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Abstract. We investigate oscillation and spectral properties (sufficient conditions for
discreteness and boundedness below of the spectrum) of difference operators

B(y)n+k =
(−1)n

wk
∆n(pk∆

nyk).
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1. Introduction, auxiliary results

Let wk be a positive real sequence and denote by l2w the Hilbert space of real-

valued sequences y = {yk}∞k=1 such that
∞∑
k=1

wky
2
k < ∞, with the scalar product

〈y, z〉 =
∞∑
k=1

wkykzk. The aim of this paper is to investigate oscillation and spectral

properties of 2n-order difference operators generated by the expression

(1.1) m(y)k+n =
1
wk

n∑
λ=0

(−1)λ∆λ(p(λ)k ∆λyk+n−λ),

where p(λ)k are real and p(n)k > 0.
Denote

D(B) = {y = {yk}∞k=1 ∈ l2w : {m(y)k+n} ∈ l2w}
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and consider the operator B : D(B)→ l2w given by B(y)k+n = m(y)k+n.

Let B0 := B∗ be the adjoint operator of B. The operators B and B0 are said to
be the maximal and the minimal operator defined by the difference expressionm(y).
We say that the operator B has the property BD if the spectrum of any self-adjoint

extension of B0 is discrete and bounded below.
A similar problem in the case w = 1 and p(0)k , p

(1)
k , . . . , p

(n−1)
k ≡ 0 was investigated

in [3]. It was shown that the operator B has property BD if and only if

lim
k→∞

k(2n−1)
∞∑
j=k

1

p
(n)
j

= 0.

Another paper related to our investigation is [5], where oscillation and spectral

properties of differential operators generated by the expression

n∑
j=0

(−1)j(pj(t)y(j))(j)

are investigated.

Here we use the recent results about oscillation properties of self-adjoint difference
equations m(y) = 0, see [1, 2], to establish a discrete analogue of some results of [5].

We also extend the results of [3] concerning one-term difference operators.
Oscillation properties of the even order difference equations

(1.2)
n∑
λ=0

(−1)λ∆λ(p(λ)k ∆λyk+n−λ) = 0

are defined using the concept of the generalized zero point of multiplicity n introduced

by Hartman [6]. By this definition, an integer m+1 is said to be the generalized zero
point of multiplicity n of a solution y of (1.2) if ym �= 0, ym+1 = . . . = ym+n−1 = 0
and (−1)nymym+n � 0. Equation (1.2) is said to be oscillatory if for any N ∈ �

there exists a nontrivial solution of (1.2) having at least two different generalized

zeros of multiplicity n in [N,∞), in the opposite case it is said to be nonoscillatory.

Proposition 1. The following statements are equivalent:
(i) B has property BD.
(ii) The equation m(y) = λyk+n is nonoscillatory for every λ ∈ �.

(iii) For every λ ∈ � there exists N ∈ � such that

I(y,N) =
n∑
i=0

∞∑
k=N

p
(i)
k (∆

iyk+n−i)2 �
∞∑
k=N

λwky
2
k+n

for any y ∈ Dn(N) := {y = {yk}∞k=1 : yk = 0, k � N + n− 1, ∃ m : yk = 0, k �
m}.
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For n = 1 the above given Proposition may be found in [4] and a closer examination

of its proof shows that using results of [1, 2] it may be formulated in the form given
here.

2. Nonoscillation criteria

We start with a discrete version of a Wirtinger-type inequality.

Lemma 1. Let Mk be a positive sequence such that ∆Mk �= 0. Then for any
y ∈ D1(N) have

∞∑
k=N

|∆Mk|y2k+1 � ψN

∞∑
k=N

MkMk+1

|∆Mk| (∆yk)
2,(2.1)

where

ψN := sup
k�N

Mk

Mk+1

[
1 +

(
sup
k�N

|∆Mk|
|∆Mk−1|

) 1
2

]2
.

�����. Suppose that ∆Mk > 0, in the opposite case we proceed in the same
way:

∞∑
k=N

|∆Mk|y2k+1 =Mky
2
k

∣∣∞
N

−
∞∑
k=N

Mk∆y
2
k = −

∞∑
k=N

Mk(yk+1 + yk)∆yk

�
∞∑
k=N

Mk (|yk+1|+ |yk|) |∆yk|

=
∞∑
k=N

Mk|yk+1| |∆yk|+
∞∑
k=N

Mk|yk| |∆yk|

�
( ∞∑
k=N

MkMk+1

|∆Mk| (∆yk)
2

) 1
2
( ∞∑
k=N

|∆Mk| Mk

Mk+1
y2k+1

) 1
2

+

( ∞∑
k=N

MkMk+1

|∆Mk| (∆yk)
2

) 1
2
( ∞∑
k=N

|∆Mk| Mk

Mk+1
y2k

) 1
2

�
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�
( ∞∑
k=N

MkMk+1

|∆Mk| (∆yk)
2

) 1
2
(
sup
k�N

Mk

Mk+1

) 1
2

×
[( ∞∑

k=N

|∆Mk|y2k+1
) 1
2

+

( ∞∑
k=N

|∆Mk|y2k
) 1
2

]

=

( ∞∑
k=N

MkMk+1

|∆Mk| (∆yk)
2

) 1
2
(
sup
k�N

Mk

Mk+1

) 1
2

×
[( ∞∑

k=N

|∆Mk|y2k+1
) 1
2

+

( ∞∑
k=N

|∆Mk−1| |∆Mk|
|∆Mk−1| y

2
k

) 1
2

]

�
( ∞∑
k=N

MkMk+1

|∆Mk| (∆yk)
2

) 1
2
(
sup
k�N

Mk

Mk+1

) 1
2

×
[( ∞∑

k=N

|∆Mk|y2k+1
) 1
2

+

(
sup
k�N

|∆Mk|
|∆Mk−1|

) 1
2
( ∞∑
k=N

|∆Mk−1|y2k
)]

=

( ∞∑
k=N

MkMk+1

|∆Mk| (∆yk)
2

) 1
2
(
sup
k�N

Mk

Mk+1

) 1
2

×
[
1 +

(
sup

|∆Mk|
|∆Mk+1|

) 1
2

]( ∞∑
k=N

|∆Mk|y2k+1
) 1
2

.

Hence

( ∞∑
k=N

|∆Mk|y2k+1
) 1
2

�
( ∞∑
k=N

MkMk+1

|∆Mk| (∆yk)
2

) 1
2

[
1 +

(
sup
k�N

|∆Mk|
|∆Mk−1|

) 1
2

](
sup
k�N

Mk

Mk+1

) 1
2

and thus
∞∑
k=N

|∆Mk|y2k+1 � ψN

∞∑
k=N

MkMk+1

|∆Mk| (∆yk)
2.

�

Using this inequality we can prove the following nonoscillation criterion for a two-
term equation

(2.2) (−1)n∆n(rk∆nyk) = pkyk+n, rk > 0, pk � 0.
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Theorem 1. Suppose that there exist positive sequences M (1)
k , M

(2)
k , . . . ,M

(n)
k

such that |∆M (1)
k |, |∆M (2)

k |, . . . , |∆M (n)
k | are eventually positive,

|∆M (j+1)
k | �

M
(j)
k+1M

(j)
k

|∆M (j)
k |

, j = 1, . . . , n− 1,

M
(n)
k M

(n)
k+1

|∆M (n)
k |

� rk

satisfying

(2.3) 0 < lim sup
N→∞

ψ
(1)
N ψ

(2)
N . . . ψ

(n)
N =: ψ <∞,

where

ψ
(j)
N :=

(
sup
k�N

M
(j)
k

M
(j)
k+1

)[
1 +

(
sup
k�N

|∆M (j)
k |

|∆M (j)
k+1|

) 1
2

]2
.

If

(2.4) lim sup
k→∞

1

M
(1)
k

∞∑
j=k

pj <
1
ψ

then equation (2.2) is nonoscillatory.

�����. According to Proposition 1, we need to prove that there exists N ∈ �

such that the quadratic functional

H(y) =
∞∑
k=N

{
rk(∆nyk)2 − pky

2
k+n

}

satisfies H(y) > 0 for every nontrivial y = {yk} ∈ Dn(N).

Let ε > 0 be such that

lim sup
k→∞

1

M
(1)
k

∞∑
j=k

pj <
1

ψ + ε
.
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Then from (2.4), using Lemma 1 and summation by parts, we have for N sufficiently

large

∞∑
k=N

pky
2
k+n =

∞∑
k=N

1

M
(1)
k

( ∞∑
j=k

pj

)
M
(1)
k ∆y

2
k+n−1

<
1

ψ + ε

∞∑
k=N

M
(1)
k

[
∆y2k+n−1

]

� 1
ψ + ε

[ ∞∑
k=N

M
(1)
k |yk+n||∆yk+n−1|+

∞∑
k=N

M
(1)
k |yk+n−1||∆yk+n−1|

]

�

√
ψ
(1)
N

ψ + ε

( ∞∑
k=N

M
(1)
k M

(1)
k+1

|∆M (1)
k |

(∆yk+n−1)2
)1/2( ∞∑

N

|∆M (1)
k |y2k+n

)1/2

� ψ
(1)
N

ψ + ε

∞∑
k=N

|∆M (2)
k |(∆yk+n−1)2

� ψ
(1)
N ψ

(2)
N

ψ + ε

∞∑
k=N

M
(2)
k M

(2)
k+1

|∆M (2)
k |

(∆2yk+n−2)2

� ψ
(1)
N ψ

(2)
N

ψ + ε

∞∑
k=N

|∆M (3)
k | (∆2yk+n−2)2

� ψ
(1)
N ψ

(2)
N . . . ψ

(n)
N

ψ + ε

∞∑
k=N

M
(n)
k+1M

(n)
k

|∆M (n)
k |

(∆nyk)
2.

Since (2.3) holds, ψ
(1)
N ψ

(2)
N ...ψ

(n)
N

ψ+ε < 1 if N is sufficiently large, hence

∞∑
k=N

pky
2
k+n <

∞∑
k=N

M
(n)
k+1M

(n)
k

|∆M (n)
k |

(∆nyk)
2 �

∞∑
k=N

rk(∆
nyk)

2.

Consequently, H(y) > 0 if N is sufficiently large.

�

Now consider the equation

(2.5) (−1)n∆n(k(α)∆nyk) = pkyk+n

with pk � 0 and α /∈ {1, 3, . . . , 2n− 1}, α < 2n− 1 i.e., equation (2.1) where

rk = k
(α) =

Γ(k + 1)
Γ(k − α+ 1)

, Γ(t) :=
∫ ∞

0
e−sst−1 ds.
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Corollary 1. If α /∈ {1, 3 . . . , 2n− 1}, α < 2n− 1 and

(2.6) lim sup
k→∞

k(2n−1−α)
∞∑
j=k

pj <
(1− α)2 . . . (2n− 3− α)2(2n− 1− α)

4n

then (2.5) is nonoscillatory.

�����. Let M (n)
k = |1− α|(k − 1)(α−1), M (n−1)

k = (1 − α)2|3− α|(k − 2)(α−3)

M
(j)
k = (1− α)2(3− α)2 . . . |2j − 1− α|(k − j)(α−2j+1), j = 3, . . . , n.

Recall that we have Γ(k + 1) = kΓ(k) and ∆k(α) = αk(α−1), hence

1
k(α)

= − 1
α− 1∆

(
1

(k − 1)(α−1)
)
.

Using these formulas one can directly verify that sequencesM (j)
k , j = 1, . . . , n, satisfy

the assumptions of Theorem 1 with rk = k(α) and lim
N→∞

ψ
(j)
N = 4. Consequently (2.4)

reads (2.6) and (2.5) is nonoscillatory by Theorem 1. �

3. Spectral properties of difference operators

In the next theorem we investigate spectral properties (sufficient conditions for

property BD) of the full-term difference operator m(y) given by (1.1). We use essen-
tially the following idea. The general operator m(y) is viewed as a “perturbation”

of a certain one term operator

(−1)i
wk
∆i
(
p
(i)
k ∆

jyk+n−i
)

for some i ∈ {1, 2, . . . , n} and on the remaining terms we impose such restrictions
that they do not interfere with this term.

Theorem 2. Let i ∈ {1, 2, . . . , n} be fixed and let the positive strictly monotonic
sequences M (1)

k ,M
(2)
k , . . . ,M

(i)
k satisfy

∆M (1)
k � wk, ∆M

(2)
k �

M
(1)
k M

(1)
k+1

|∆M (1)
k |

, . . . , ∆M (i)
k �

M
(i−1)
k M

(i−1)
k+1

|∆M (i−1)
k |

.

Then the operator B has property BD if the following conditions are satisfied for
some i, 1 � i � n:

(a) p(i)k > 0,
∞∑
k=0

1
p
(i)
k

<∞, lim
l→∞

M
(i)
l

∞∑
k=l

1
p
(i)
k

= 0.
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(b) For j > i, p(j)k � 0.
(c) The i sequences

{ p
(j)
k

|∆M(j+1)
k | ; 0 � j � i− 1} are bounded below by a constant

C.

(d) For every 0 � j � i we have ψ(j)N <∞, where

ψ
(j)
N := sup

k�N
M
(j)
k

M
(j)
k+1

[
1 +

(
sup
k�N

|∆M(j)
k |

|∆M(j)
k+1|

) 1
2

]2
.

�����. Let µ be a real number. From Lemma 1 we have for any y ∈ Dn(N)

and j = 1, 2, . . . , i− 1

(3.1)

∞∑
k=N

|∆M (j)
k |(∆j−1yk+n−j+1)2

� ψ
(j)
N

∞∑
k=N

M
(j)
k M

(j)
k+1

|∆M (j)
k |

(∆jyk+n−j)2

� ψ
(j)
N

∞∑
k=N

|∆M (j+1)
k |(∆jyk+n−j)2.

Now, by conditions (b), (c)
(3.2)

I(y,N)− µ

∞∑
k=N

wky
2
k+n �

∞∑
k=N

p
(i)
k (∆

iyk+n−i)2

+ C
i−1∑
j=0

∞∑
k=N

|∆M (j+1)
k |(∆jyk+n−j)2 − µ

∞∑
k=N

wky
2
k+n.

Using ∆M (1)
k � wk and (3.1) we obtain

∞∑
k=N

|∆M (j)
k |(∆j−1yk+n−j+1)2 �

i−1∏
l=j

ψ
(l)
N

∞∑
k=N

|∆M (i)
k |(∆(i−1)yk+n−i+1)2,

for 1 � j � i− 1, hence there is a D > 0 (D > µ) such that

C

i−1∑
j=0

∞∑
k=N

|∆M (j+1)
k |(∆jyk+n−j)2−µ

∞∑
k=N

wky
2
k+n�−D

∞∑
k=N

|∆M (i)
k |(∆i−1yk+n−i+1)2.

We set Ml :=

( ∞∑
k=l

1
p
(i)
k

)−1
and ψN := sup

k�N
Mk

Mk+1

[
1 +

(
sup
k�N

|∆Mk|
|∆Mk−1|

) 1
2

]2
.
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By (a), we may choose N that M (i)
l

∞∑
k=l

1
p
(i)
k

� 1
2DψN

, l � N . With this choice of

N , using summation by parts and Lemma 1 (with the above given Mk), we obtain

∞∑
k=N

|∆M (i)
k |(∆i−1yk+n−i+1)2

�
∞∑
k=N

M
(i)
k

[|∆i−1yk+n−i+1|+ |∆i−1yk+n−i|
] |∆iyk+n−1|

� 1
2DψN

∞∑
k=N

( ∞∑
l=k

1

p
(i)
l

)−1 [|∆i−1yk+n−i+1|+ |∆i−1yk+n−i|
] |∆iyk+n−1|

� 1
2D

∞∑
k=N

p
(i)
k (∆

iyk+n−i+1)2.

Thus the left hand side of (3.2) is bounded below by

∞∑
k=N

p
(i)
k (∆

iyk+n−i)2 −D

(
1
2D

∞∑
k=N

p
(i)
k (∆

iyk+n−i)2
)

� 0.

�

Now we turn our attention to the one term difference operator

(3.3) l(y)n+k = (−1)n 1
wk
∆n(rk∆nyk).

We will use the following statement known as the discrete reciprocity principle, see
[3] Proposition 2. Let wk, rk > 0, λ > 0. Equation (−1)n∆n(rk∆nyk) = λwkyk+n is
nonoscillatory if and only if the so-called reciprocal equation

(3.4) (−1)n∆n
( 1
wk
∆nyk

)
=

λ

rk+n
yk+n

is nonoscillatory.

Theorem 3. Let wk = 1
k(α)
, α /∈ {1, 3, . . .2n− 1}, α < 2n− 1 and

(3.5) lim
k→∞

k(2n−1−α)
∞∑
j=k

r−1j = 0.

Then (3.3) has property BD.
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�����. Let λ > 0. By Proposition 2 the equation l(y) = λyk+n is nonoscillatory

if and only if (3.4) is nonoscillatory.

If (3.5) holds, then lim
k→∞

k(2n−1−α)
∞∑
j=k

λr−1j = 0 < (1−α)2...(2n−1−α)
4n , hence by

Corollary, equation (3.4) with 1
wk
= k(α) is nonoscillatory, i.e. l(y) = λyk+n is also

nonoscillatory and by Proposition 2, (3.3) has property BD. �
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