7.2 Set of open problems
We close this review with a list of open problems. We hope that the interested reader will tackle them
with the aim of shedding more light on the Kerr/CFT correspondence. We tried to order the problems with
increasing difficulty but the evaluation is rough and highly subjective.
- Hidden symmetries have been discussed so far for spin 0 probes. Discuss hidden symmetries for
a probe gauge field or a probe graviton on Kerr or Kerr–Newman. Does one obtain the same
temperatures
and
as in the scalar probe case?
- A black hole in de Sitter spacetime can be extremal in the sense that its outer radius coincides
with the cosmological horizon. The resulting geometry, called the rotating Narirai geometry, has
many similarities with the near-horizon geometries of extremal black holes in flat spacetime or
in AdS spacetime. The main difference is that the near-horizon geometry is a warped product of
with
instead of AdS
2 with
. It has been conjectured that these extremal black
holes are dual to the chiral half of a Euclidean CFT [7]. Test the conjecture by generalizing all
arguments of the Kerr/CFT correspondence to this cosmological setting.
- Away from extremality, it is curious that the right-moving temperature is given by
for the Kerr–Newman black hole. Account for this fact. Also, for all known
asymptotically-flat extremal black holes in Einstein gravity coupled to matter, the product of
the horizon areas of the inner and outer horizon can be expressed in terms of quantized charges
(
,
, …) and fundamental constants only [195, 103, 106]. Explain this feature from a
fundamental perspective.
- In the analysis of near-extremal superradiant scattering for any spin, we discarded the unstable
modes that are below the Breitenlohner–Freedman bound. Such modes have imaginary
;
see (177). Clarify the match between these modes and CFT expectations for the Kerr–Newman
black hole.
- The probe scalar wave equation in Kerr–Newman–AdS has two complex poles in addition
to poles corresponding to the inner and outer horizon and infinity. This prevented a
straightforward generalization of the hidden
symmetry. Clarify the role
of these additional poles. Also explain why the product of all horizon areas (inner, outer and
complex horizons) seems in general not to depend on the mass of the black hole [102].
- Near-horizon geometries of black-hole solutions of (1) have been classified. Classify the
four-dimensional near-horizon geometries of extremal black holes for gravity coupled to charged
scalars, massive vectors,
-forms and non-abelian gauge fields.
- Compute the central charges
and
away from extremality. Also, compute the
quantum corrections to the central charge
and investigate the matching between the
quantum-corrected entropy of extremal black holes derived in [241] and the asymptotic growth
of states in the dual CFT.
- Understand how the extension of the Kerr/CFT correspondence to extremal AdS black holes
fits within the AdS/CFT correspondence. As discussed in [204], the extremal AdS–Kerr/CFT
correspondence suggests that one can identify a non-trivial Virasoro algebra acting on the
low-energy states of strongly coupled large
super-Yang–Mills theory in an extremal thermal
ensemble. Try to make this picture more precise.
- From the point of view of
CFTs, study if a
action exists that transforms a
CFT into another CFT. This would clarify the existence of an
family of CFTs dual
to the Kerr–Newman black hole. Note that this can be done for three-dimensional CFTs with
a
current [267].
- Compute the superradiant scattering amplitude of probe scalar fields on the Kerr–Newman
geometry with first-order backreaction. Compare the result with the scattering amplitude
defined in the CFT at one loop order (using two and three-point correlation functions).
- Formulate a general scattering theory around near-extremal black-hole solutions of (1). This
would require one to classify the geometries admiting a Killing–Yano tensor so that the wave
equation could be separated. A long-standing problem already consists in separating and
decoupling the wave e quation of a probe spin 1 or spin 2 field in the Kerr–Newman geometry.
- Construct one example in string theory of an exact quantum field theory dual to (an embedding
in string theory of) the Kerr black hole. Characterize whether that field theory is a CFT, a
limit of a CFT, or a deformation thereof.