
Landau, L.D., and Lifshitz, E.M., The classical theory of fields, (Pergamon Press, Oxford, U.K.;
New York, U.S.A., 1971), 3rd edition.
|
 |
154 |
Limousin, F., Gondek-RosiĆska, D., and Gourgoulhon, E., “Last orbits of binary strange quark
stars”, Phys. Rev. D, 71, 064012-1-11, (2005). Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0411127.
|
 |
155 |
Lincoln, C.W., and Will, C.M., “Coalescing binary systems of compact objects to
(post)5/2-Newtonian order: Late time evolution and gravitational radiation emission”, Phys.
Rev. D, 42, 1123-1143, (1990).
|
 |
156 |
Lorentz, H.A., and Droste, J., in The Collected Papers of H.A. Lorentz, Vol. 5, (Nijhoff,
The Hague, Netherlands, 1937), Versl. K. Akad. Wet. Amsterdam, 26, 392 and 649, (1917).
|
 |
157 |
Madore, J., “Gravitational radiation from a bounded source. I”, Ann. Inst. Henri Poincare,
12, 285-305, (1970). Related online version (cited on 02 May 2006):
http://www.numdam.org/item?id=AIHPA_1970__12_3_285_0.
|
 |
158 |
Martin, J., and Sanz, J.L., “Slow motion approximation in predictive relativistic mechanics.
II. Non-interaction theorem for interactions derived from the classical field-theory”, J. Math.
Phys., 20, 25-34, (1979).
|
 |
159 |
Mathews, J., “Gravitational multipole radiation”, J. Soc. Ind. Appl. Math., 10, 768-780,
(1962).
|
 |
160 |
Mino, Y., Sasaki, M., Shibata, M., Tagoshi, H., and Tanaka, T., “Black Hole Perturbation”,
Prog. Theor. Phys. Suppl., 128, 1-121, (1997). Related online version (cited on 12 December
1997):
http://arXiv.org/abs/gr-qc/9712057.
|
 |
161 |
Mora, T., and Will, C.M., “A post-Newtonian diagnostic of quasi-equilibrium binary
configurations of compact objects”, Phys. Rev. D, 69, 104021, (2004). Related online version
(cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0312082.
|
 |
162 |
Moritz, H., Advanced Physical Geodesy, (H. Wichmann, Karlsruhe, Germany, 1980).
|
 |
163 |
Newhall, X.X., Standish, E.M., and Williams, J.G., “DE-102 - A Numerically Integrated
Ephemeris of the Moon and Planets Spanning 44 Centuries”, Astron. Astrophys., 125, 150-167,
(1983).
|
 |
164 |
Nissanke, S., and Blanchet, L., “Gravitational radiation reaction in the equations of motion
of compact binaries to 3.5 post-Newtonian order”, Class. Quantum Grav., 22, 1007, (2005).
Related online version (cited on 26 April 2006):
http://arXiv.org/abs/gr-qc/0412018.
|
 |
165 |
Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Physically acceptable solution of Eintein’s
equation for many-body system”, Prog. Theor. Phys., 50, 492-514, (1973).
|
 |
166 |
Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Coordinate condition and higher-order
gravitational potential in canonical formalism”, Prog. Theor. Phys., 51, 1598-1612, (1974).
|
 |
167 |
Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Higher-order gravitational potential for
many-body system”, Prog. Theor. Phys., 51, 1220-1238, (1974).
|
 |
168 |
Owen, B.J., Tagoshi, H., and Ohashi, A., “Nonprecessional spin-orbit effects on gravitational
waves from inspiraling compact binaries to second post-Newtonian order”, Phys. Rev. D, 57,
6168-6175, (1998). Related online version (cited on 31 October 1997):
http://arXiv.org/abs/gr-qc/9710134.
|
 |
169 |
Papapetrou, A., “Equations of motion in general relativity”, Proc. Phys. Soc. London, Sect. B,
64, 57-75, (1951).
|
 |
170 |
Papapetrou, A., Ann. Inst. Henri Poincare, XIV, 79, (1962).
|
 |
171 |
Papapetrou, A., “Relativité - une formule pour le rayonnement gravitationnel en première
approximation”, C. R. Acad. Sci. Ser. II, 255, 1578, (1962).
|
 |
172 |
Papapetrou, A., and Linet, B., “Equation of motion including the reaction of gravitational
radiation”, Gen. Relativ. Gravit., 13, 335, (1981).
|
 |
173 |
Pati, M.E., and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion
via direct integration of the relaxed Einstein equations: Foundations”, Phys. Rev. D, 62,
124015-1-28, (2000). Related online version (cited on 31 July 2000):
http://arXiv.org/abs/gr-qc/0007087.
|
 |
174 |
Pati, M.E., and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion
via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to
second post-Newtonian order, and radiation-reaction to 3.5 post-Newtonian order”, Phys. Rev.
D, 65, 104008-1-21, (2001). Related online version (cited on 31 December 2001):
http://arXiv.org/abs/gr-qc/0201001.
|
 |
175 |
Penrose, R., “Asymptotic Properties of Fields and Space-Times”, Phys. Rev. Lett., 10, 66-68,
(1963).
|
 |
176 |
Penrose, R., “Zero rest-mass fields including gravitation: asymptotic behaviour”, Proc. R. Soc.
London, Ser. A, 284, 159-203, (1965).
|
 |
177 |
Peters, P.C., “Gravitational Radiation and the Motion of Two Point Masses”, Phys. Rev., 136,
B1224-B1232, (1964).
|
 |
178 |
Peters, P.C., and Mathews, J., “Gravitational Radiation from Point Masses in a Keplerian
Orbit”, Phys. Rev., 131, 435-440, (1963).
|
 |
179 |
Petrova, N.M., “Ob Uravnenii Dvizheniya i Tenzore Materii dlya Sistemy Konechnykh Mass v
Obshchei Teorii Otnositielnosti”, J. Exp. Theor. Phys., 19(11), 989-999, (1949).
|
 |
180 |
Pfeiffer, H.P., Teukolsky, S.A., and Cook, G.B., “Quasicircular orbits for spinning binary black
holes”, Phys. Rev. D, 62, 104018-1-11, (2000).
|
 |
181 |
Pirani, F.A.E., “Introduction to Gravitational Radiation Theory”, in Trautman, A., Pirani,
F.A.E., and Bondi, H., eds., Lectures on General Relativity, Vol. 1, Brandeis Summer Institute
in Theoretical Physics, 249-373, (Prentice-Hall, Englewood Cliffs, U.S.A., 1964).
|
 |
182 |
Poisson, E., “Gravitational radiation from a particle in circular orbit around a black hole.
I. Analytic results for the nonrotating case”, Phys. Rev. D, 47, 1497-1510, (1993).
|
 |
183 |
Poisson, E., “Gravitational radiation from a particle in circular orbit around a black-hole. VI.
Accuracy of the post-Newtonian expansion”, Phys. Rev. D, 52, 5719-5723, (1995). Related
online version (cited on 11 February 1997):
http://arXiv.org/abs/gr-qc/9505030. Addendum Phys. Rev. D 55 (1997) 7980-7981.
|
 |
184 |
Poisson, E., and Will, C.M., “Gravitational waves from inspiralling compact binaries:
Parameter estimation using second-post-Newtonian waveforms”, Phys. Rev. D, 52, 848-855,
(1995). Related online version (cited on 24 February 1995):
http://arXiv.org/abs/gr-qc/9502040.
|
 |
185 |
Poujade, O., and Blanchet, L., “Post-Newtonian approximation for isolated systems calculated
by matched asymptotic expansions”, Phys. Rev. D, 65, 124020-1-25, (2002). Related online
version (cited on 21 December 2001):
http://arXiv.org/abs/gr-qc/0112057.
|
 |
186 |
Press, W.H., “Gravitational Radiation from Sources Which Extend Into Their Own Wave
Zone”, Phys. Rev. D, 15, 965-968, (1977).
|
 |
187 |
Rendall, A.D., “Convergent and divergent perturbation series and the post-Minkowskian
scheme”, Class. Quantum Grav., 7, 803, (1990).
|
 |
188 |
Rendall, A.D., “On the definition of post-Newtonian approximations”, Proc. R. Soc. London,
Ser. A, 438, 341-360, (1992).
|
 |
189 |
Rendall, A.D., “The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein
system”, Commun. Math. Phys., 163, 89, (1994). Related online version (cited on 26 April
2006):
http://arXiv.org/abs/gr-qc/9303027.
|
 |
190 |
Riesz, M., “L’intégrale de Riemann-Liouville et le problème de Cauchy”, Acta Math., 81,
1-218, (1949).
|
 |
191 |
Sachs, R., and Bergmann, P.G., “Structure of Particles in Linearized Gravitational Theory”,
Phys. Rev., 112, 674-680, (1958).
|
 |
192 |
Sachs, R.K., “Gravitational waves in general relativity VI. The outgoing radiation condition”,
Proc. R. Soc. London, Ser. A, 264, 309-338, (1961).
|
 |
193 |
Sachs, R.K., “Gravitational waves in general relativity VIII. Waves in asymptotically flat
space-time”, Proc. R. Soc. London, Ser. A, 270, 103-126, (1962).
|
 |
194 |
Sasaki, M., “Post-Newtonian Expansion of the Ingoing-Wave Regge-Wheeler Function”, Prog.
Theor. Phys., 92, 17-36, (1994).
|
 |
195 |
Schäfer, G., “The Gravitational Quadrupole Radiation-Reaction Force and the Canonical
Formalism of ADM”, Ann. Phys. (N.Y.), 161, 81-100, (1985).
|
 |
196 |
Schäfer, G., “The ADM Hamiltonian at the Postlinear Approximation”, Gen. Relativ. Gravit.,
18, 255-270, (1986).
|
 |
197 |
Schäfer, G., and Wex, N., “Second post-Newtonian motion of compact binaries”, Phys.
Lett. A, 174, 196-205, (1993). Erratum Phys. Lett. A, 177, 461, (1993).
|
 |
198 |
Schwartz, L., “Sur l’impossibilité de la multiplication des distributions”, C. R. Acad. Sci. Ser.
II, 239, 847-848, (1954).
|
 |
199 |
Schwartz, L., Théorie des distributions, (Hermann, Paris, France, 1978).
|
 |
200 |
Sellier, A., “Hadamard’s finite part concept in dimension n > 2, distributional definition,
regularization forms and distributional derivatives”, Proc. R. Soc. London, Ser. A, 445, 69-98,
(1994).
|
 |
201 |
Simon, W., and Beig, R., “The multipole structure of stationary space-times”, J. Math. Phys.,
24, 1163-1171, (1983).
|
 |
202 |
’t Hooft, G., and Veltman, M.J.G., “Regularization and renormalization of gauge fields”, Nucl.
Phys. B, 44, 189-213, (1972).
|
 |
203 |
Tagoshi, H., and Nakamura, T., “Gravitational waves from a point particle in circular orbit
around a black hole: Logarithmic terms in the post-Newtonian expansion”, Phys. Rev. D, 49,
4016-4022, (1994).
|
 |
204 |
Tagoshi, H., Ohashi, A., and Owen, B.J., “Gravitational field and equations of motion of
spinning compact binaries to 2.5-post-Newtonian order”, Phys. Rev. D, 63, 044006-1-14,
(2001). Related online version (cited on 4 October 2000):
http://arXiv.org/abs/gr-qc/0010014.
|
 |
205 |
Tagoshi, H., and Sasaki, M., “Post-Newtonian Expansion of Gravitational Waves from a
Particle in Circular Orbit around a Schwarzschild Black Hole”, Prog. Theor. Phys., 92, 745-771,
(1994).
|
 |
206 |
Tanaka, T., Tagoshi, H., and Sasaki, M., “Gravitational Waves by a Particle in Circular
Orbit around a Schwarzschild Black Hole”, Prog. Theor. Phys., 96, 1087-1101, (1996).
|
 |
207 |
Taylor, J.H., “Pulsar timing and relativistic gravity”, Class. Quantum Grav., 10, 167-174,
(1993).
|
 |
208 |
Taylor, J.H., Fowler, L.A., and McCulloch, P.M., “Measurements of general relativistic effects
in the binary pulsar PSR 1913+16”, Nature, 277, 437-440, (1979).
|
 |
209 |
Taylor, J.H., and Weisberg, J.M., “A New Test of General Relativity: Gravitational Radiation
and the Binary Pulsar PSR 1913+16”, Astrophys. J., 253, 908-920, (1982).
|
 |
210 |
Thorne, K.S., “Multipole expansions of gravitational radiation”, Rev. Mod. Phys., 52, 299-340,
(1980).
|
 |
211 |
Thorne, K.S., “The theory of gravitational radiation: An introductory review”, in Deruelle,
N., and Piran, T., eds., Gravitational Radiation, NATO Advanced Study Institute, Centre
de physique des Houches, 2-21 June 1982, 1-57, (North-Holland; Elsevier, Amsterdam,
Netherlands; New York, U.S.A., 1983).
|
 |
212 |
Thorne, K.S., “Gravitational radiation”, in Hawking, S.W., and Israel, W., eds., Three Hundred
Years of Gravitation, 330-458, (Cambridge University Press, Cambridge, U.K.; New York,
U.S.A., 1987).
|
 |
213 |
Thorne, K.S., “Gravitational-wave bursts with memory: The Christodoulou effect”, Phys. Rev.
D, 45, 520, (1992).
|
 |
214 |
Thorne, K.S., and Hartle, J.B., “Laws of motion and precession for black holes and other
bodies”, Phys. Rev. D, 31, 1815-1837, (1985).
|
 |
215 |
Thorne, K.S., and Kovàcs, S.J., “Generation of gravitational waves. I. Weak-field sources”,
Astrophys. J., 200, 245-262, (1975).
|
 |
216 |
Wagoner, R.V., “Test for Existence of Gravitational Radiation”, Astrophys. J. Lett., 196,
L63-L65, (1975).
|
 |
217 |
Wagoner, R.V., and Will, C.M., “Post-Newtonian gravitational radiation from orbiting
point masses”, Astrophys. J., 210, 764-775, (1976).
|
 |
218 |
Will, C.M.,
“Gravitational Waves from Inspiralling Compact Binaries: A Post-Newtonian Approach”, in
Sasaki, M., ed., Relativistic Cosmology, Proceedings of the 8th Nishinomiya-Yukawa Memorial
Symposium, on October 28-29, 1993, Shukugawa City Hall, Nishinomiya, Hyogo, Japan, vol. 8
of NYMSS, 83-98, (Universal Academy Press, Tokyo, Japan, 1994).
|
 |
219 |
Will, C.M., “Generation of Post-Newtonian Gravitational Radiation via Direct Integration of
the Relaxed Einstein Equations”, Prog. Theor. Phys. Suppl., 136, 158-167, (1999). Related
online version (cited on 15 October 1999):
http://arXiv.org/abs/gr-qc/9910057.
|
 |
220 |
Will, C.M., and Wiseman, A.G., “Gravitational radiation from compact binary systems:
Gravitational waveforms and energy loss to second post-Newtonian order”, Phys. Rev. D, 54,
4813-4848, (1996). Related online version (cited on 5 August 1996):
http://arXiv.org/abs/gr-qc/9608012.
|
 |
221 |
Wiseman, A.G., “Coalescing binary-systems of compact objects to 5/2-post-Newtonian order.
IV. The gravitational-wave tail”, Phys. Rev. D, 48, 4757-4770, (1993).
|
 |
222 |
Wiseman, A.G., and Will, C.M., “Christodoulou’s nonlinear gravitational-wave memory:
Evaluation in the quadrupole approximation”, Phys. Rev. D, 44, R2945-R2949, (1991).
|