Such a coordinate transformation to locally Minkowskian coordinates at each numerical interface assumes that the solution of the Riemann problem is the one in special relativity and planar symmetry. This last assumption is equivalent to the approach followed in classical fluid dynamics, when using the solution of Riemann problems in slab symmetry for problems in cylindrical or spherical coordinates, as the solution breaks down near the singular points (e.g., the polar axis in cylindrical coordinates). In analogy to classical fluid dynamics, the numerical error depends on the magnitude of the Christoffel symbols, which might be large whenever huge gradients or large temporal variations of the gravitational field are present. Finer grids and improved time-advancing methods will be required in those circumstances.
Following [320], we illustrate the procedure for computing the second flux integral in Equation (76
),
which we call
. We begin by expressing the integral on a basis
with
and
forming an
orthonormal basis in the plane orthogonal to
with
normal to the surface
and
and
tangent to that surface. The vectors of this basis verify
with
the
Minkowski metric (in the following, caret superscripts will refer to vector components in this
basis).
Denoting by the coordinates at the center of the interface at time
, we introduce the following
locally-Minkowskian coordinate system
, where the matrix
is given by
, calculated at
. In this system of coordinates the equations of general-relativistic
hydrodynamics transform into the equations of special relativistic hydrodynamics, in Cartesian coordinates,
but with nonzero sources, and the flux integral reads
At this point, all the theoretical work developed in recent years on special relativistic Riemann solvers
can be exploited. The quantity in parentheses in Equation (103) represents the numerical flux across
,
which can now be calculated by solving the special relativistic Riemann problem defined with the values at
the two sides of
of two independent thermodynamic variables (namely, the rest mass density
and
the specific internal energy
) and the components of the velocity in the orthonormal spatial basis
(
).
Once the Riemann problem has been solved, we can take advantage of the self-similar character of the
solution of the Riemann problem, which makes it constant on the surface , simplifying the calculation
of the above integral enormously:
http://www.livingreviews.org/lrr-2008-7 | ![]() This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 Germany License. Problems/comments to |