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Of all fundamental forces,
gravity is the most

mysterious.
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GRAVITY AND INFINITE-
DIMENSIONAL SYMMETRIES

Finite-dimensional Lie algebras underlie our understanding of all non-
gravitational interactions (electromagnetic, weak and strong nuclear forces)
through the Yang-Mills construction.

There are many indications that a deeper understanding of
gravity requires infinite-dimensional Lie algebras.

One of these indications comes from the analysis of the dynamics of gravity
in the cosmological context, which leads to « cosmological billiards ».  These
billiards exhibit unexpected connections with tilings of hyperbolic space, and
« Coxeter groups ».
This points to the fact that infinite-dimensional Kac-Moody algebras of
hyperbolic type are likely to play a central role in the « ultimate » formulation
of gravity.

Purpose of colloquium is to explain this last paragraph!
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Coxeter Groups
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THE FIVE PLATONIC SOLIDS
Tetrahedron {3,3}

Octahedron {3,4} Cube {4,3}

Icosahedron {3,5} Dodecahedron {5,3}

http://home.teleport.com/~tpgettys/platonic.shtml
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s2 = 1

Symmetry groups

All Euclidean isometries are products of reflections

Symmetry  groups of regular polytopes are all finite reflection groups
(= groups generated by a finite number of reflections)

Number of generating reflections = dimension of space

Reflection in a line (hyperplane)
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Dihedral groups

I2(3), order 6 I2(4), order 8 I2(5), order 10

etc …

I2(6), order 12
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FUNDAMENTAL DOMAIN

Region that intersects each orbit once and only once – drawn in red.

Group generated by reflections in the sides of the domain.

Angles between sides: integer submultiples of π (here π/3).
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Coxeter Groups
The previous groups are examples of Coxeter groups: these are (by
definition) generated by a finite set of reflections si obeying the
relations:

(si)2 = 1;
(sisj)mij = 1

with mij = mji positive integers  (=1 for i = j and >1  for different i,j’s)

Notation:    (s r)p = 1
angles between reflection axes: π/p

no line if p = 2

p not written when it is equal to 3

(2 lines if p = 4, 3 lines if p = 6)

p
s r
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Crystallographic dihedral groups

p = 3, 4, 6
A2

B2  –  C2

G2

A2 B2/C2 G2

|G| 6 8 12

N 3 4 6

Hexagonal lattice

Square lattice

|G| = group order

N = number of reflections
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Symmetries of Platonic Solids

|G| N

Tetrahedron
24 6

Cube and
octahedron 48 9

Icosahedron
and
dodecahedron

120 15

A3

B3/C3

5

H3

G is in all cases a Coxeter group
{s1, s2, s3};  (si)2 = 1;  (sisj)mij = 1;  mij = 2,3,4,5  (i different from j)

H3 is not crystallographic 12/54



List of Finite Reflection Groups
(= Finite Coxeter Groups)

|G| N
An (n+1)! n(n+1)/2

Bn/
Cn

2n n! n2

Dn 2n-1 n! n(n-1)

E6 27 34 5 36

E7 210 34 5
7

63

E8 214 35 52

7
120

F4 27 32 24

G2 12 6

H3 120 15

H4 14400 60Coxeter graphs of finite Coxeter groups
(source: J.E. Humphreys, Reflection Groups and
Coxeter Groups, Cambridge University Press 1990) 13/54



Comments

• In dimensions > 4, there are only 3 regular polytopes: the regular n-simplex (triangle,
tetrahedron …), the cross polytope (square, octahedron …) and its dual, the hypercube
(square, cube …).  The symmetry group of the regular n-simplex is An, that of the cross
polytope and of the hypercube is Bn (~ Cn).

• In dimension 4, there are 6 (convex) regular polytopes.  Besides the three just mentioned,
there are: - the 24-cell {3,4,3} with symmetry group F4

(24 octahedral faces); and
- the 120-cell {5,3,3} and its dual, the 600-cell {3,3,5}  with symmetry group
H4 (120 dodecahedra in one case, 600 tetrahedra in the other).

• H3 and H4 are not crystallographic.

• Dn, E6, E7 and E8 are finite reflection groups but are not symmetry groups of regular
polytopes (generalization).

• Fundamental domain is always a (spherical) simplex

• A very nice reference: H.S.M. Coxeter, Regular polytopes, Dover 1973
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Affine Reflection Groups
In previous cases, the hyperplanes of
reflection contain the origin and thus
leave the unit sphere invariant
(« spherical case »)
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One can relax this condition and
consider reflections about
arbitrary hyperplanes in
Euclidean space (« affine case »).
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Regular tilings of the plane
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FUNDAMENTAL DOMAIN

Fundamental domain is a simplex.

Angles between sides: integer submultiples of π (here π/4 and π/2).

Group generated by reflections in the sides of the fundamental
domain.
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Classification of affine
Coxeter groups

Coxeter graphs of affine Coxeter groups
(source: J.E. Humphreys, Reflection Groups and
Coxeter Groups, Cambridge University Press 1990)

Remarks

• Affine Coxeter Groups are
infinite

• Fundamental region is an
Euclidean simplex
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Hyperbolic Reflection Groups

One can also consider reflection groups in
hyperbolic space.

These groups are also infinite.
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Tilings of the hyperbolic plane

http://www.hadron.org/~hatch/HyperbolicTesselations/ 21/54



Circle-limits (M.C. Escher)
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New feature: Fundamental domain need not
be a simplex.

It can always be taken to be a Coxeter
polyhedron.

Coxeter polyhedron = (acute-angled)
polyhedron with angles that are integer
submultiples of π (π/2, π/3, π/4 etc)

Reflections in the sides provide a standard
Coxeter presentation of the group
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Note : in Euclidean space or on sphere : acute-angled
polyhedron is a simplex.

Acute-angled d-gon in plane :
Sum of angles = π(d-2)
Acuted-angled polygon : π(d-2) ≤ d (π/2), which implies d ≤ 4,
with d = 4 (rectangle) leading to a decomposable situation (direct product
structure).

Hence d = 3 (triangle) is the only non trivial case
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Classification

Hyperbolic simplex reflection groups exist only in hyperbolic spaces
of dimension < 10.  In the maximum dimension 9, the groups are generated
by 10 reflections.  There are three possibilities, all of which are relevant to
M-theory . (See e.g. Humphreys, Reflection Groups and Coxeter Groups,
for the complete list.)

E10

BE10 – CE10

DE10
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Note: finite-volume Coxeter
polyhedra in n-dimensional
hyperbolic space exist only
for n ≤ 996.
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Infinite-dimensional
Symmetry Groups
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Crystallographic Coxeter Groups and Kac-
Moody Algebras

There is an intimate connection between crystallographic Coxeter groups 
and Lie groups/Lie algebras.

Lie groups are continuous groups (e.g. SO(3)).  The ones usually met in
physics so far are finite-dimensional (depend on a finite number of continuous
parameters).  A great mathematical achievement has been the complete
classification of all finite-dimensional, simple Lie groups (Lie algebras are
the vector spaces of « infinitesimal transformations »).
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The connection between crystallographic finite Coxeter groups and finite-
dimensional simple Lie algebras is that the Coxeter groups are the « Weyl
groups » of the Lie algebras.
Coxeter groups may thus signal a much bigger symmetry.

I2(3) versus SU(3)
31/54



Algebra of angular momentum J3, J+, J-

Angular momentum can always be assumed to be along the third axis.
Fixes the angular momentum up to the sign (+j can be changed into –j by a
rotation).
After conjugation to the Cartan subalgebra, there remains a Z2 = S2 ambiguity,
which is the Weyl group of SU(2).
Representations described in terms of eigenvalues of J3 (Cartan subalgebra)
have symmetry m → -m

Weyl group of SU(2)
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Unitary symmetry and permutation group

The Coxeter group An is isomorphic to the permutation group Sn+1 of n+1 objects.

Consider the group SU(n+1) of (n+1)-dimensional unitary matrices (of unit determinant).

SU(n+1) acts on itself:

U     U’= M* U M

(unitary change of basis, adjoint action)

By a change of basis, one can diagonalize U (« U is conjugate to an element in the Cartan
subalgebra »).  The Weyl = Coxeter group An is what is left of the original  unitary
symmetry
once U has been diagonalized since the diagonal form of U is determined up to a
permutation  of the n+1 eigenvalues.

Weyl group of SU(n)
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Infinite Coxeter groups

The same connection holds for infinite Coxeter groups; but in that case
the corresponding Lie algebra is infinite-dimensional and of the Kac-Moody
type.

Infinite-dimensional Lie algebras (i.e., infinite-dimensional symmetries)
are playing an increasingly important role in physics.  In the gravitational
case, the relevant Kac-Moody algebras are of hyperbolic or Lorentzian
type (beyond the affine case).

These algebras are unfortunately still poorly understood.
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Cosmological
Billiards
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Infinite Coxeter groups of hyperbolic
type emerge when one investigates the
dynamics of gravity in extreme
situations.  For M-theory, it is E10 that
is relevant.
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Cosmological Billiards

Dynamics of scale factors exhibits
interesting features in the strong field
regime corresponding to a cosmological
singularity (« big bang »), or a black hole
singularity (« inside Schwarzschild »).

(Belinskii, Khalatnikov and Lifshitz)
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 Dynamics of scale factors is chaotic in the
vicinity of a cosmological singularity.

 It is the same dynamics as that of a billiard
motion in a region of hyperbolic space

 The billiard region exhibits remarkable
properties
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The example of pure gravity in
3+1 dimensions

ds2 = - dt2 + a2(t,x) l2 + b2(t,x) m2 + c2(t,x) n2

l, m, n  are orthogonal spatial frames

a, b, c are the scale factors

Assume singularity at t = 0 or x0 = - ln t → ∞ 

Focus on time dependence at a given spatial point x
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Source: H.C. Ohanian and R. Ruffini, Gravitation and Spacetime, Norton 1976

Two scale factors are squeezed 
and one is stretched.  This is 
characteristic of the familiar tidal 
effects  of gravity …  
but there is a change with time
of the directions of stretching and 
squeezing
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Kasner behaviour

(Infinite) stretching along l and (infinite) squeezing
along m and n as t → 0

Transition to a new Kasner behaviour (« collision
»)
before one reaches the singularity

And so on (infinite number of Kasner regimes as t → 0 ),
in a chaotic way

a(t) » tq1 , b(t) » tq2 , c(t) » tq3 ,
with q1 > 0, q2 < 0, q3 > 0 (say)

a(t) » tp1 , b(t) » tp2 , c(t) » tp3 ,

with p1 < 0, p2 > 0, p3 > 0
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Dynamics can be mapped
on billiard dynamics in some
region of hyperbolic space.

Free flight = Kasner behaviour

Collision against a wall =
change from one Kasner regime
to another

Billiard description
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Emergence of hyperbolic
Coxeter groups

 The same analysis remains valid for gravity in higher
dimensions (but there are then more scale factors)

 It also holds true when one couples antisymmetric tensors
to gravity (as requested by string/M-theory)

 Furthermore, the billiard region is the fundamental region
of a hyperbolic Coxeter group (the reflections against the
walls being the fundamental reflections generating the
group).
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Examples

Pure gravity in 4 spacetime
Dimensions.

The billiard is a triangle
with angles π/2, π/3 and 0,
corresponding to the
Coxeter group (2,3, infinity).

The triangle is the fundamental
region of the group  PGL(2,Z).

Arithmetical chaos
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M-theory and E10

Truncation to 11-dimensional supergravity

Billiard is fundamental Weyl chamber of
E10

Is E10 the symmetry algebra (or a subalgebra of the symmetry
algebra) of M-theory?  (perhaps E10(Z), E11, E11(Z))

Heterotic string: BE10
Bosonic string DE10
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Similar conclusions come from dimensional reduction to
D= 4, 3, 2, 1 (?), 0 (?):

E7
E8
E9
E10  ?
E11   ?
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Exhibiting the
Symmetry
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 Can one rewrite the Einstein (+ p-form)
Lagrangian in a manner that makes the
symmetry manifest?

 Promising attemps exist but are so far
only partially successful
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Non-linear sigma model E10/K(E10)

 Consider (1+0) non-linear sigma model based
on « symmetric space »

 E10/K(E10)
(G/H – compare with SO(3)/SO(2) – here infinite number of
fields)

 Write corresponding Lagrangian according to
standard rules for coset models
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Expand group element according to « level »

This Lagrangian is manifestly E10 invariant

0

(number of times root α0 appears)

123456789

L ~Tr (P2),         P = (1/2) (g-1 dg + (g-1 dg)T)
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 Perfect match with the (bosonic) fields of 11-
dimensional supergravity at low levels

 Perfect match of the sigma-model equations of
motion with the (bosonic) equations of 11-
dimensional supergravity

 … but what about higher levels? (recent work on
gaugings and level-4 roots)
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 Difficulties with « dual graviton »

 Difficulties with higher spin gauge fields
(described by Young tableaux of mixed
symmetry)

 etc
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Conclusions

•  Gravity remains the most mysterious of all the fundamental interactions

•  There are indications that infinite-dimensional Lie algebras related to
hyperbolic structures will be crucial ingredients for a deeper understanding of
gravity (characteristic feature of gravity)

•  Indications come from the study of the dynamics in extreme regime
(cosmological billiards), but also from other approaches (BPS states)

• Fermions fit into the picture (representations of compact subgroup K(E10))

• Indications that quantum corrections are also compatible with conjectured
symmetry

•Cosmological deformations and gaugings also seem to fit into the picture
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But much more remains
to be done!
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