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Abstract. The paper deals with the properties of a monotone operator defined on a subset
of an ordered Banach space. The structure of the set of fixed points between the minimal
and maximal ones is described.
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The purpose of this paper is to describe the structure of the set of fixed points of
a monotone operator defined on a subset of an ordered Banach space.

The well known result of Amman [1] guarantees the existence of the minimal and
maximal fixed points between the sub- and superequilibria. We depict the situation

in the case when the minimal and maximal fixed points are different.
Our result extends the results of Krasnosel’skij, Lusnikov [6] and Hess [5] to the

situation when the operator is strictly order preserving.
We apply our result to the periodic boundary value problem for the second or-

der ordinary differential equation. In this case the minimal and maximal solutions
are obtained by the monotone iterative technique developed by Lakshmikantham

et al. [7, 8]. In the papers [4, 9, 10] the structure of the set of solutions of certain
boundary value problems is discussed and examples of problems with a convex set

of solutions are given.
We suggest another possibility how to prove that the set of solutions is connected.
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Abstract result

Let B be an ordered Banach space with an order cone P, U ⊂ B and let A : U → U

be a continuous operator.

The operator A is order preserving if x � y ⇒ A(x) � A(y), strictly order pre-
serving if x < y ⇒ A(x) < A(y), strongly order preserving if x < y ⇒ A(x)� A(y).

(x � y means y − x ∈ intP.)

An element x ∈ U is called a subequilibrium (superequilibrium) provided x � Ax

(x � Ax). A sub- or superequilibrium is called strict if the strict inequality holds.

We denote [v, w] = {u ∈ B ; v � u � w}.

Theorem 1. [1] Assume that v, w, v < w are a sub- and superequilibrium,

respectively, of an order preserving operator A, the interval V = [v, w] ⊂ U and

A(V) is a relatively compact set.

Then A : V → V and there are a minimal and maximal fixed points, say �, r, such

that the set F of all fixed points of A in V is a subset of the interval [�, r].

A sequence (xn)n∈Z in U such that xn+1 = Axn, xn → x− for n → −∞, xn → x+

for n → ∞, x−, x+ ∈ U is called an entire orbit connecting x− with x+.

Theorem 2. [5, Proposition 2.1] Let u1 < u2 be fixed points of a strictly order

preserving continuous operator A : U → U. Let W = [u1, u2] ⊂ U and A(W ) be
relatively compact.

Then precisely one of the following three cases occurs:

(a) there is another fixed point of A in W ,

(b) there is an entire orbit consisting of strict subequilibria, connecting u1 with u2,

(c) there is an entire orbit consisting of strict superequilibria, connecting u2 with

u1.

Let us consider again the situation when A : V → V, V = [v, w], v < w are sub-

and superequilibria.

The fixed point u ∈ V is called stable with respect to V if for each ε > 0 there is

δ > 0 such that An(x) ∈ O(u, ε) for each x ∈ O(u, δ) ∩ V and each n ∈ N.

Under the assumptions of stability of each fixed point u ∈ V and the relative
compactness of the set A(V ) it is proved that the set of fixed points of a strongly order

preserving operator A : V → V is a continuous totally ordered curve [5, Theorem
3.3].

Under weaker assumptions we obtain the following result.
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Theorem 3. Let A : V → V be a strictly order preserving continuous mapping,

A(V ) be a relatively compact set. Assume that all fixed points of A are stable with
respect to V .

Then the set F ⊂ V of fixed points of A is connected.

The proof is based on the following lemma.

Lemma. Let the assumptions of Theorem 3 be satisfied and let y1, y2 ∈ V,

y1 < y2 be fixed points of A. Then there is a continuous totally ordered curve of

fixed points of A connecting y1 with y2.

�����. As the set A(V ) is relatively compact, the set F of fixed points of A

is compact and there exists a countable dense subset F0, F0 = F. We denote by

span(F0) the spanning set of F0 and E1 = span(F0). Obviously E1 is a separable
closed subspace of E.We denote by P1 = P∩E1 the positive cone in E1. As y1, y2 ∈ F,

y1 < y2 we have y2−y1 ∈ P∩E1.Moreover, the cones P, P1 induce the same ordering
on the set F.

As E1 is a separable Banach space, there is a strictly positive linear functional

x∗ ∈ P1
∗ [2]. Obviously for each u1, u2 ∈ F we have u1 < u2 ⇒ x∗(u1) < x∗(u2).

Let F1 be the set of fixed points of A in [y1, y2].

Denote Z = {U ⊂ F1, U is a totally ordered set, y1 ∈ U, y2 ∈ U}. The set Z is

inductively ordered by the set inclusion. Denote by U+ the maximal element of Z.
As U+ is a totally ordered set, x∗ is a homeomorphism of U+ onto a closed set
x∗(U+).
We claim x∗(U+) is connected. Supposing the contrary there are uα, uβ ∈ U+

such that x∗(uα) = α, x∗(uβ) = β, α, β ∈ x∗(U+) and (α, β) ⊂ R \ x∗(U+). That
means [uα, uβ] contains no fixed point.

The assumption of stability of fixed points implies that there is no strict super-

equilibrium in O(uβ , δ) ∩ [uα, uβ ] and no strict subequilibrium in O(uα, δ) ∩ [uα, uβ]
for δ sufficiently small.

Thus we have obtained a contradiction with Theorem 2 as neither case (a), nor

cases (b), (c) occur.

�

����� �� ������� �. Theorem 1 implies there are a minimal and a maxi-

mal fixed point �, r and that F ⊂ [�, r].

If r = �, the set F is a singleton.

If r > � then for each u ∈ F there are continuous totally ordered curves of fixed
points of A connecting � with u and u with r. That means F is connected.

�

325



Corollary. Assuming � �= r the set F ⊂ V is a union of continuous totally

ordered curves of fixed points of A connecting � with r.

The above Corollary completes the cascade of results of Krasnosel’skij and Lus-

nikov [6] concerning the relations between the type of monotony and the structure
of the set of fixed points. The authors in [6] use another assumption instead of the

stability of each fixed point. They assume the interval [�, r] is degenerated, i.e. there
is no strict sub- or superequilibrium inside.

The following theorem presents a summary of results of Krasnosel’skij and Lus-
nikov (parts (a),(b) and (d)) and ours (part (c)).

Theorem 4. Let an interval V = [�, r] be degenerated for a completely contin-

uous operator A : V → V. Then

(a) the set F of fixed points of A forms a continuous branch in V (i.e. F has a

nonzero intersection with the boundary ∂Ω of each bounded open set Ω such
that r ∈ Ω and � /∈ Ω);

(b) if the operator A is order preserving then F contains a continuous curve;

(c) if the operator A is strictly order preserving then F is a union of continuous

curves;

(d) if the operator A is strongly order preserving then F is a continuous curve.

	��
��. The assumption of degeneracy of the interval [�, r] can be slightly
weakened by assuming that for each fixed point x ∈ [�, r] there is 0 << δ such that

there is no strict sub- or superequilibrium in the interval [x, x + δ] ∩ [�, r].

Application

We are interested in the structure of the set of solutions of the periodic boundary
value problem

u′′ + f(t, u) = 0,(1)

u(0) = u(2�), u′(0) = u′(2�),(2)

where f : I × � → � is a continuous function.

We assume that there are constants a, b ∈ � such that

(i) there is a lower solution α and an upper solution β, α, β ∈ C2(I), of the problem
(1), (2) such that a � α(t) � β(t) � b,

(ii) there is a constant M > 0 such that for each u, v ∈ [a, b], t ∈ I, if u � v then
f(t, v)− f(t, u) � −M2(v − u),
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(iii) the function f(t, .) is nonincreasing in the variable x for a � x � b.

Using the existence result and the method of Lakshmikantham and Leela [8] we
obtain that under the assumptions (i), (ii) there are maximal and minimal solutions

r(t), �(t) of the boundary value problem (1), (2), and that for each η ∈ [a, b] ⊂ C(I)
the linear problem

(3) −u′′ +M2u = f(t, η) +M2η,

u(0) = u(2�), u′(0) = u′(2�),

has the unique solution

u(t) = c1eMt − c2e−Mt − e
Mt

2M

∫ t

0
σ(s)e−Ms ds+

e−Mt

2M

∫ t

0
σ(s)eMs ds,

where

c1 =
e2M�

2M(e2M� − 1)
∫ 2�

0
σ(s)e−Ms ds,

c2 =
1

2M(e2M� − 1)
∫ 2�

0
σ(s)eMs ds,

and

σ(t) = f(t, η) +M2η.

The operator A = V → V , V = [a, b] ⊂ C(I) defined by A(η) = u, u being a
solution of (3), (2) is relatively compact and strictly monotone [8].

Let x(t) be a fixed point of A and let δ be a constant. We denote

A (x(t) + δ) = x(t) + ε(t).

From the definition of A we obtain that ε(t) is a solution of the boundary value
problem

−ε(t)′′ +M2ε(t) = F (t),

ε(0) = ε(2�), ε′(0) = ε′(2�),

where F (t) = f(t, x+ δ)− f(t, x) +M2δ.

The assumption (iii) implies that |ε(t)| � |δ| and that each fixed point of the
operator A is stable. Theorem 3 implies that the set of solutions of the boundary
value problem (1), (2) is connected.
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	��
��. Our example is only an illustrative one. The direct computation yields

that r(t)−�(t) = c0, where c0 is a nonnegative constant and the solution set has the
form S = {�(t) + c; c ∈ [0, c0]}. See [9, Theorem].
As our second application we give the result concerning the structure of the set of

solutions x(t) ∈ C(I), I = [0, 1]) of the integral equation

(4) x(t) =
∫

I

K(t, s)f(s, x(s)) ds.

We assume that
(i) the function K(t, s) : I × I → � is continuous and 0 � K(t, s),

(ii) the function f(t, .) is increasing in the variable x,

(iii) there is a lower solution α and an upper solution β, α, β ∈ C(I), α(t) � β(t),

(iv) the function f is continuous and there is δ > 0 such that

f(t, u+ δ)− f(t, u) < δ
m

for each t ∈ I and u ∈ [α(t), β(t)], where m ∈ � and

m =
∫ 1

0
K(t1, s) ds = max

t∈I

∫ 1

0
K(t, s) ds.

(v) K(t, s) is not identically zero in any subset I × [s1, s2], s1, s2 ∈ I.

The operator A : V → V , V = [α, β] ⊂ C(I) defined by A(η) = u, where

u(t) =
∫

I

K(t, s)f(s, η(s)) ds,

is relatively compact and strictly monotone.

Let x(t) be a fixed point of A, and let δ > 0 be a constant.
Then

A (x(t) + δ) = x(t) + ε(t).

where ε(t) is given by

ε(t) =
∫

I

K(t, s)F (s) ds,

F (t) = f(t, x(t) + δ)− f(t, x(t)).
The assumption (iv) implies ε(t) � δ.

Thus the solution x(t) is stable. Theorem 3 implies that the set of solutions of the
integral equation (4) bounded between α(t) and β(t) is connected.

In the paper [3] it is proved that under assumptions somewhat weaker then (i)–
(iii) the set of solutions is a complete lattice. Adding the assumptions (iv), (v) we

obtain that this lattice is connected (in topology of C(I)) and is either a singleton
or a union of totally ordered continuous curves.
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