To do this we first find the equivalent of the multipole expansion given in Theorem 5, which was
parametrized by non-trace-free multipole functions , in terms of new multipole functions
that are STF in all their indices
. The result (which follows from Equation (B.14a) in [28]) is
Theorem 6 The STF multipole moments and
of a post-Newtonian source are given, formally
up to any post-Newtonian order, by (
)
In these formulas the notation is as follows: Some convenient source densities are defined from the
post-Newtonian expansion of the pseudo-tensor by
For completeness, we give also the formulas for the four auxiliary source moments , which
parametrize the gauge vector
as defined in Equations (28
):
In fact, all these source moments make sense only in the form of a post-Newtonian expansion, so in
practice we need to know how to expand all the -integrals as series when
. Here is the
appropriate formula:
Needless to say, the formalism becomes prohibitively difficult to apply at very high post-Newtonian
approximations. Some post-Newtonian order being given, we must first compute the relevant relativistic
corrections to the pseudo stress-energy-tensor (this necessitates solving the field equations inside the
matter, see Section 5.5) before inserting them into the source moments (85
, 86
, 82
, 83
, 91
, 87
, 88
, 89
, 90
).
The formula (91
) is used to express all the terms up to that post-Newtonian order by means of more
tractable integrals extending over
. Given a specific model for the matter source we then have to find a
way to compute all these spatial integrals (we do it in Section 10 in the case of point-mass binaries). Next,
we must substitute the source multipole moments into the linearized metric (26
, 27
, 28
), and
iterate them until all the necessary multipole interactions taking place in the radiative moments
and
are under control. In fact, we shall work out these multipole interactions for
general sources in the next section up to the 3PN order. Only at this point does one have the
physical radiation field at infinity, from which we can build the templates for the detection and
analysis of gravitational waves. We advocate here that the complexity of the formalism reflects
simply the complexity of the Einstein field equations. It is probably impossible to devise a
different formalism, valid for general sources devoid of symmetries, that would be substantially
simpler.
![]() |
http://www.livingreviews.org/lrr-2006-4 |
© Max Planck Society and the author(s)
Problems/comments to |