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Abstract. This paper is a continuation of [9]. In [9] results concerning equations of the
form

x(t) = x(a) +
∫ t

a
d[A(s)]x(s) + f(t)− f(a)

were presented. The Kurzweil type Stieltjes integration in the setting of [6] for Banach
space valued functions was used.
Here we consider operator valued solutions of the homogeneous problem

Φ(t) = I +
∫ t

d
d[A(s)]Φ(s)

as well as the variation-of-constants formula for the former equation.
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Assume that X is a Banach space and that L(X) is the Banach space of all
bounded linear operators A : X → X with the uniform operator topology. Defining

the bilinear form B : L(X) × X → X by B(A, x) = Ax ∈ X for A ∈ L(X) and
x ∈ X , we obtain in a natural way the bilinear triple B = (L(X), X,X) (see [6])
because using the usual operator norm we have

‖B(A, x)‖X � ‖A‖L(X)‖x‖X .
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Similarly, if we define the bilinear form B∗ : L(X)×L(X)→ L(X) by the relation

B∗(A,C) = AC ∈ L(X) for A,C ∈ L(X) where AC is the composition of the linear
operators A and C we get the bilinear triple B∗ = (L(X), L(X), L(X)) because we
have

‖B∗(A,C)‖L(X) � ‖AC‖L(X) � ‖A‖L(X)‖C‖L(X).

Assume that [a, b] ⊂ � is a bounded interval.
Given A : [a, b]→ L(X), the function A is of bounded variation on [a, b] if

var
[a,b]
(A) = sup

{ k∑
j=1

‖A(αj)−A(αj−1)‖L(X)

}
<∞,

where the supremum is taken over all finite partitions

D : a = α0 < α1 < . . . < αk−1 < αk = b

of the interval [a, b]. The set of all functions A : [a, b]→ L(X) with var
[a,b]
(A) <∞ will

be denoted by BV ([a, b];L(X)).
For A : [a, b]→ L(X) and a partition D of the interval [a, b] define

V b
a (A,D) = sup

{∥∥∥ k∑
j=1

[A(αj)−A(αj−1)]yj

∥∥∥
X

}
,

where the supremum is taken over all possible choices of yj ∈ X, j = 1, . . . , k with

‖yj‖ � 1 and similarly

∗
V b

a(A,D) = sup
{∥∥∥ k∑

j=1

[A(αj)−A(αj−1)]Cj

∥∥∥
L(X)

}
,

where the supremum is taken over all possible choices of Cj ∈ L(X), j = 1, . . . , k

with ‖Cj‖L(X) � 1.
Define

(B) var
[a,b]
(A) = supV b

a (A,D)

and
(B∗) var

[a,b]
(A) = sup

∗
V b

a(A,D)

where the supremum is taken over all finite partitions

D : a = α0 < α1 < . . . < αk−1 < αk = b
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of the interval [a, b].

The function A : [a, b] → L(X) with (B) var
[a,b]
(A) < ∞ is called a function with

bounded B-variation on [a, b] and similarly if (B∗) var
[a,b]
(A) <∞ then A is of bounded

B∗-variation on [a, b] ([3]).
We denote by (B)BV ([a, b];L(X)) the set of all functions A : [a, b] → L(X) with

(B) var
[a,b]
(A) < ∞ and by (B∗)BV ([a, b];L(X)) the set of all functions A : [a, b] →

L(X) with (B∗) var
[a,b]
(A) <∞.

In [9, Prop. 1.1 and 1.2 ] it is shown that

BV ([a, b];L(X)) ⊂ (B)BV ([a, b];L(X)) = (B∗)BV ([a, b];L(X))

holds.

Given x : [a, b]→ X , the function x is called regulated on [a, b] if it has one-sided
limits at every point of [a, b], i.e. if for every s ∈ [a, b) there is a value x(s+) ∈ X

such that

lim
t→s+

‖x(t)− x(s+)‖X = 0

and if for every s ∈ (a, b] there is a value x(s−) ∈ X such that

lim
t→s− ‖x(t)− x(s−)‖X = 0.

The set of all regulated functions x : [a, b] → X will be denoted by G([a, b];X)
and similarly we denote the set of all regulated functions A : [a, b] → L(X) by

G([a, b];L(X)).
If B = (L(X), X,X) is the bilinear triple of Banach spaces mentioned above then a

function A : [a, b]→ L(X) is called B-regulated on [a, b] if for every y ∈ X, ‖y‖X � 1,
the function Ay : [a, b]→ X given by t ∈ [a, b] �→ A(t)y ∈ X for t ∈ [a, b] is regulated,
i.e.Ay ∈ G([a, b];X) for every y ∈ X, ‖y‖X � 1.
We denote by (B)G([a, b];L(X)) the set of all B-regulated functions A : [a, b] →

L(X).

1. Equations with operator valued solutions

For [a, b] = [0, 1] we denote shortly

BV (L(X)) = BV ([0, 1];L(X)), (B)BV (L(X)) = (B)BV ([0, 1];L(X)),

G(L(X)) = G([0, 1];L(X)) and (B)G(L(X)) = (B)G([0, 1];L(X)).
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Assume that A : [0, 1]→ L(X) satisfies

(1.1) A ∈ (B)BV (L(X)) ∩ (B)G(L(X))

and the following condition (E) (see [9]):

for every d ∈ [0, 1] there are 0 < � = �(d) < 1 and ∆ = ∆(d) > 0 such that

(E+) (B) var
(d,d+∆]∩[0,1]

(A) < �

and

(E–) (B) var
[d−∆,d)∩[0,1]

(A) < �.

Taking the bilinear triple B∗ = (L(X), L(X), L(X)), by Proposition 1.1 in [9] we
have

(B)BV (L(X)) = (B∗)BV (L(X))

and

(B) var
[a,b]
(A) = (B∗) var

[a,b]
(A)

for every [a, b] ⊂ [0, 1]. Therefore condition (1.1) reads

(1.1) A ∈ (B∗)BV (L(X)) ∩ (B)G(L(X)),

and in condition (E) the symbol B can also be replaced by B∗, i.e. condition (E) reads

for every d ∈ [0, 1] there are 0 < � = �(d) < 1 and ∆ = ∆(d) > 0 such that

(E+) (B∗) var
(d,d+∆]∩[0,1]

(A) < �

and

(E–) (B∗) var
[d−∆,d)∩[0,1]

(A) < �.

Hence the results presented in Section 2 from [9] can be used for equations of the
form

(1.2) Y (t) = Ỹ +
∫ t

d

d[A(s)]Y (s) + F (t)− F (d)

for every t ∈ [0, 1] where F ∈ G(L(X)), d ∈ [0, 1] and Ỹ ∈ L(X).
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The operator valued function Y : [α, β]→ L(X) is called a solution of (1.2) on an

interval [α, β] ⊂ [0, 1] if Y satisfies (1.2) for every t ∈ [α, β]. If d ∈ [α, β] then of
course we have Y (d) = Ỹ for this solution.
With regard to the above mentioned facts we obtain by a simple reformulation of

Proposition 2.4 and Theorem 2.10 from [9] the following

1.1. Theorem. Assume that A : [0, 1]→ L(X) satisfies (1.1) and condition (E).

Then for every d ∈ [0, 1], Ỹ ∈ X , F ∈ G(L(X)) there is a ∆ > 0 such that for the
interval Jd = [d−∆, d+∆] ∩ [0, 1] there is a unique function Y ∈ G(Jd;L(X)) such

that

Y (t) = Ỹ +
∫ t

d

d[A(s)]Y (s) + F (t)− F (d), t ∈ Jd,

i.e.Y (t) is a local solution of the operator valued equation (1.2) on Jd = [d−∆, d+
∆] ∩ [0, 1].
If

(1.3) A ∈ (B)BV (L(X)) ∩G(L(X)),

condition (U):

(U+) [I +∆+A(t)]−1 ∈ L(X) exists for every t ∈ [0, 1)

and

(U–) [I −∆−A(t)]−1 ∈ L(X) exists for every t ∈ (0, 1]

and (E) hold, then for every choice of d ∈ [0, 1], Ỹ ∈ L(X), F ∈ G([0, 1];L(X)) there
exists a unique Y ∈ G([0, 1];X) which is a (global) solution of (1.2) on [0, 1].

Let us consider the special case of the equation (1.2) with F a constant, i.e. the so

called homogeneous equation

(1.4) Y (t) = Ỹ +
∫ t

d

d[A(s)]Y (s).

Theorem 1.1 applies to this equation and therefore there is a unique (global)

solution to this equation and this operator valued solution is regulated provided
A : [0, 1]→ L(X) satisfies (1.3), (E) and (U).

Together with (1.4) let us consider the equation

(1.5) Φ(t) = I +
∫ t

d

d[A(s)]Φ(s)
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where I ∈ L(X) is the identity operator.

Clearly every solution Y : [0, 1]→ L(X) of (1.4) can be written in the form

Y (t) = Φ(t)Ỹ , t ∈ [0, 1].

Let us now consider the properties of the solution Φ: [0, 1]→ L(X) of (1.5).

1.2. Lemma. Assume that A : [0, 1]→ L(X) satisfies (1.3), (E) and (U). Then

for the solution Φ: [0, 1]→ L(X) of (1.5) we have

Φ ∈ (B)BV (L(X)) ∩G(L(X))

and there is a constant K > 0 such that ‖Φ(t)‖ � K for every t ∈ [0, 1].

�����. By Theorem 1.1 Φ ∈ G([0, 1];L(X)) and therefore there exists a
K > 0 such that ‖Φ(t)‖ � K for every t ∈ [0, 1]. It remains to show that
Φ ∈ (B)BV ([0, 1];L(X)).
Assume that

D : 0 = α0 < α1 < . . . < αk−1 < αk = 1

is an arbitrary partition of the interval [0, 1].

For any yj ∈ X, j = 1, . . . , k with ‖yj‖ � 1 we have

∥∥∥ k∑
j=1

[Φ(αj)− Φ(αj−1)]yj

∥∥∥
X
=

∥∥∥ k∑
j=1

∫ αj

αj−1
d[A(s)]Φ(s)yj

∥∥∥
X
.

Define

ϕ(s) = Φ(s)yj for s ∈ (αj−1, αj) and ϕ(s) = 0 for s = αj .

Evidently ‖ϕ(s)‖ � K.

Then by 1.18 from [9] we get

∫ αj

αj−1
d[A(s)]Φ(s)yj =

∫ αj

αj−1
d[A(s)]ϕ(s)

+ [A(αj−1+)−A(αj−1)]Φ(αj−1)yj + [A(αj)−A(αj−)]Φ(αj)yj
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and

∥∥∥ k∑
j=1

∫ αj

αj−1
d[A(s)Φ(s)yj

∥∥∥
X
=

∥∥∥ k∑
j=1

∫ αj

αj−1
d[A(s)]ϕ(s)

+ [A(αj−1+)−A(αj−1)]Φ(αj−1)yj + [A(αj)−A(αj−)]Φ(αj)yj

∥∥∥
X

=
∥∥∥ ∫ 1

0
d[A(s)]ϕ(s) +

k∑
j=1

[A(αj−1+)−A(αj−1)]Φ(αj−1)yj

+
k∑

j=1

[A(αj)−A(αj−)]Φ(αj)yj

∥∥∥
X

�
∥∥∥ ∫ 1

0
d[A(s)]ϕ(s)

∥∥∥
X

+
∥∥∥ k∑

j=1

[A(αj−1+)−A(αj−1)]Φ(αj−1)yj

∥∥∥
X
+

∥∥∥ k∑
j=1

[A(αj)−A(αj−)]Φ(αj)yj

∥∥∥
X
.

For a given η > 0 let us choose a θ > 0 such that

‖A(αj−1 + θ)−A(αj−1+)‖L(X) <
η

k + 1

and
‖A(αj − θ)−A(αj−)‖L(X) <

η

k + 1
for all j = 1, . . . , k. Then

∥∥∥ k∑
j=1

[A(αj−1+)−A(αj−1)]Φ(αj−1)yj

∥∥∥
X

=
∥∥∥ k∑

j=1

[A(αj−1+)−A(αj−1 + θ) +A(αj−1 + θ)−A(αj−1)]Φ(αj−1)yj

∥∥∥
X

�
∥∥∥ k∑

j=1

[A(αj−1+)−A(αj−1 + θ)]Φ(αj−1)yj

∥∥∥
X

+
∥∥∥ k∑

j=1

[A(αj−1 + θ)−A(αj−1)]Φ(αj−1)yj

∥∥∥
X

<

k∑
j=1

Kη

k + 1
+

∥∥∥ k∑
j=1

[A(αj−1 + θ)−A(αj−1)]Φ(αj−1)yj

∥∥∥
X

< Kη +K(B) var
[0,1]
(A)

and similarly also

∥∥∥ k∑
j=1

[A(αj)−A(αj−)]Φ(αj)yj

∥∥∥
X
< Kη +K(B) var

[0,1]
(A).
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By 1.11 from [9] we have further

∥∥∥ ∫ 1

0
d[A(s)]ϕ(s)

∥∥∥
X

� K(B) var
[0,1]
(A)

and finally we obtain

∥∥∥ k∑
j=1

[Φ(αj)− Φ(αj−1)yj

∥∥∥
X
=

∥∥∥ k∑
j=1

∫ αj

αj−1
d[A(s)]Φ(s)yj

∥∥∥
X
< 2Kη + 3K(B) var

[0,1]
(A).

Passing to the corresponding suprema we arrive easily at

(B) var
[0,1]
(Φ) � 3K(B) var

[0,1]
(A) <∞,

i.e. Φ ∈ (B)BV ([0, 1];L(X)). �

1.3. Lemma. Assume that A : [0, 1]→ L(X) satisfies (1.3), (E) and (U).

Then the solution Φ: [0, 1] → L(X) of (1.5) has an inverse [Φ(t)]−1 ∈ L(X) for

every t ∈ [0, 1].
�����. For t = d we have Φ(t) = Φ(d) = I and the inverse [Φ(t)]−1 evidently

exists for this value.

Assume that there is a point t∗ ∈ [0, 1] such that the inverse [Φ(t∗)]−1 does not
exist. Then there exists y ∈ X such that the equation

Φ(t∗)z = y

has no solution in X . Assume that Ψ: [0, 1] → L(X) is a solution of the operator
valued equation

Ψ(t) = I +
∫ t

t∗
d[A(s)]Ψ(s);

this solution exists and is uniquely determined by the second part of Theorem 1.1.

Let us set z = Ψ(d)y. The function x : [0, 1]→ X given by x(t) = Ψ(t)y is a solution
of the equation

x(t) = y +
∫ t

t∗
d[A(s)]x(s)

with x(t∗) = y and x(d) = Ψ(d)y. On the other hand, ϕ(t) = Φ(t)z is a solution of

ϕ(t) = z +
∫ t

d

d[A(s)]ϕ(s)
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where ϕ(d) = z = Ψ(d)y = x(d) and

x(t) = x(d) +
∫ t

d

d[A(s)]x(s).

Hence by the uniqueness of a solution stated in Theorem 2.10 from [9] we have
x(t) = ϕ(t) for all t ∈ [0, 1]. Therefore

x(t∗) = y = ϕ(t∗) = Φ(t∗)z = Φ(t∗)Ψ(d)y,

i.e. z = Ψ(d)y ∈ X is a solution of the equation Φ(t∗)z = y. This contradicts

the assumption and proves that the operator Φ(t) ∈ L(X) has an inverse for every
t ∈ [0, 1]. �

1.4. Lemma. Assume that A : [0, 1]→ L(X) satisfies (1.3), (E) and (U).

Then the inverse [Φ(t)]−1 = Φ−1(t) to the solution Φ: [0, 1] → L(X) of (1.5)
belongs to G(L(X)) and there is a constant L > 0 such that

‖Φ−1(t)‖L(X) � L

for every t ∈ [0, 1].
�����. By Theorem 1.1 we have Φ ∈ G(L(X)) and therefore the onesided

limits of this function exist at every point of [0, 1]. E. g., the limit lim
r→t+

Φ(r) exists

for every t ∈ [0, 1) and by 1.18 from [9] we have

lim
r→t+

Φ(r) = I + lim
r→t+

∫ r

d

d[A(s)]Φ(s) = I +
∫ t

d

d[A(s)]Φ(s)

+ lim
r→t+

∫ r

t

d[A(s)]Φ(s) = Φ(t) + lim
r→t+

∫ r

t

d[A(s)]Φ(s)

= Φ(t) + [A(t+)−A(t)]Φ(t) = [I +∆+A(t)]Φ(t).

Hence Φ(t+) = [I + ∆+A(t)]Φ(t) and because Φ−1(t) exists by Lemma 1.3 and
the inverse [I + ∆+A(t)]−1 exists by (U+) from the assumption (U) the inverse
[Φ(t+)]−1 = Φ−1(t+) also exists and we have the relation

[Φ(t+)]−1 = Φ−1(t+) = Φ−1(t) · [I +∆+A(t)]−1, t ∈ [0, 1).

Similarly we have also

Φ−1(t−) = Φ−1(t) · [I −∆−A(t)]−1, t ∈ (0, 1]
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where Φ−1(t−) = [Φ(t−)]−1.
Using the continuity of the operation of taking an inverse (see [2], p. 624) we obtain

lim
r→t+

Φ−1(r) = Φ−1(t+) for t ∈ [0, 1)

and

lim
r→t−Φ

−1(r) = Φ−1(t−) for t ∈ (0, 1]

because lim
r→t+

Φ(r) = Φ(t+) for t ∈ [0, 1) and lim
r→t−Φ(r) = Φ(t−) for t ∈ (0, 1].

Hence the operator valued function Φ−1 : [0, 1] → L(X) belongs to the space
G(L(X)) and it is therefore bounded, i.e. there is an L � 0 such that

‖Φ−1(t)‖L(X) � L

for every t ∈ [0, 1]. �

1.5. Lemma. Assume that A : [0, 1]→ L(X) satisfies (1.3), (E) and (U).

Assume that d ∈ [0, 1] is fixed and that Φ: [0, 1]→ L(X) is the solution of (1.5).
Then for every t0 ∈ [0, 1] and x̃ ∈ X , the unique solution x : [0, 1] → X of the

homogeneous equation

x(t) = x̃+
∫ t

t0

d[A(s)]x(s)

is given by the relation

x(t) = Φ(t)Φ−1(t0)x̃, t ∈ [0, 1].

�����. The solution x exists and is unique by Theorem 2.11 in [9]. Using (1.1)

we have

x(t) = Φ(t)Φ−1(t0)x̃ =
[
I +

∫ t

d

d[A(s)]Φ(s)
]
Φ−1(t0)x̃

=
[
I +

∫ t0

d

d[A(s)]Φ(s) +
∫ t

t0

d[A(s)]Φ(s)
]
Φ−1(t0)x̃

= Φ(t0)Φ−1(t0)x̃+
∫ t

t0

d[A(s)]Φ(s)Φ−1(t0)x̃ = x̃+
∫ t

t0

d[A(s)]x(s)

and the lemma is proved. �
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2. Variation of constants

2.1. Lemma. Assume that A : [0, 1] → L(X) satisfies (1.3), (E) and (U). Let

Φ: [0, 1]→ L(X) be the solution of (1.5) and assume that its inverse Φ−1 : [0, 1]→
L(X) given by Lemma 1.3 is such that Φ−1 ∈ (B)BV (L(X)).
Then for every g ∈ G(X), t ∈ [0, 1] the equality

(2.1)
∫ t

d

d[A(r)]Φ(r)
∫ r

d

d[Φ−1(s)]g(s) = Φ(t)
∫ t

d

d[Φ−1(s)]g(s) +
∫ t

d

d[A(s)]g(s)

holds.

�����. Since g ∈ G(X) and Φ−1 ∈ (B)BV (L(X)), the integrals on both sides
of (2.1) exist by [6, Theorem 11] (see also [9, 1.12]).
To show that the equality (2.1) is valid for every regulated function g : [0, 1]→ X

it is sufficient to prove it for an arbitrary finite step function, because the finite step
functions are dense in the space G(X) (see [2]).
For a given α ∈ [0, 1], c ∈ X and for s ∈ [0, 1] we define

ψ+α (s) = 0 if s � α, ψ+α (s) = c if s > α

and

ψ−
α (s) = 0 if s < α, ψ−

α (s) = c if s � α.

It is a matter of routine to verify that every finite step function can be expressed

in the form of a finite sum of functions of the the type ψ+α and ψ
−
α . Hence by the

linearity of the integral it suffices to show that (2.1) holds for functions of this type.

Let us prove e.g. that (2.1) is satisfied for the function ψ+α .
Assume that α < d. Then∫ r

d

ds[Φ−1(s)]ψ+α (s) = [Φ
−1(r) − Φ−1(d)]c if r > α

and

(2.2)
∫ r

d

ds[Φ−1(s)]ψ+α (s) = [Φ
−1(α+)− Φ−1(d)]c if r � α.

Hence for t > α we have∫ t

d

d[A(r)]Φ(r)
∫ r

d

ds[Φ
−1(s)]ψ+α (s)(2.3)

=
∫ t

d

d[A(r)]Φ(r)[Φ−1(r) − Φ−1(d)]c =
∫ t

d

d[A(r)][I − Φ(r)Φ−1(d)]c

= [A(t)−A(d)]c − [Φ(t)− Φ(d)]Φ−1(d)c = [A(t) −A(d)]c+ c− Φ(t)Φ−1(d)c.
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If t � α then

∫ t

d

d[A(r)]Φ(r)
∫ r

d

ds[Φ−1(s)]ψ+α (s) = −
∫ d

t

d[A(r)]Φ(r)
∫ r

d

ds[Φ−1(s)]ψ+α (s)

= −
(∫ α

t

d[A(r)]Φ(r)
∫ r

d

ds[Φ
−1(s)]ψ+α (s) +

∫ d

α

d[A(r)]Φ(r)
∫ r

d

ds[Φ
−1(s)]ψ+α (s)

)

and ∫ d

α

d[A(r)]Φ(r)
∫ r

d

ds[Φ−1(s)]ψ+α (s)

= [A(α+)−A(α)]Φ(α)[Φ−1(α+)− Φ−1(d)]c

+ lim
δ→0+

∫ d

α+δ

d[A(r)]Φ(r)[Φ−1(r) − Φ−1(d)]c

= [A(α+)−A(α)]Φ(α)[Φ−1(α+)− Φ−1(d)]c

+ lim
δ→0+

∫ d

α+δ

d[A(r)]c − lim
δ→0+

∫ d

α+δ

d[A(r)]Φ(r)Φ−1(d)c

= [A(α+)−A(α)]Φ(α)[Φ−1(α+)− Φ−1(d)]c + [A(d)−A(α+)]c

− [Φ(d)− Φ(α+)]Φ−1(d)c.

Further we have∫ α

t

d[A(r)]Φ(r)
∫ r

d

ds[Φ−1(s)]ψ+α (s) = [Φ(α)− Φ(t)][Φ−1(α+)− Φ−1(d)]c

and ∫ t

d

d[A(r)]Φ(r)
∫ r

d

ds[Φ−1(s)]ψ+α (s)

= − {[A(α+)−A(α)]Φ(α)[Φ−1(α+)− Φ−1(d)]c+ [A(d) −A(α+)]c

− [Φ(d) − Φ(α+)]Φ−1(d)c + [Φ(α)− Φ(t)][Φ−1(α+)− Φ−1(d)]c}.

Since [A(α+)−A(α)]Φ(α) = ∆+A(α)Φ(α) = Φ(α+)− Φ(α) we have

(2.4)

∫ t

d

d[A(r)]Φ(r)
∫ r

d

ds[Φ−1(s)]ψ+α (s)

= − {[Φ(α+)− Φ(α)][Φ−1(α+)− Φ−1(d)] + [A(d) −A(α+)]

− I +Φ(α+)Φ−1(d) + Φ(α)Φ−1(α+)− Φ(α)Φ−1(d)

− Φ(t)Φ−1(α+) + Φ(t)Φ−1(d)}c
= − {[A(d)−A(α+)]− Φ(t)[Φ−1(α+)− Φ−1(d)]}c
= [A(α+) −A(d)]c+Φ(t)[Φ−1(α+)− Φ−1(d)]c
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for t � α.

For the right hand side of (2.1) we use (2.2) for obtaining

Φ(t)
∫ t

d

d[Φ−1(s)]ψ+α (s) = Φ(t)[Φ
−1(t)− Φ−1(d)]c if t > α

and

(2.5) Φ(t)
∫ t

d

d[Φ−1(s)]ψ+α (s) = [Φ
−1(α+)− Φ−1(d)]c if t � α.

Now it is a matter of routine to show that

∫ t

d

d[A(s)]ψ+α (s) = [A(t)−A(d)]c if t > α

and

(2.6)
∫ t

d

d[A(s)]ψ+α (s) = [A(α+)−A(d)]c if t � α.

Using (2.5) and (2.6) we obtain

Φ(t)
∫ t

d

d[Φ−1(s)]ψ+α (s) +
∫ t

d

d[A(s)]ψ+α (s)

= −Φ(t)[Φ−1(t)− Φ−1(d)]c+ [A(t)− A(d)]c if t > α

and

Φ(t)
∫ t

d

d[Φ−1(s)]ψ+α (s) +
∫ t

d

d[A(s)]ψ+α (s)

= [Φ−1(α+)− Φ−1(d)]c+ [A(α+)−A(d)]c if t � α.

Looking at (2.3) and (2.4) we can see immediately that the equality (2.1) holds for
the function ψ+α if α < d.

For α � d as well as for the case of the function ψ−
α the result can be proved

similarly. The computations are straightforward but slightly tedious. �

Let us assume that A : [0, 1]→ L(X) satisfies (1.3), (E) and (U).

Let us consider the equation

(2.7) x(t) = x̃+
∫ t

t0

d[A(s)]x(s) + f(t)− f(t0).
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By [9, Theorem 2.10 ] we obtain that

for every choice of t0 ∈ [0, 1], x̃ ∈ X , f ∈ G(X) there exists x ∈ G(X) such that

x(t) = x̃+
∫ t

t0

d[A(s)]x(s) + f(t)− f(t0)

for every t ∈ [0, 1].
This solution of (2.7) is determined uniquely.

2.2. Theorem. Assume that A : [0, 1]→ L(X) satisfies (1.3), (E) and (U). Let

Φ: [0, 1]→ L(X) be the solution of (1.5) and assume that its inverse Φ−1 : [0, 1]→
L(X) given by Lemma 1.3 is such that Φ−1 ∈ (B)BV (L(X)).
Then for every t0 ∈ [0, 1], x̃ ∈ X and f ∈ G(X) the formula

(2.8) x(t) = Φ(t)Φ−1(t0)x̃+ f(t)− f(t0)− Φ(t)
∫ t

t0

d[Φ−1(s)](f(s) − f(t0)),

t ∈ [0, 1], represents a solution of (2.7).
�����. Using (2.8) we have for t ∈ [0, 1]

∫ t

t0

d[A(r)]x(r)

=
∫ t

t0

d[A(r)]
{
Φ(r)Φ−1(t0)x̃+ f(r) − f(t0)− Φ(r)

∫ r

t0

d[Φ−1(s)](f(s) − f(t0))
}

=
∫ t

t0

d[A(r)]Φ(r)Φ−1(t0)x̃+
∫ t

t0

d[A(r)](f(r) − f(t0))

−
∫ t

t0

d[A(r)]Φ(r)
∫ r

t0

d[Φ−1(s)](f(s)− f(t0)).

For a solution Φ of (1.5) we have

∫ t

t0

d[A(r)]Φ(r) = Φ(t)− Φ(t0)

and by Lemma 2.1 we have

∫ t

t0

d[A(r)]Φ(r)
∫ r

t0

d[Φ−1(s)](f(s)− f(t0))

= Φ(t)
∫ t

t0

d[Φ−1(s)](f(s)− f(t0)) +
∫ t

t0

d[A(s)](f(s) − f(t0)).
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Therefore

∫ t

t0

d[A(r)]x(r)

= [Φ(t)− Φ(t0)]Φ−1(t0)x̃+
∫ t

t0

d[A(r)](f(r) − f(t0))

− Φ(t)
∫ t

t0

d[Φ−1(s)](f(s)− f(t0))−
∫ t

t0

d[A(s)](f(s) − f(t0)) = Φ(t)Φ
−1(t0)x̃− x̃

− Φ(t)
∫ t

t0

d[Φ−1(s)](f(s)− f(t0)).

Hence ∫ t

t0

d[A(r)]x(r) = x(t) − x̃− (f(s)− f(t0))

for every t ∈ [0, 1] and this means that the function x : [0, 1] → X given by (2.8) is

a solution of the equation (2.7). �

������. From the point of view of the variation-of-constants formula (2.8)

presented in Theorem 2.2 the assumption that the inverse Φ−1 : [0, 1] → L(X) to
Φ: [0, 1] → L(X) given by Lemma 1.3 is such that Φ−1 ∈ (B)BV (L(X)) is very
unnatural. It would be nice if the property Φ−1 ∈ (B)BV (L(X)) could be derived
from the general assumptions, i.e. from the fact that A : [0, 1]→ L(X) satisfies (1.3),
(E) and (U).

In the next section we will show that in the special situation of A ∈ BV (L(X))
the variation-of-constants formula (2.8) holds without any further assumption.

3. The variation-of-constants formula for the case A ∈ BV (L(X))

Assume throughout this section that A ∈ BV (L(X)).

First of all it should be mentioned that by [9, 1.5] we have A ∈ G(L(X)) and

therefore A : [0, 1] → L(X) evidently satisfies (1.3) because, as was already men-
tioned in the introductory part of this note, we have BV (L(X)) ⊂ (B)BV (L(X)) by
[9, Prop. 1.1 and 1.2].

As was mentioned in the last Remark in [9], if A ∈ BV (L(X)) then A satisfies

also condition (E).

Let us now prove the following proposition.

3.1. Proposition. Assume that A : [0, 1]→ L(X).
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Then A ∈ BV (L(X)) if and only if

(3.1) sup
P

{
sup

Cj,Dj

∥∥∥ k∑
j=1

Dj[A(αj −A(αj−1)]Cj

∥∥∥
L(X)

}
<∞

where P : 0 = α0 < α1 < . . . < αk−1 < αk = 1 is a partition of [0, 1], Cj , Dj ∈ L(X)
with ‖Cj‖L(X) � 1, ‖Dj‖L(X) � 1, j = 1, . . . , k, and

var
[0,1]
(A) = sup

P

{
sup

Cj ,Dj

∥∥∥ k∑
j=1

Dj[A(αj −A(αj−1)]Cj

∥∥∥
L(X)

}
.

�����. Assume that

P : 0 = α0 < α1 < . . . < αk−1 < αk = 1

is an arbitrary partition of [0, 1].

If Cj , Dj ∈ L(X) with ‖Cj‖L(X) � 1, ‖Dj‖L(X) � 1, j = 1, . . . , k then

∥∥∥ k∑
j=1

Dj [A(αj)−A(αj−1)]Cj

∥∥∥
L(X)

�
k∑

j=1

‖Dj‖L(X)‖A(αj)−A(αj−1)‖L(X)‖Cj‖L(X)

�
k∑

j=1

‖A(αj)−A(αj−1)‖L(X).

Hence

sup
Cj,Dj

∥∥∥ k∑
j=1

Dj [A(αj)−A(αj−1)]Cj

∥∥∥
L(X)

�
k∑

j=1

‖A(αj)−A(αj−1)‖L(X)

where the supremum on the left hand side is taken over all Cj , Dj ∈ L(X) with

‖Cj‖L(X) � 1, ‖Dj‖L(X) � 1. Consequently,

(3.2)

sup
P

{
sup

Cj ,Dj

∥∥∥ k∑
j=1

Dj [A(αj)−A(αj−1)]Cj

∥∥∥
L(X)

}

� sup
P

k∑
j=1

‖A(αj)−A(αj−1)‖L(X) = var
[0,1]
(A).
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Assume that D̂j ∈ L(X) with ‖D̂j‖L(X) � 1 and xj ∈ X with ‖xj‖X � 1, j =
1, . . . , k. Let us take w ∈ X such that ‖w‖X = 1. Then for all j = 1, . . . , k there
exist Ĉj ∈ L(X) with ‖Ĉj‖L(X) � 1 such that Ĉjw = xj . Hence

∥∥∥ k∑
j=1

D̂j [A(αj)−A(αj−1)]xj

∥∥∥
X
=

∥∥∥ k∑
j=1

D̂j [A(αj)−A(αj−1)]Ĉjw
∥∥∥

X

� sup
‖y‖X�1

∥∥∥ k∑
j=1

D̂j[A(αj)−A(αj−1)]Ĉjy
∥∥∥

X

=
∥∥∥ k∑

j=1

D̂j[A(αj)−A(αj−1)]Ĉj

∥∥∥
L(X)

� sup
Cj,Dj

∥∥∥ k∑
j=1

Dj [A(αj)−A(αj−1)]Cj

∥∥∥
L(X)

where the supremum on the right hand side is taken over all Cj , Dj ∈ L(X) with
‖Cj‖L(X) � 1, ‖Dj‖L(X) � 1. Passing to the supremum over all D̂j ∈ L(X) with

‖D̂j‖L(X) � 1 and xj ∈ X with ‖xj‖X � 1, j = 1, . . . , k we get

(3.3)

sup
xj ,Dj

∥∥∥ k∑
j=1

Dj [A(αj)−A(αj−1)]xj

∥∥∥
X

� sup
Cj ,Dj

∥∥∥ k∑
j=1

Dj[A(αj)−A(αj−1)]Cj

∥∥∥
L(X)

.

Assume that ε > 0 is given. Choose vectors xj ∈ X with ‖xj‖X � 1, j = 1, . . . , k
such that

(3.4) ‖[A(αj)−A(αj−1)]xj‖X > ‖[A(αj)−A(αj−1)]‖L(X) − ε
k .

Let us set

vj =
[A(αj)−A(αj−1)]xj

‖[A(αj)−A(αj−1)]xj‖X
if [A(αj)−A(αj−1)]xj �= 0

and
vj = 0 if [A(αj)−A(αj−1)]xj = 0.

For vj �= 0 let Yj be the onedimensional subspace of X given by

Yj = {λvj ;λ ∈ �}
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and assume that f̃j is a bounded linear functional on Yj such that f̃j(vj) = 1 and

denote by fj ∈ X∗ its extension onto X with ‖fj‖ = 1.
Assume that w ∈ X is fixed such that ‖w‖X = 1 and define the linear operator

Dj ∈ L(X) by the relation

Djx = fj(x)w, x ∈ X, j = 1, . . . , k.

Then certainly
‖Dj‖L(X) = ‖fj‖‖w‖ = 1

and

Dj[A(αj)−A(αj−1)]xj = ‖A(αj)−A(αj−1)]xj‖XDjvj

= ‖A(αj)−A(αj−1)]xj‖Xfj(vj)w = ‖A(αj)−A(αj−1)]xj‖Xw.

Hence by (3.4) we get

∥∥∥ k∑
j=1

Dj [A(αj)−A(αj−1)]xj

∥∥∥
X
=

∥∥∥ k∑
j=1

∥∥∥A(αj)−A(αj−1)]xj‖Xw‖X

=
k∑

j=1

‖A(αj)−A(αj−1)]xj‖X >

k∑
j=1

(‖A(αj)−A(αj−1)]‖L(X) − ε
k

)

=
k∑

j=1

‖A(αj)−A(αj−1)]‖L(X) − ε.

Taking the supremum over all Dj ∈ L(X) with ‖Dj‖L(X) � 1 and xj ∈ X with

‖xj‖X � 1, j = 1, . . . , k we get

sup
xj,Dj

∥∥∥ k∑
j=1

Dj [A(αj)−A(αj−1)]xj

∥∥∥
X
>

k∑
j=1

‖A(αj)−A(αj−1)]‖L(X) − ε

and using (3.3) we finally obtain

sup
Cj,Dj

∥∥∥ k∑
j=1

Dj[A(αj)−A(αj−1)]Cj

∥∥∥
L(X)

�
k∑

j=1

‖A(αj)−A(αj−1)]‖L(X) − ε.

Taking the supremum over all partitions P of [0, 1] we obtain together with (3.2)

for every ε > 0 the inequality

var
[0,1]
(A)− ε < sup

P

{
sup

Cj ,Dj

∥∥∥ k∑
j=1

Dj[A(αj)−A(αj−1)]Cj

∥∥∥
L(X)

}
� var
[0,1]
(A)
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and therefore

var
[0,1]
(A) = sup

P

{
sup

Cj ,Dj

∥∥∥ k∑
j=1

Dj [A(αj)−A(αj−1)]Cj

∥∥∥
L(X)

}
.

�

������. It has to be mentioned that the characterization of the space
BV (L(X)) given by Proposition 3.1 is interesting independently of the context

of the equations studied in this paper.

3.2. Lemma. Assume that A : [0, 1]→ L(X) satisfies A ∈ BV (L(X)) and (U).
Then for the solution Φ: [0, 1]→ L(X) of (1.5) we have Φ ∈ BV (L(X)).

�����. Since BV (L(X)) ⊂ (B∗)BV (L(X)) the conclusion of Lemma 1.2 holds
and there exists a K > 0 such that ‖Φ(t)‖ � K for every t ∈ [0, 1]. It remains to
show that the relation Φ ∈ BV (L(X)) holds.

Assume that
P : 0 = α0 < α1 < . . . < αk−1 < αk = 1

is an arbitrary partition of the interval [0, 1] and that Cj , Dj ∈ L(X), j = 1, . . . , k

with ‖Cj‖L(X) � 1, ‖Dj‖L(X) � 1 are given.
The fact that Φ ∈ G(L(X)) yields by [6, Prop. 15] the existence of the integral∫ 1
0 d[A(r)]Φ(r) and therefore by definition for every ε > 0 there is a gauge δ : [0, 1]→
(0,∞) such that

∥∥∥ l∑
i=1

[A(βi)−A(βi−1)]Φ(σi)−
∫ 1

0
d[A(r)]Φ(r)

∥∥∥
L(X)

<
ε

k + 1

for every δ-fine P-partition

{β0, σ1, β1, . . . , βl−1, σl, βl}

of the interval [0, 1].

By the Saks-Henstock Lemma (see [6, Lemma 16]) we have

(3.5)
∥∥∥ lj∑

i=1

[A(βj
i )−A(βj

i−1)]Φ(σ
j
i )−

∫ αj

αj−1
d[A(r)]Φ(r)

∥∥∥
L(X)

� ε

k + 1

for every δ-fine P-partition

{βj
0, σ

j
1, β

j
1, . . . , β

j
lj−1, σ

j
lj
, βj

lj
}
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of the interval [αj−1, αj ], j = 1, . . . , k.

Further, we have

Φ(αj)− Φ(αj−1) =
∫ αj

αj−1
d[A(r)]Φ(r)

for every j = 1, . . . , k by the definition of a solution of (1.5) and therefore

∥∥∥ k∑
j=1

Dj[Φ(αj)− Φ(αj−1)]Cj

∥∥∥
L(X)

=
∥∥∥ k∑

j=1

Dj

[ ∫ αj

αj−1
d[A(r)]Φ(r)

]
Cj

∥∥∥
L(X)

=
∥∥∥ k∑

j=1

{
Dj

[ ∫ αj

αj−1
d[A(r)]Φ(r) −

lj∑
i=1

[A(βj
i )−A(βj

i−1)]Φ(σ
j
i )

]
Cj

}

+
k∑

j=1

lj∑
i=1

Dj[A(β
j
i )−A(βj

i−1)]Φ(σ
j
i )Cj

∥∥∥
L(X)

�
∥∥∥ k∑

j=1

{
Dj

[ ∫ αj

αj−1
d[A(r)]Φ(r) −

lj∑
i=1

[A(βj
i )−A(βj

i−1)]Φ(σ
j
i )

]
Cj

}∥∥∥
L(X)

+
∥∥∥ k∑

j=1

lj∑
i=1

Dj[A(β
j
i )−A(βj

i−1)]Φ(σ
j
i )Cj

∥∥∥
L(X)

�
k∑

j=1

∥∥∥[ ∫ αj

αj−1
d[A(r)]Φ(r) −

lj∑
i=1

[A(βj
i )−A(βj

i−1)]Φ(σ
j
i )

]∥∥∥
L(X)

+
∥∥∥ k∑

j=1

lj∑
i=1

Dj[A(β
j
i )−A(βj

i−1)]Φ(σ
j
i )Cj

∥∥∥
L(X)

provided
{βj
0, σ

j
1, β

j
1, . . . , β

j
lj−1, σ

j
lj
, βj

lj
}

is a δ-fine P-partition of the interval [αj−1, αj ], j = 1, . . . , k. Hence using (3.5) we

obtain by the last inequalities

∥∥∥ k∑
j=1

Dj [Φ(αj)− Φ(αj−1)]Cj

∥∥∥
L(X)

�
k∑

j=1

ε

k + 1
+

∥∥∥ k∑
j=1

lj∑
i=1

Dj [A(β
j
i )−A(βj

i−1)]Φ(σ
j
i )Cj

∥∥∥
L(X)

< ε+
∥∥∥ k∑

j=1

lj∑
i=1

Dj [A(β
j
i )−A(βj

i−1)]Φ(σ
j
i )Cj

∥∥∥
L(X)

.
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For the second term on the right hand side we have

∥∥∥ k∑
j=1

lj∑
i=1

Dj [A(β
j
i )−A(βj

i−1)]Φ(σ
j
i )Cj

∥∥∥
L(X)

�
k∑

j=1

lj∑
i=1

‖Dj‖L(X)‖A(βj
i )−A(βj

i−1)‖L(X)‖Φ(σj
i )‖L(X)‖Cj‖L(X)

� K ·
k∑

j=1

lj∑
i=1

‖A(βj
i )−A(βj

i−1)‖L(X) � K · var
[0,1]
(A).

Hence ∥∥∥ k∑
j=1

Dj [Φ(αj)− Φ(αj−1)]Cj

∥∥∥
L(X)

< ε+K · var
[0,1]
(A)

and since ε > 0 can be taken arbitrarily small, we get

∥∥∥ k∑
j=1

Dj [Φ(αj)− Φ(αj−1)]Cj

∥∥∥
L(X)

� K · var
[0,1]
(A)

for any partition

P : 0 = α0 < α1 < . . . < αk−1 < αk = 1

of the interval [0, 1] and any choice of Cj , Dj ∈ L(X), j = 1, . . . , k with ‖Cj‖L(X) � 1,
‖Dj‖L(X) � 1.
Passing to the suprema over all Cj , Dj ∈ L(X), j = 1, . . . , k with ‖Cj‖L(X) � 1,

‖Dj‖L(X) � 1 and all partitions P of [0, 1] we obtain

sup
P
sup

Cj ,Dj

∥∥∥ k∑
j=1

Dj [Φ(αj)− Φ(αj−1)]Cj

∥∥∥
L(X)

� K · var
[0,1]
(A)

and this together with Proposition 3.1 yields the result. �

3.3. Lemma. Assume that A : [0, 1]→ L(X) satisfies A ∈ BV (L(X)) and (U).

Then the inverse [Φ(t)]−1 = Φ−1(t) to the solution Φ: [0, 1]→ L(X) of (1.5) exists

for every t ∈ [0, 1] and we have Φ−1 ∈ BV (L(X)).

�����. By the results given in Lemma 1.3 and 1.4 the inverse Φ−1 exists and
Φ−1 ∈ G(L(X)). Hence there is a constant L > 0 such that

‖Φ−1(t)‖L(X) � L
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for every t ∈ [0, 1].
It remains to show that Φ−1 ∈ BV (L(X)).

Assume that

P : 0 = α0 < α1 < . . . < αk−1 < αk = 1

is an arbitrary partition of the interval [0, 1] and that Cj , Dj ∈ L(X), j = 1, . . . , k

with ‖Cj‖L(X) � 1, ‖Dj‖L(X) � 1 are given.
We have

∥∥∥ k∑
j=1

Dj[Φ−1(αj)− Φ−1(αj−1)]Cj

∥∥∥ = ∥∥∥ k∑
j=1

DjΦ−1(αj)[I − Φ(αj)Φ−1(αj−1)]Cj

∥∥∥
=

∥∥∥ k∑
j=1

DjΦ−1(αj)[Φ(αj−1)− Φ(αj)]Φ−1(αj−1)Cj

∥∥∥
=

∥∥∥ k∑
j=1

DjΦ−1(αj)[Φ(αj)− Φ(αj−1)]Φ−1(αj−1)Cj

∥∥∥
� L2 · var

[0,1]
(Φ) � L2 ·K · var

[0,1]
(A).

Passing to the suprema over all Cj , Dj ∈ L(X), j = 1, . . . , k with ‖Cj‖L(X) � 1,
‖Dj‖L(X) � 1 and all partitions P of [0, 1] we obtain

sup
P
sup

Cj ,Dj

∥∥∥ k∑
j=1

Dj[Φ
−1(αj)− Φ−1(αj−1)]Cj

∥∥∥
L(X)

� L2 ·K · var
[0,1]
(A).

and this together with Proposition 3.1 yields Φ−1 ∈ BV (L(X)). �

3.4. Theorem. Assume that A : [0, 1] → L(X) satisfies A ∈ BV (L(X)) and
(U). Let Φ: [0, 1]→ L(X) be the solution of (1.5).

Then for every t0 ∈ [0, 1], x̃ ∈ X and f ∈ G(X) the formula

(2.8) x(t) = Φ(t)Φ−1(t0)x̃+ f(t)− f(t0)− Φ(t)
∫ t

t0

d[Φ−1(s)](f(s) − f(t0)),

t ∈ [0, 1], represents a solution of (2.7).

�����. By Lemma 3.3 the inverse Φ−1 : [0, 1] → L(X) given by Lemma 1.3

belongs to BV (L(X)) and therefore we have also Φ−1 ∈ (B)BV (L(X)). All the
assumptions of Theorem 2.2 being satisfied we obtain the result by this theorem. �
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3.5 	
�����. Let us consider the abstract linear differential equation

(3.6)
dx
dt
= a(t)x+ ϕ(t)

on [0, 1] where a : [0, 1] → L(X), ϕ : [0, 1] → X and both a and ϕ are Bochner
integrable. For equations of this kind see e.g. [1].

A solution of (3.6) is understood to be a solution of the integral equation

(3.7) x(t) = x0 +
∫ t

d

a(s)x(s) ds+
∫ t

a

ϕ(s) ds

where d ∈ [0, 1] and x0 = x(d).
More generally we can consider the integral equation of the form

(3.8) x(t) =
∫ t

d

a(s)x(s) ds+ g(t)

with g ∈ G(X).

Let us set

A(t) =
∫ t

d

a(s) ds and f(t) =
∫ t

d

ϕ(s) ds, t ∈ [0, 1].

Assume that D : 0 = α0 < α1 < . . . < αk−1 < αk = 1 is an arbitrary partition of

[0, 1]. Then using the properties of the Bochner integral we get

k∑
j=1

‖A(αj)−A(αj−1)‖ =
k∑

j=1

∥∥∥ ∫ αj

αj−1
a(s) ds

∥∥∥
�

k∑
j=1

∫ αj

αj−1
‖a(s)‖ ds =

∫ 1

0
‖a(s)‖ ds <∞

and therefore A ∈ BV (L(X)). Since the function ‖a‖ is Lebesgue integrable over
[0, 1] we have

‖A(t)−A(r)‖ �
∣∣∣ ∫ t

r

‖a(s)‖ ds
∣∣∣

for t, r ∈ [0, 1] and this yields the continuity ofA on [0, 1]. Hence lim
t→r+

A(t) = A(r) for

r ∈ [0, 1) and lim
t→r−A(t) = A(r) for r ∈ (0, 1] and consequently we have ∆

+A(r) = 0

for r ∈ [0, 1) and ∆−A(r) = 0 for r ∈ (0, 1] and the function A : [0, 1] → L(X)

satisfies the condition (U) given in Theorem 1.1. Similarly the function f : [0, 1]→ X

is also continuous and belongs trivially to G(X).
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It is a matter of routine to show that

if x ∈ G(X) then the integrals
∫ 1
0 d[A(s)]x(s) and

∫ 1
0 a(s)x(s) ds both exist and

∫ 1

0
d[A(s)]x(s) =

∫ 1

0
a(s)x(s) ds.

Since g is assumed to belong to G(X), every solution of (3.8) also belongs to G(X)
and therefore the equation (3.8) is equivalent to

x(t) =
∫ t

d

d[A(s)]x(s) + g(t) = g(d) +
∫ t

d

d[A(s)]x(s) + g(t)− g(d).

Hence by Theorem 2.10 in [9] there exists a unique solution x : [0, 1]→ X , x ∈ G(X)
of (3.8) and by Theorem 3.4 we get after a straightforward calculation

x(t) = Φ(t)Φ−1(t0)g(d) + g(t)− g(d)− Φ(t)
∫ t

d

d[Φ−1(s)](g(s)− g(d))

= g(t)− Φ(t)
∫ t

d

d[Φ−1(s)]g(s)

where the function Φ: [0, 1] → L(X) is a solution of (1.5) with A given by A(t) =∫ t

d a(s) ds for t ∈ [0, 1].
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