DISCRETE SPECTRA CRITERIA FOR SINGULAR DIFFERENCE OPERATORS

Simón Peña, Brno

(Received June 13, 1997)

Abstract. We investigate oscillation and spectral properties (sufficient conditions for discreteness and boundedness below of the spectrum) of difference operators

$$
B(y)_{n+k}=\frac{(-1)^{n}}{w_{k}} \Delta^{n}\left(p_{k} \Delta^{n} y_{k}\right)
$$

Keywords: difference operator, property BD, discrete variational principle
MSC 2000: 39A10

1. Introduction, Auxiliary results

Let w_{k} be a positive real sequence and denote by l_{w}^{2} the Hilbert space of realvalued sequences $y=\left\{y_{k}\right\}_{k=1}^{\infty}$ such that $\sum_{k=1}^{\infty} w_{k} y_{k}^{2}<\infty$, with the scalar product $\langle y, z\rangle=\sum_{k=1}^{\infty} w_{k} y_{k} z_{k}$. The aim of this paper is to investigate oscillation and spectral properties of $2 n$-order difference operators generated by the expression

$$
\begin{equation*}
m(y)_{k+n}=\frac{1}{w_{k}} \sum_{\lambda=0}^{n}(-1)^{\lambda} \Delta^{\lambda}\left(p_{k}^{(\lambda)} \Delta^{\lambda} y_{k+n-\lambda}\right) \tag{1.1}
\end{equation*}
$$

where $p_{k}^{(\lambda)}$ are real and $p_{k}^{(n)}>0$.
Denote

$$
D(B)=\left\{y=\left\{y_{k}\right\}_{k=1}^{\infty} \in l_{w}^{2}:\left\{m(y)_{k+n}\right\} \in l_{w}^{2}\right\}
$$

Research supported by the Grants No. 201/96/0410 and No. 201/98/0677 of the Czech Grant Agency
and consider the operator $B: D(B) \rightarrow l_{w}^{2}$ given by $B(y)_{k+n}=m(y)_{k+n}$.
Let $B_{0}:=B^{*}$ be the adjoint operator of B. The operators B and B_{0} are said to be the maximal and the minimal operator defined by the difference expression $m(y)$. We say that the operator B has the property BD if the spectrum of any self-adjoint extension of B_{0} is discrete and bounded below.

A similar problem in the case $w=1$ and $p_{k}^{(0)}, p_{k}^{(1)}, \ldots, p_{k}^{(n-1)} \equiv 0$ was investigated in [3]. It was shown that the operator B has property BD if and only if

$$
\lim _{k \rightarrow \infty} k^{(2 n-1)} \sum_{j=k}^{\infty} \frac{1}{p_{j}^{(n)}}=0
$$

Another paper related to our investigation is [5], where oscillation and spectral properties of differential operators generated by the expression

$$
\sum_{j=0}^{n}(-1)^{j}\left(p_{j}(t) y^{(j)}\right)^{(j)}
$$

are investigated.
Here we use the recent results about oscillation properties of self-adjoint difference equations $m(y)=0$, see $[1,2]$, to establish a discrete analogue of some results of [5]. We also extend the results of [3] concerning one-term difference operators.

Oscillation properties of the even order difference equations

$$
\begin{equation*}
\sum_{\lambda=0}^{n}(-1)^{\lambda} \Delta^{\lambda}\left(p_{k}^{(\lambda)} \Delta^{\lambda} y_{k+n-\lambda}\right)=0 \tag{1.2}
\end{equation*}
$$

are defined using the concept of the generalized zero point of multiplicity n introduced by Hartman [6]. By this definition, an integer $m+1$ is said to be the generalized zero point of multiplicity n of a solution y of (1.2) if $y_{m} \neq 0, y_{m+1}=\ldots=y_{m+n-1}=0$ and $(-1)^{n} y_{m} y_{m+n} \geqslant 0$. Equation (1.2) is said to be oscillatory if for any $N \in \mathbb{N}$ there exists a nontrivial solution of (1.2) having at least two different generalized zeros of multiplicity n in $[N, \infty)$, in the opposite case it is said to be nonoscillatory.

Proposition 1. The following statements are equivalent:
(i) B has property BD .
(ii) The equation $m(y)=\lambda y_{k+n}$ is nonoscillatory for every $\lambda \in \mathbb{R}$.
(iii) For every $\lambda \in \mathbb{R}$ there exists $N \in \mathbb{N}$ such that

$$
I(y, N)=\sum_{i=0}^{n} \sum_{k=N}^{\infty} p_{k}^{(i)}\left(\Delta^{i} y_{k+n-i}\right)^{2} \geqslant \sum_{k=N}^{\infty} \lambda w_{k} y_{k+n}^{2}
$$

for any $y \in D_{n}(N):=\left\{y=\left\{y_{k}\right\}_{k=1}^{\infty}: y_{k}=0, k \leqslant N+n-1, \exists m: y_{k}=0, k \geqslant\right.$ $m\}$.

For $n=1$ the above given Proposition may be found in [4] and a closer examination of its proof shows that using results of $[1,2]$ it may be formulated in the form given here.

2. Nonoscillation criteria

We start with a discrete version of a Wirtinger-type inequality.

Lemma 1. Let M_{k} be a positive sequence such that $\Delta M_{k} \neq 0$. Then for any $y \in D_{1}(N)$ have

$$
\begin{equation*}
\sum_{k=N}^{\infty}\left|\Delta M_{k}\right| y_{k+1}^{2} \leqslant \psi_{N} \sum_{k=N}^{\infty} \frac{M_{k} M_{k+1}}{\left|\Delta M_{k}\right|}\left(\Delta y_{k}\right)^{2} \tag{2.1}
\end{equation*}
$$

where

$$
\psi_{N}:=\sup _{k \geqslant N} \frac{M_{k}}{M_{k+1}}\left[1+\left(\sup _{k \geqslant N} \frac{\left|\Delta M_{k}\right|}{\left|\Delta M_{k-1}\right|}\right)^{\frac{1}{2}}\right]^{2}
$$

Proof. Suppose that $\Delta M_{k}>0$, in the opposite case we proceed in the same way:

$$
\begin{aligned}
\sum_{k=N}^{\infty}\left|\Delta M_{k}\right| y_{k+1}^{2}= & \left.M_{k} y_{k}^{2}\right|_{N} ^{\infty}-\sum_{k=N}^{\infty} M_{k} \Delta y_{k}^{2}=-\sum_{k=N}^{\infty} M_{k}\left(y_{k+1}+y_{k}\right) \Delta y_{k} \\
\leqslant & \sum_{k=N}^{\infty} M_{k}\left(\left|y_{k+1}\right|+\left|y_{k}\right|\right)\left|\Delta y_{k}\right| \\
= & \sum_{k=N}^{\infty} M_{k}\left|y_{k+1}\right|\left|\Delta y_{k}\right|+\sum_{k=N}^{\infty} M_{k}\left|y_{k}\right|\left|\Delta y_{k}\right| \\
\leqslant & \left(\sum_{k=N}^{\infty} \frac{M_{k} M_{k+1}}{\left|\Delta M_{k}\right|}\left(\Delta y_{k}\right)^{2}\right)^{\frac{1}{2}}\left(\sum_{k=N}^{\infty}\left|\Delta M_{k}\right| \frac{M_{k}}{M_{k+1}} y_{k+1}^{2}\right)^{\frac{1}{2}} \\
& +\left(\sum_{k=N}^{\infty} \frac{M_{k} M_{k+1}}{\left|\Delta M_{k}\right|}\left(\Delta y_{k}\right)^{2}\right)^{\frac{1}{2}}\left(\sum_{k=N}^{\infty}\left|\Delta M_{k}\right| \frac{M_{k}}{M_{k+1}} y_{k}^{2}\right)^{\frac{1}{2}} \leqslant
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant\left(\sum_{k=N}^{\infty} \frac{M_{k} M_{k+1}}{\left|\Delta M_{k}\right|}\left(\Delta y_{k}\right)^{2}\right)^{\frac{1}{2}}\left(\sup _{k \geqslant N} \frac{M_{k}}{M_{k+1}}\right)^{\frac{1}{2}} \\
& \times\left[\left(\sum_{k=N}^{\infty}\left|\Delta M_{k}\right| y_{k+1}^{2}\right)^{\frac{1}{2}}+\left(\sum_{k=N}^{\infty}\left|\Delta M_{k}\right| y_{k}^{2}\right)^{\frac{1}{2}}\right] \\
& =\left(\sum_{k=N}^{\infty} \frac{M_{k} M_{k+1}}{\left|\Delta M_{k}\right|}\left(\Delta y_{k}\right)^{2}\right)^{\frac{1}{2}}\left(\sup _{k \geqslant N} \frac{M_{k}}{M_{k+1}}\right)^{\frac{1}{2}} \\
& \times\left[\left(\sum_{k=N}^{\infty}\left|\Delta M_{k}\right| y_{k+1}^{2}\right)^{\frac{1}{2}}+\left(\sum_{k=N}^{\infty}\left|\Delta M_{k-1}\right| \frac{\left|\Delta M_{k}\right|}{\left|\Delta M_{k-1}\right|} y_{k}^{2}\right)^{\frac{1}{2}}\right] \\
& \leqslant\left(\sum_{k=N}^{\infty} \frac{M_{k} M_{k+1}}{\left|\Delta M_{k}\right|}\left(\Delta y_{k}\right)^{2}\right)^{\frac{1}{2}}\left(\sup _{k \geqslant N} \frac{M_{k}}{M_{k+1}}\right)^{\frac{1}{2}} \\
& \times\left[\left(\sum_{k=N}^{\infty}\left|\Delta M_{k}\right| y_{k+1}^{2}\right)^{\frac{1}{2}}+\left(\sup _{k \geqslant N} \frac{\left|\Delta M_{k}\right|}{\left|\Delta M_{k-1}\right|}\right)^{\frac{1}{2}}\left(\sum_{k=N}^{\infty}\left|\Delta M_{k-1}\right| y_{k}^{2}\right)\right] \\
& =\left(\sum_{k=N}^{\infty} \frac{M_{k} M_{k+1}}{\left|\Delta M_{k}\right|}\left(\Delta y_{k}\right)^{2}\right)^{\frac{1}{2}}\left(\sup _{k \geqslant N} \frac{M_{k}}{M_{k+1}}\right)^{\frac{1}{2}} \\
& \times\left[1+\left(\sup \frac{\left|\Delta M_{k}\right|}{\left|\Delta M_{k+1}\right|}\right)^{\frac{1}{2}}\right]\left(\sum_{k=N}^{\infty}\left|\Delta M_{k}\right| y_{k+1}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left(\sum_{k=N}^{\infty}\left|\Delta M_{k}\right| y_{k+1}^{2}\right)^{\frac{1}{2}} \\
& \leqslant\left(\sum_{k=N}^{\infty} \frac{M_{k} M_{k+1}}{\left|\Delta M_{k}\right|}\left(\Delta y_{k}\right)^{2}\right)^{\frac{1}{2}}\left[1+\left(\sup _{k \geqslant N} \frac{\left|\Delta M_{k}\right|}{\left|\Delta M_{k-1}\right|}\right)^{\frac{1}{2}}\right]\left(\sup _{k \geqslant N} \frac{M_{k}}{M_{k+1}}\right)^{\frac{1}{2}}
\end{aligned}
$$

and thus

$$
\sum_{k=N}^{\infty}\left|\Delta M_{k}\right| y_{k+1}^{2} \leqslant \psi_{N} \sum_{k=N}^{\infty} \frac{M_{k} M_{k+1}}{\left|\Delta M_{k}\right|}\left(\Delta y_{k}\right)^{2}
$$

Using this inequality we can prove the following nonoscillation criterion for a twoterm equation

$$
\begin{equation*}
(-1)^{n} \Delta^{n}\left(r_{k} \Delta^{n} y_{k}\right)=p_{k} y_{k+n}, \quad r_{k}>0, p_{k} \geqslant 0 \tag{2.2}
\end{equation*}
$$

Theorem 1. Suppose that there exist positive sequences $M_{k}^{(1)}, M_{k}^{(2)}, \ldots, M_{k}^{(n)}$ such that $\left|\Delta M_{k}^{(1)}\right|,\left|\Delta M_{k}^{(2)}\right|, \ldots,\left|\Delta M_{k}^{(n)}\right|$ are eventually positive,

$$
\begin{aligned}
\left|\Delta M_{k}^{(j+1)}\right| \geqslant & \frac{M_{k+1}^{(j)} M_{k}^{(j)}}{\left|\Delta M_{k}^{(j)}\right|}, \quad j=1, \ldots, n-1 \\
& \frac{M_{k}^{(n)} M_{k+1}^{(n)}}{\left|\Delta M_{k}^{(n)}\right|} \leqslant r_{k}
\end{aligned}
$$

satisfying

$$
\begin{equation*}
0<\limsup _{N \rightarrow \infty} \psi_{N}^{(1)} \psi_{N}^{(2)} \ldots \psi_{N}^{(n)}=: \psi<\infty \tag{2.3}
\end{equation*}
$$

where

$$
\psi_{N}^{(j)}:=\left(\sup _{k \geqslant N} \frac{M_{k}^{(j)}}{M_{k+1}^{(j)}}\right)\left[1+\left(\sup _{k \geqslant N} \frac{\left|\Delta M_{k}^{(j)}\right|}{\left|\Delta M_{k+1}^{(j)}\right|}\right)^{\frac{1}{2}}\right]^{2} .
$$

If

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \frac{1}{M_{k}^{(1)}} \sum_{j=k}^{\infty} p_{j}<\frac{1}{\psi} \tag{2.4}
\end{equation*}
$$

then equation (2.2) is nonoscillatory.

Proof. According to Proposition 1, we need to prove that there exists $N \in \mathbb{N}$ such that the quadratic functional

$$
H(y)=\sum_{k=N}^{\infty}\left\{r_{k}\left(\Delta^{n} y_{k}\right)^{2}-p_{k} y_{k+n}^{2}\right\}
$$

satisfies $H(y)>0$ for every nontrivial $y=\left\{y_{k}\right\} \in D_{n}(N)$.
Let $\varepsilon>0$ be such that

$$
\limsup _{k \rightarrow \infty} \frac{1}{M_{k}^{(1)}} \sum_{j=k}^{\infty} p_{j}<\frac{1}{\psi+\varepsilon}
$$

Then from (2.4), using Lemma 1 and summation by parts, we have for N sufficiently large

$$
\begin{aligned}
\sum_{k=N}^{\infty} p_{k} y_{k+n}^{2} & =\sum_{k=N}^{\infty} \frac{1}{M_{k}^{(1)}}\left(\sum_{j=k}^{\infty} p_{j}\right) M_{k}^{(1)} \Delta y_{k+n-1}^{2} \\
& <\frac{1}{\psi+\varepsilon} \sum_{k=N}^{\infty} M_{k}^{(1)}\left[\Delta y_{k+n-1}^{2}\right] \\
& \leqslant \frac{1}{\psi+\varepsilon}\left[\sum_{k=N}^{\infty} M_{k}^{(1)}\left|y_{k+n}\right|\left|\Delta y_{k+n-1}\right|+\sum_{k=N}^{\infty} M_{k}^{(1)}\left|y_{k+n-1}\right|\left|\Delta y_{k+n-1}\right|\right] \\
& \leqslant \frac{\sqrt{\psi_{N}^{(1)}}}{\psi+\varepsilon}\left(\sum_{k=N}^{\infty} \frac{\left.M_{k}^{(1)} M_{k+1}^{(1)}\left(\Delta y_{k+n-1}\right)^{2}\right)^{1 / 2}\left(\sum_{N}^{\infty}\left|\Delta M_{k}^{(1)}\right| y_{k+n}^{2}\right)^{1 / 2}}{\mid \Delta M_{N}}\right. \\
& \leqslant \frac{\psi_{N}^{(1)}}{\psi+\varepsilon} \sum_{k=N}^{\infty}\left|\Delta M_{k}^{(2)}\right|\left(\Delta y_{k+n-1}\right)^{2} \\
& \leqslant \frac{\psi_{N}^{(1)} \psi_{N}^{(2)}}{\psi+\varepsilon} \sum_{k=N}^{\infty} \frac{M_{k}^{(2)} M_{k+1}^{(2)}\left(\Delta M_{k}^{2} y_{k+n-2}\right)^{2}}{\left|\Delta M_{k}^{(2)}\right|}\left(\Delta M_{k}^{(3)} \mid\left(\Delta^{2} y_{k+n-2}\right)^{2}\right. \\
& \left.\leqslant \frac{\psi_{N}^{(1)} \psi_{N}^{(2)}}{\psi+\varepsilon} \sum_{k=N}^{\infty} \right\rvert\, \Delta M_{N} \\
& \leqslant \frac{\psi_{N}^{(1)} \psi_{N}^{(2)} \ldots \psi_{N}^{(n)}}{\psi+\varepsilon} \sum_{k=N}^{\infty} \frac{M_{k+1}^{(n)} M_{k}^{(n)}}{\left|\Delta M_{k}^{(n)}\right|}\left(\Delta^{n} y_{k}\right)^{2}
\end{aligned}
$$

Since (2.3) holds, $\frac{\psi_{N}^{(1)} \psi_{N}^{(2)} \ldots \psi_{N}^{(n)}}{\psi+\varepsilon}<1$ if N is sufficiently large, hence

$$
\sum_{k=N}^{\infty} p_{k} y_{k+n}^{2}<\sum_{k=N}^{\infty} \frac{M_{k+1}^{(n)} M_{k}^{(n)}}{\left|\Delta M_{k}^{(n)}\right|}\left(\Delta^{n} y_{k}\right)^{2} \leqslant \sum_{k=N}^{\infty} r_{k}\left(\Delta^{n} y_{k}\right)^{2}
$$

Consequently, $H(y)>0$ if N is sufficiently large.

Now consider the equation

$$
\begin{equation*}
(-1)^{n} \Delta^{n}\left(k^{(\alpha)} \Delta^{n} y_{k}\right)=p_{k} y_{k+n} \tag{2.5}
\end{equation*}
$$

with $p_{k} \geqslant 0$ and $\alpha \notin\{1,3, \ldots, 2 n-1\}, \alpha<2 n-1$ i.e., equation (2.1) where

$$
r_{k}=k^{(\alpha)}=\frac{\Gamma(k+1)}{\Gamma(k-\alpha+1)}, \quad \Gamma(t):=\int_{0}^{\infty} \mathrm{e}^{-s} s^{t-1} \mathrm{~d} s
$$

Corollary 1. If $\alpha \notin\{1,3 \ldots, 2 n-1\}, \alpha<2 n-1$ and

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} k^{(2 n-1-\alpha)} \sum_{j=k}^{\infty} p_{j}<\frac{(1-\alpha)^{2} \ldots(2 n-3-\alpha)^{2}(2 n-1-\alpha)}{4^{n}} \tag{2.6}
\end{equation*}
$$

then (2.5) is nonoscillatory.

$$
\begin{gathered}
\text { Proof. Let } M_{k}^{(n)}=|1-\alpha|(k-1)^{(\alpha-1)}, M_{k}^{(n-1)}=(1-\alpha)^{2}|3-\alpha|(k-2)^{(\alpha-3)} \\
M_{k}^{(j)}=(1-\alpha)^{2}(3-\alpha)^{2} \ldots|2 j-1-\alpha|(k-j)^{(\alpha-2 j+1)}, \quad j=3, \ldots, n .
\end{gathered}
$$

Recall that we have $\Gamma(k+1)=k \Gamma(k)$ and $\Delta k^{(\alpha)}=\alpha k^{(\alpha-1)}$, hence

$$
\frac{1}{k^{(\alpha)}}=-\frac{1}{\alpha-1} \Delta\left(\frac{1}{(k-1)^{(\alpha-1)}}\right) .
$$

Using these formulas one can directly verify that sequences $M_{k}^{(j)}, j=1, \ldots, n$, satisfy the assumptions of Theorem 1 with $r_{k}=k^{(\alpha)}$ and $\lim _{N \rightarrow \infty} \psi_{N}^{(j)}=4$. Consequently (2.4) reads (2.6) and (2.5) is nonoscillatory by Theorem 1.

3. Spectral properties of difference operators

In the next theorem we investigate spectral properties (sufficient conditions for property BD) of the full-term difference operator $m(y)$ given by (1.1). We use essentially the following idea. The general operator $m(y)$ is viewed as a "perturbation" of a certain one term operator

$$
\frac{(-1)^{i}}{w_{k}} \Delta^{i}\left(p_{k}^{(i)} \Delta^{j} y_{k+n-i}\right)
$$

for some $i \in\{1,2, \ldots, n\}$ and on the remaining terms we impose such restrictions that they do not interfere with this term.

Theorem 2. Let $i \in\{1,2, \ldots, n\}$ be fixed and let the positive strictly monotonic sequences $M_{k}^{(1)}, M_{k}^{(2)}, \ldots, M_{k}^{(i)}$ satisfy

$$
\Delta M_{k}^{(1)} \geqslant w_{k}, \Delta M_{k}^{(2)} \geqslant \frac{M_{k}^{(1)} M_{k+1}^{(1)}}{\left|\Delta M_{k}^{(1)}\right|}, \ldots, \Delta M_{k}^{(i)} \geqslant \frac{M_{k}^{(i-1)} M_{k+1}^{(i-1)}}{\left|\Delta M_{k}^{(i-1)}\right|}
$$

Then the operator B has property BD if the following conditions are satisfied for some $i, 1 \leqslant i \leqslant n$:
(a) $p_{k}^{(i)}>0, \sum_{k=0}^{\infty} \frac{1}{p_{k}^{(i)}}<\infty, \lim _{l \rightarrow \infty} M_{l}^{(i)} \sum_{k=l}^{\infty} \frac{1}{p_{k}^{(i)}}=0$.
(b) For $j>i, p_{k}^{(j)} \geqslant 0$.
(c) The i sequences $\left\{\frac{p_{k}^{(j)}}{\left|\Delta M_{k}^{(j+1)}\right|} ; 0 \leqslant j \leqslant i-1\right\}$ are bounded below by a constant C.
(d) For every $0 \leqslant j \leqslant i$ we have $\psi_{N}^{(j)}<\infty$, where

$$
\psi_{N}^{(j)}:=\sup _{k \geqslant N} \frac{M_{k}^{(j)}}{M_{k+1}^{(j)}}\left[1+\left(\sup _{k \geqslant N} \frac{\left|\Delta M_{k}^{(j)}\right|}{\left|\Delta M_{k+1}^{(j)}\right|}\right)^{\frac{1}{2}}\right]^{2}
$$

Proof. Let μ be a real number. From Lemma 1 we have for any $y \in D_{n}(N)$ and $j=1,2, \ldots, i-1$

$$
\begin{align*}
& \sum_{k=N}^{\infty}\left|\Delta M_{k}^{(j)}\right|\left(\Delta^{j-1} y_{k+n-j+1}\right)^{2} \\
& \leqslant \psi_{N}^{(j)} \sum_{k=N}^{\infty} \frac{M_{k}^{(j)} M_{k+1}^{(j)}}{\left|\Delta M_{k}^{(j)}\right|}\left(\Delta^{j} y_{k+n-j}\right)^{2} \tag{3.1}\\
& \leqslant \psi_{N}^{(j)} \sum_{k=N}^{\infty}\left|\Delta M_{k}^{(j+1)}\right|\left(\Delta^{j} y_{k+n-j}\right)^{2}
\end{align*}
$$

Now, by conditions (b), (c)

$$
\begin{align*}
I(y, N)-\mu \sum_{k=N}^{\infty} w_{k} y_{k+n}^{2} \geqslant & \sum_{k=N}^{\infty} p_{k}^{(i)}\left(\Delta^{i} y_{k+n-i}\right)^{2} \tag{3.2}\\
& +C \sum_{j=0}^{i-1} \sum_{k=N}^{\infty}\left|\Delta M_{k}^{(j+1)}\right|\left(\Delta^{j} y_{k+n-j}\right)^{2}-\mu \sum_{k=N}^{\infty} w_{k} y_{k+n}^{2}
\end{align*}
$$

Using $\Delta M_{k}^{(1)} \geqslant w_{k}$ and (3.1) we obtain

$$
\sum_{k=N}^{\infty}\left|\Delta M_{k}^{(j)}\right|\left(\Delta^{j-1} y_{k+n-j+1}\right)^{2} \leqslant \prod_{l=j}^{i-1} \psi_{N}^{(l)} \sum_{k=N}^{\infty}\left|\Delta M_{k}^{(i)}\right|\left(\Delta^{(i-1)} y_{k+n-i+1}\right)^{2}
$$

for $1 \leqslant j \leqslant i-1$, hence there is a $D>0(D>\mu)$ such that
$C \sum_{j=0}^{i-1} \sum_{k=N}^{\infty}\left|\Delta M_{k}^{(j+1)}\right|\left(\Delta^{j} y_{k+n-j}\right)^{2}-\mu \sum_{k=N}^{\infty} w_{k} y_{k+n}^{2} \geqslant-D \sum_{k=N}^{\infty}\left|\Delta M_{k}^{(i)}\right|\left(\Delta^{i-1} y_{k+n-i+1}\right)^{2}$.
We set $M_{l}:=\left(\sum_{k=l}^{\infty} \frac{1}{p_{k}^{(i)}}\right)^{-1}$ and $\psi_{N}:=\sup _{k \geqslant N} \frac{M_{k}}{M_{k+1}}\left[1+\left(\sup _{k \geqslant N} \frac{\left|\Delta M_{k}\right|}{\left|\Delta M_{k-1}\right|}\right)^{\frac{1}{2}}\right]^{2}$.

By (a), we may choose N that $M_{l}^{(i)} \sum_{k=l}^{\infty} \frac{1}{p_{k}^{(i)}} \leqslant \frac{1}{2 D \psi_{N}}, l \geqslant N$. With this choice of N, using summation by parts and Lemma 1 (with the above given M_{k}), we obtain

$$
\begin{aligned}
\sum_{k=N}^{\infty} \mid \Delta & M_{k}^{(i)} \mid\left(\Delta^{i-1} y_{k+n-i+1}\right)^{2} \\
& \leqslant \sum_{k=N}^{\infty} M_{k}^{(i)}\left[\left|\Delta^{i-1} y_{k+n-i+1}\right|+\left|\Delta^{i-1} y_{k+n-i}\right|\right]\left|\Delta^{i} y_{k+n-1}\right| \\
& \leqslant \frac{1}{2 D \psi_{N}} \sum_{k=N}^{\infty}\left(\sum_{l=k}^{\infty} \frac{1}{p_{l}^{(i)}}\right)^{-1}\left[\left|\Delta^{i-1} y_{k+n-i+1}\right|+\left|\Delta^{i-1} y_{k+n-i}\right|\right]\left|\Delta^{i} y_{k+n-1}\right| \\
& \leqslant \frac{1}{2 D} \sum_{k=N}^{\infty} p_{k}^{(i)}\left(\Delta^{i} y_{k+n-i+1}\right)^{2}
\end{aligned}
$$

Thus the left hand side of (3.2) is bounded below by

$$
\sum_{k=N}^{\infty} p_{k}^{(i)}\left(\Delta^{i} y_{k+n-i}\right)^{2}-D\left(\frac{1}{2 D} \sum_{k=N}^{\infty} p_{k}^{(i)}\left(\Delta^{i} y_{k+n-i}\right)^{2}\right) \geqslant 0
$$

Now we turn our attention to the one term difference operator

$$
\begin{equation*}
l(y)_{n+k}=(-1)^{n} \frac{1}{w_{k}} \Delta^{n}\left(r_{k} \Delta^{n} y_{k}\right) \tag{3.3}
\end{equation*}
$$

We will use the following statement known as the discrete reciprocity principle, see [3] Proposition 2. Let $w_{k}, r_{k}>0, \lambda>0$. Equation $(-1)^{n} \Delta^{n}\left(r_{k} \Delta^{n} y_{k}\right)=\lambda w_{k} y_{k+n}$ is nonoscillatory if and only if the so-called reciprocal equation

$$
\begin{equation*}
(-1)^{n} \Delta^{n}\left(\frac{1}{w_{k}} \Delta^{n} y_{k}\right)=\frac{\lambda}{r_{k+n}} y_{k+n} \tag{3.4}
\end{equation*}
$$

is nonoscillatory.

Theorem 3. Let $w_{k}=\frac{1}{k^{(\alpha)}}, \alpha \notin\{1,3, \ldots 2 n-1\}, \alpha<2 n-1$ and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} k^{(2 n-1-\alpha)} \sum_{j=k}^{\infty} r_{j}^{-1}=0 . \tag{3.5}
\end{equation*}
$$

Then (3.3) has property BD.

Proof. Let $\lambda>0$. By Proposition 2 the equation $l(y)=\lambda y_{k+n}$ is nonoscillatory if and only if (3.4) is nonoscillatory.

If (3.5) holds, then $\lim _{k \rightarrow \infty} k^{(2 n-1-\alpha)} \sum_{j=k}^{\infty} \lambda r_{j}^{-1}=0<\frac{(1-\alpha)^{2} \ldots(2 n-1-\alpha)}{4^{n}}$, hence by Corollary, equation (3.4) with $\frac{1}{w_{k}}=k^{(\alpha)}$ is nonoscillatory, i.e. $l(y)=\lambda y_{k+n}$ is also nonoscillatory and by Proposition 2, (3.3) has property BD.

References

[1] Bohner, M.: Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions. J. Math. Anal. Appl. 199 (1996), 804-826.
[2] Bohner, M., Došlý, O.: Disconjugacy and transformations for symplectic systems. Rocky Mountain J. Math. 27 (1997), 707-743.
[3] Došlý, O.: Reciprocity principle for Sturm-Liouville difference equations and some of its applications. Proceedings of SICDEA. Veszprem, 1995, pp. 145-153.
[4] Hinton, D. B., Lewis, R. T.: Spectral analysis of second order difference equations. J. Math. Anal. Appl. 63 (1978), 421-438.
[5] Hinton, D. B., Lewis, R. T.: Discrete spectra criteria for singular differential operators with middle terms. Math. Proc. Cambridge Philos. Soc. 77 (1975), 337-347.
[6] Hartman, P.: Difference equations: disconjugacy, principal solutions, Green's function, complete monoticity. Trans. Amer. Math. Soc. 246 (1978), 1-30.

Author's address: Simón Peňa, Přírodovědecká fakulta, Masarykova Univerzita, Janáčkovo nám. 2a, 66295 Brno, Czech Republic.

