A more intuitive understanding of the Riemann tensor is obtained by seeing how its presence leads to a path-dependence in the changes that a vector experiences as it moves from point to point in spacetime. Such a situation is known as a “non-integrability” condition, because the result depends on the whole path and not just the initial and final points. That is, it is unlike a total derivative which can be integrated and thus depends on only the lower and upper limits of the integration. Geometrically we say that the spacetime is curved, which is why the Riemann tensor is also known as the curvature tensor.
To illustrate the meaning of the curvature tensor, let us suppose that we are given a surface that can be
parameterized by the two parameters and
. Points that live on this surface will have coordinate
labels
. We want to consider an infinitesimally small “parallelogram” whose four
corners (moving counterclockwise with the first corner at the lower left) are given by
,
,
, and
. Generally speaking, any “movement”
towards the right of the parallelogram is effected by varying
, and that towards the top results
by varying
. The plan is to take a vector
at the lower-left corner
,
parallel transport it along a
curve to the lower-right corner at
where it will have the components
, and end up by parallel transporting
at
along an
curve to the upper-right corner at
. We will
call this path I and denote the final component values of the vector as
. We repeat the
same process except that the path will go from the lower-left to the upper-left and then on
to the upper-right corner. We will call this path II and denote the final component values as
.
Recalling Equation (32) as the definition of parallel transport, we first of all have
http://www.livingreviews.org/lrr-2007-1 | ![]() This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 Germany License. Problems/comments to |