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Of all fundamental forces,
gravity is the most

mysterious.
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GRAVITY AND INFINITE-
DIMENSIONAL SYMMETRIES

Finite-dimensional Lie algebras underlie our understanding of all non-
gravitational interactions (electromagnetic, weak and strong nuclear forces)
through the Yang-Mills construction.

There are many indications that a deeper understanding of
gravity requires infinite-dimensional Lie algebras.

One of these indications comes from the analysis of the dynamics of gravity
in the cosmological context, which leads to « cosmological billiards ».  These
billiards exhibit unexpected connections with tilings of hyperbolic space, and
« Coxeter groups ».
This points to the fact that infinite-dimensional Kac-Moody algebras of
hyperbolic type are likely to play a central role in the « ultimate » formulation
of gravity.

Purpose of colloquium is to explain this last paragraph!
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Coxeter Groups
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THE FIVE PLATONIC SOLIDS
Tetrahedron {3,3}

Octahedron {3,4} Cube {4,3}

Icosahedron {3,5} Dodecahedron {5,3}

http://home.teleport.com/~tpgettys/platonic.shtml
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s2 = 1

Symmetry groups

All Euclidean isometries are products of reflections

Symmetry  groups of regular polytopes are all finite reflection groups
(= groups generated by a finite number of reflections)

Number of generating reflections = dimension of space

Reflection in a line (hyperplane)
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Dihedral groups

I2(3), order 6 I2(4), order 8 I2(5), order 10

etc …

I2(6), order 12
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FUNDAMENTAL DOMAIN

Region that intersects each orbit once and only once – drawn in red.

Group generated by reflections in the sides of the domain.

Angles between sides: integer submultiples of π (here π/3).
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Coxeter Groups
The previous groups are examples of Coxeter groups: these are (by
definition) generated by a finite set of reflections si obeying the
relations:

(si)2 = 1;
(sisj)mij = 1

with mij = mji positive integers  (=1 for i = j and >1  for different i,j’s)

Notation:    (s r)p = 1
angles between reflection axes: π/p

no line if p = 2

p not written when it is equal to 3

(2 lines if p = 4, 3 lines if p = 6)

p
s r
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Crystallographic dihedral groups

p = 3, 4, 6
A2

B2  –  C2

G2

A2 B2/C2 G2

|G| 6 8 12

N 3 4 6

Hexagonal lattice

Square lattice

|G| = group order

N = number of reflections
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Symmetries of Platonic Solids

|G| N

Tetrahedron
24 6

Cube and
octahedron 48 9

Icosahedron
and
dodecahedron

120 15

A3

B3/C3

5

H3

G is in all cases a Coxeter group
{s1, s2, s3};  (si)2 = 1;  (sisj)mij = 1;  mij = 2,3,4,5  (i different from j)

H3 is not crystallographic 12/54



List of Finite Reflection Groups
(= Finite Coxeter Groups)

|G| N
An (n+1)! n(n+1)/2

Bn/
Cn

2n n! n2

Dn 2n-1 n! n(n-1)

E6 27 34 5 36

E7 210 34 5
7

63

E8 214 35 52

7
120

F4 27 32 24

G2 12 6

H3 120 15

H4 14400 60Coxeter graphs of finite Coxeter groups
(source: J.E. Humphreys, Reflection Groups and
Coxeter Groups, Cambridge University Press 1990) 13/54



Comments

• In dimensions > 4, there are only 3 regular polytopes: the regular n-simplex (triangle,
tetrahedron …), the cross polytope (square, octahedron …) and its dual, the hypercube
(square, cube …).  The symmetry group of the regular n-simplex is An, that of the cross
polytope and of the hypercube is Bn (~ Cn).

• In dimension 4, there are 6 (convex) regular polytopes.  Besides the three just mentioned,
there are: - the 24-cell {3,4,3} with symmetry group F4

(24 octahedral faces); and
- the 120-cell {5,3,3} and its dual, the 600-cell {3,3,5}  with symmetry group
H4 (120 dodecahedra in one case, 600 tetrahedra in the other).

• H3 and H4 are not crystallographic.

• Dn, E6, E7 and E8 are finite reflection groups but are not symmetry groups of regular
polytopes (generalization).

• Fundamental domain is always a (spherical) simplex

• A very nice reference: H.S.M. Coxeter, Regular polytopes, Dover 1973

14/54



Affine Reflection Groups
In previous cases, the hyperplanes of
reflection contain the origin and thus
leave the unit sphere invariant
(« spherical case »)
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One can relax this condition and
consider reflections about
arbitrary hyperplanes in
Euclidean space (« affine case »).
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Regular tilings of the plane
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FUNDAMENTAL DOMAIN

Fundamental domain is a simplex.

Angles between sides: integer submultiples of π (here π/4 and π/2).

Group generated by reflections in the sides of the fundamental
domain.
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Classification of affine
Coxeter groups

Coxeter graphs of affine Coxeter groups
(source: J.E. Humphreys, Reflection Groups and
Coxeter Groups, Cambridge University Press 1990)

Remarks

• Affine Coxeter Groups are
infinite

• Fundamental region is an
Euclidean simplex
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Hyperbolic Reflection Groups

One can also consider reflection groups in
hyperbolic space.

These groups are also infinite.
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Tilings of the hyperbolic plane

http://www.hadron.org/~hatch/HyperbolicTesselations/ 21/54



Circle-limits (M.C. Escher)
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New feature: Fundamental domain need not
be a simplex.

It can always be taken to be a Coxeter
polyhedron.

Coxeter polyhedron = (acute-angled)
polyhedron with angles that are integer
submultiples of π (π/2, π/3, π/4 etc)

Reflections in the sides provide a standard
Coxeter presentation of the group
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Note : in Euclidean space or on sphere : acute-angled
polyhedron is a simplex.

Acute-angled d-gon in plane :
Sum of angles = π(d-2)
Acuted-angled polygon : π(d-2) ≤ d (π/2), which implies d ≤ 4,
with d = 4 (rectangle) leading to a decomposable situation (direct product
structure).

Hence d = 3 (triangle) is the only non trivial case
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Classification

Hyperbolic simplex reflection groups exist only in hyperbolic spaces
of dimension < 10.  In the maximum dimension 9, the groups are generated
by 10 reflections.  There are three possibilities, all of which are relevant to
M-theory . (See e.g. Humphreys, Reflection Groups and Coxeter Groups,
for the complete list.)

E10

BE10 – CE10

DE10
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Note: finite-volume Coxeter
polyhedra in n-dimensional
hyperbolic space exist only
for n ≤ 996.
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Infinite-dimensional
Symmetry Groups
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Crystallographic Coxeter Groups and Kac-
Moody Algebras

There is an intimate connection between crystallographic Coxeter groups 
and Lie groups/Lie algebras.

Lie groups are continuous groups (e.g. SO(3)).  The ones usually met in
physics so far are finite-dimensional (depend on a finite number of continuous
parameters).  A great mathematical achievement has been the complete
classification of all finite-dimensional, simple Lie groups (Lie algebras are
the vector spaces of « infinitesimal transformations »).
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The connection between crystallographic finite Coxeter groups and finite-
dimensional simple Lie algebras is that the Coxeter groups are the « Weyl
groups » of the Lie algebras.
Coxeter groups may thus signal a much bigger symmetry.

I2(3) versus SU(3)
31/54



Algebra of angular momentum J3, J+, J-

Angular momentum can always be assumed to be along the third axis.
Fixes the angular momentum up to the sign (+j can be changed into –j by a
rotation).
After conjugation to the Cartan subalgebra, there remains a Z2 = S2 ambiguity,
which is the Weyl group of SU(2).
Representations described in terms of eigenvalues of J3 (Cartan subalgebra)
have symmetry m → -m

Weyl group of SU(2)
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Unitary symmetry and permutation group

The Coxeter group An is isomorphic to the permutation group Sn+1 of n+1 objects.

Consider the group SU(n+1) of (n+1)-dimensional unitary matrices (of unit determinant).

SU(n+1) acts on itself:

U     U’= M* U M

(unitary change of basis, adjoint action)

By a change of basis, one can diagonalize U (« U is conjugate to an element in the Cartan
subalgebra »).  The Weyl = Coxeter group An is what is left of the original  unitary
symmetry
once U has been diagonalized since the diagonal form of U is determined up to a
permutation  of the n+1 eigenvalues.

Weyl group of SU(n)
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Infinite Coxeter groups

The same connection holds for infinite Coxeter groups; but in that case
the corresponding Lie algebra is infinite-dimensional and of the Kac-Moody
type.

Infinite-dimensional Lie algebras (i.e., infinite-dimensional symmetries)
are playing an increasingly important role in physics.  In the gravitational
case, the relevant Kac-Moody algebras are of hyperbolic or Lorentzian
type (beyond the affine case).

These algebras are unfortunately still poorly understood.
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Cosmological
Billiards
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Infinite Coxeter groups of hyperbolic
type emerge when one investigates the
dynamics of gravity in extreme
situations.  For M-theory, it is E10 that
is relevant.
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Cosmological Billiards

Dynamics of scale factors exhibits
interesting features in the strong field
regime corresponding to a cosmological
singularity (« big bang »), or a black hole
singularity (« inside Schwarzschild »).

(Belinskii, Khalatnikov and Lifshitz)
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 Dynamics of scale factors is chaotic in the
vicinity of a cosmological singularity.

 It is the same dynamics as that of a billiard
motion in a region of hyperbolic space

 The billiard region exhibits remarkable
properties
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The example of pure gravity in
3+1 dimensions

ds2 = - dt2 + a2(t,x) l2 + b2(t,x) m2 + c2(t,x) n2

l, m, n  are orthogonal spatial frames

a, b, c are the scale factors

Assume singularity at t = 0 or x0 = - ln t → ∞ 

Focus on time dependence at a given spatial point x
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Source: H.C. Ohanian and R. Ruffini, Gravitation and Spacetime, Norton 1976

Two scale factors are squeezed 
and one is stretched.  This is 
characteristic of the familiar tidal 
effects  of gravity …  
but there is a change with time
of the directions of stretching and 
squeezing
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Kasner behaviour

(Infinite) stretching along l and (infinite) squeezing
along m and n as t → 0

Transition to a new Kasner behaviour (« collision
»)
before one reaches the singularity

And so on (infinite number of Kasner regimes as t → 0 ),
in a chaotic way

a(t) » tq1 , b(t) » tq2 , c(t) » tq3 ,
with q1 > 0, q2 < 0, q3 > 0 (say)

a(t) » tp1 , b(t) » tp2 , c(t) » tp3 ,

with p1 < 0, p2 > 0, p3 > 0
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Dynamics can be mapped
on billiard dynamics in some
region of hyperbolic space.

Free flight = Kasner behaviour

Collision against a wall =
change from one Kasner regime
to another

Billiard description
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Emergence of hyperbolic
Coxeter groups

 The same analysis remains valid for gravity in higher
dimensions (but there are then more scale factors)

 It also holds true when one couples antisymmetric tensors
to gravity (as requested by string/M-theory)

 Furthermore, the billiard region is the fundamental region
of a hyperbolic Coxeter group (the reflections against the
walls being the fundamental reflections generating the
group).
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Examples

Pure gravity in 4 spacetime
Dimensions.

The billiard is a triangle
with angles π/2, π/3 and 0,
corresponding to the
Coxeter group (2,3, infinity).

The triangle is the fundamental
region of the group  PGL(2,Z).

Arithmetical chaos
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M-theory and E10

Truncation to 11-dimensional supergravity

Billiard is fundamental Weyl chamber of
E10

Is E10 the symmetry algebra (or a subalgebra of the symmetry
algebra) of M-theory?  (perhaps E10(Z), E11, E11(Z))

Heterotic string: BE10
Bosonic string DE10
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Similar conclusions come from dimensional reduction to
D= 4, 3, 2, 1 (?), 0 (?):

E7
E8
E9
E10  ?
E11   ?
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Exhibiting the
Symmetry
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 Can one rewrite the Einstein (+ p-form)
Lagrangian in a manner that makes the
symmetry manifest?

 Promising attemps exist but are so far
only partially successful

48/54



Non-linear sigma model E10/K(E10)

 Consider (1+0) non-linear sigma model based
on « symmetric space »

 E10/K(E10)
(G/H – compare with SO(3)/SO(2) – here infinite number of
fields)

 Write corresponding Lagrangian according to
standard rules for coset models
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Expand group element according to « level »

This Lagrangian is manifestly E10 invariant

0

(number of times root α0 appears)

123456789

L ~Tr (P2),         P = (1/2) (g-1 dg + (g-1 dg)T)
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 Perfect match with the (bosonic) fields of 11-
dimensional supergravity at low levels

 Perfect match of the sigma-model equations of
motion with the (bosonic) equations of 11-
dimensional supergravity

 … but what about higher levels? (recent work on
gaugings and level-4 roots)
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 Difficulties with « dual graviton »

 Difficulties with higher spin gauge fields
(described by Young tableaux of mixed
symmetry)

 etc
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Conclusions

•  Gravity remains the most mysterious of all the fundamental interactions

•  There are indications that infinite-dimensional Lie algebras related to
hyperbolic structures will be crucial ingredients for a deeper understanding of
gravity (characteristic feature of gravity)

•  Indications come from the study of the dynamics in extreme regime
(cosmological billiards), but also from other approaches (BPS states)

• Fermions fit into the picture (representations of compact subgroup K(E10))

• Indications that quantum corrections are also compatible with conjectured
symmetry

•Cosmological deformations and gaugings also seem to fit into the picture
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But much more remains
to be done!
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