
125 (2000) MATHEMATICA BOHEMICA No. 4, 485–495

MONOUNARY ALGEBRAS WITH TWO DIRECT LIMITS
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Abstract. In this paper we describe all algebras A with one unary operation such that
by a direct limit construction exactly two nonisomorphic algebras can be obtained from A.
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For an algebra A we denote by L[A] the class of all isomorphic copies of algebras
which can be obtained by a direct limit construction from A. We investigate classes
L[A] in the case when A is a monounary algebra.
Every algebra A such that every endomorphism of A is an isomorphism has the

property that whenever B ∈ L[A], then B is isomorphic to A. In [4] monounary
algebras A such that L[A] consists of isomorphic copies of A were characterized.
The natural question arises whether there exists a monounary algebra A such that

the class L[A] contains exactly two nonisomorphic types of algebras.
In the present paper we construct a countable system of nonisomorphic types of

monounary algebras with the mentioned property and we show that there are no
other types of monounary algebras with this property.

1. Preliminaries

As usual, by a monounary algebra we understand an algebra with a single unary

operation; cf. e.g. [9], [10]. For monounary algebras we will use the terminology as
in [9].

The class of all monounary algebras will be denoted by U . The class of all con-
nected monounary algebras will be denoted by Uc.
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We will use the symbol f for the operation in algebras of U .
The symbol � denotes the set of all positive integers.

If k ∈ � and A1, . . . , Ak are algebras, then by [A1, . . . , Ak] we will understand the
class of all isomorphic copies of algebras A1, . . . , Ak.

Let I be a nonempty set. For each i ∈ I let Ai be a monounary algebra. We denote

by
∑
i∈I

Ai a monounary algebra which is a disjoint union of monounary algebras

Ai, i ∈ I. If the set I is finite, I = {1, . . . , n}, then instead of
∑
i∈I

Ai we write

A1 + . . .+An.

We recall the notion of a direct limit, cf. [2].

Let 〈P,�〉 be an upward directed partially ordered set, P �= ∅. For each p ∈ P let
Ap be a monounary algebra and assume that if p, q ∈ P, p �= q, then Ap ∩ Aq = ∅.
Suppose that for each pair of elements p and q in P with p < q a homomorphism
ϕpq of Ap into Aq is defined and that p < q < s implies that ϕps = ϕpq ◦ϕqs. Let ϕpp

be the identity on Ap for each p ∈ P . We say that {P,Ap, ϕpq} is a direct family.
Assume that p, q ∈ P and x ∈ Ap, y ∈ Aq. Put x ≡ y if there exists s ∈ P

with p � s, q � s such that ϕps(x) = ϕqs(y). For each z ∈
⋃

p∈P

Ap put z =
{
t ∈

⋃
p∈P

Ap : z ≡ t
}
. Denote A =

{
z : z ∈

⋃
p∈P

Ap

}
.

If z1, z2 are elements of
⋃

p∈P

Ap such that z1 = z2, then clearly f(z1) = f(z2).

Hence if we put f(z1) = f(z1), then the operation f on A is correctly defined and

with respect to this operation A is a monounary algebra. It is said to be the direct
limit of the direct family {P,Ap, ϕpq}. We will express this situation by writing

(1) {P,Ap, ϕpq} −→ A.

The autor is aware of the fact that the term ‘direct limit’ is rather out-of-date,
and that the term ‘directed colimit’ (cf. [1]) would be more up-to-date.

Nevertheless, since the present paper can be considered as a continuation of the

articles [4] and [3] where the term ‘direct limit’ was used, the author prefers the
application of this therm also in this paper.

Let A ∈ U and (1) be valid. If Ap
∼= A for every p ∈ P , then we will write

(2) {P,A, ϕpq} −→ A

and say that A is a direct limit of A. We denote by L[A] the class of all monounary
algebras which are isomorphic to some of the direct limits of A.

The next lemma is an immediate consequence of the definition of the relation (2).
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Lemma 1. Let A ∈ U and let (2) be valid.
(i) If ϕpq is an isomorphism for every p, q ∈ P such that p � q, then A ∼= A.
(ii) The algebra A has a cycle if and only if A has a cycle.
(iii) Let k ∈ �. If A contains a cycle of length k, then A contains a cycle of length

k.

(iv) If A is connected, then A is connected.

(v) If the operation of A is injective, then the operation of A is injective.

Lemma 2. Let A,B,D ∈ U . Suppose that A = B ∪D, A = B +D and that (2)
is valid.

Let ψp be an isomorphism from A into Ap for every p ∈ P . Denote Bp =

ψp(B), Dp = ψp(D) for every p ∈ P . Further, let ϕpq(Bp) ⊆ Bq, ϕpq(Dp) ⊆ Dq

for every p, q ∈ P, p � q.

Then {P,Bp, ϕpq}, {P,Dp, ϕpq} are direct families (where ϕpq are the correspond-

ing restrictions) and if {P,Bp, ϕpq} → B, {P,Dp, ϕpq} → D, then A = B ∪ D and
A = B +D.

�����. It follows from the fact that direct limits commute with sums. �

Let us denote by N the monounary algebra defined on the set � with the operation
of successor. Further, let Z be the monounary algebra defined on the set of all integers

with the operation of successor.
Let A be a monounary algebra and let {Bj, j ∈ J} be the set of all components

of A. If j ∈ J and k ∈ � are such that Bj contains a cycle of the length k, then let
Cj be a cycle of the length k. If j ∈ J is such that Bj contains no cycle, then put

Cj
∼= Z. We denote A� =

∑
j∈J

Cj .

The following result is proved in [3]:

Lemma 3. Let A ∈ U . Then A� ∈ L[A].

Lemma 4.
L[N ] = [N,Z].

�����. Since N� = Z we have {N,Z} ⊆ L[N ]. Let (1) be valid and Ap
∼= N

for every p ∈ P . In view of Lemma 1 (iv) and (v) the algebra A is connected and

the operation of A is injective. Therefore A ∼= Z or A ∼= N . �

Let us denote

T = {A ∈ U : every component of A is a cycle and there are no
components C1, C2 of A such that C1 �= C2 and the length of C1
divides the length of C2}.
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In view of Theorem 1 of [4] we have

Lemma 5. L[A] = [A] if and only if A ∈ T ∪ [Z].

Let A ∈ U . Let B be a subalgebra ofA. Assume that there exists a homomorphism
ϕ of A onto B such that ϕ(b) = b for each b ∈ B. Then B is said to be a retract of
A and ϕ is called a retract mapping corresponding to B.

This definition yields

Lemma 6. Let A ∈ U . Let J be a set and let Bj be a component of A for every

j ∈ J . If B′ is a retract of the algebra
∑
j∈J

Bj , then the algebra

(
A−

⋃
j∈J

Bj

)
∪B′

is a retract of A.

Retracts of monounary algebras were thoroughly studied by D. Jakubíková-
Studenovská [5], [6]. The following lemma we obtain from Theorem 1.3 of [5]

Lemma 7. Let A ∈ U . If A contains a cycle, then there exists a retract T of A
such that T ∈ T .

We will often use the following well-known property of direct limits; cf. [1] 2.4 and
1.5.

Lemma 8. Let A ∈ U and let B be a retract of A. Then B ∈ L[A].

Let A ∈ U and R ⊂ A. The set R is said to be a chain of the algebra A, if one of
the following conditions is satisfied:

1. R = {a0, . . . , an}, n ∈ � ∪ {0}, ai �= aj for i �= j and f(ai) = ai−1 for i =
1, 2, . . . , n;

2. R =
{
ai, i ∈ � ∪ {0}

}
, ai �= aj for i �= j and f(ai) = ai−1 for each i ∈ �.
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2. Class T1

We denote

T1 = {A ∈ U : there exists a chain R of A such that
A−R ∈ T and R fails to be a subalgebra of A}.

If A ∈ T1 and R is a chain of A from the definition of T1, then we put A∗ = A−R.

It is easy to see that {A,A∗} ⊆ L[A].
In this section we will prove that if A ∈ T1, then L[A] = [A,A∗], i. e., if (2) is

valid, then either A ∼= A or A ∼= A∗.
The definition of T1 yields the following lemma.

Lemma 9. Let A ∈ T1. If A is not connected, then there exist monounary
algebras B,D such that B ∈ T1 ∩ Uc, D ∈ T , A = B ∪D and A = B +D.

Theorem 1. Let A ∈ T1. Then L[A] = [A,A∗].

�����. Suppose that A is connected.

Since A∗ ∼= A�, we have A∗ ∈ L[A] according to Lemma 3. Thus [A,A∗] ⊆ L[A].
The algebra A is connected and thus A∗ is a cycle of A. If a ∈ A−A∗, then there

exists k ∈ � such that fk(a) ∈ A∗ and fk−1(a) /∈ A∗. Let (2) be valid. Suppose that
for every p ∈ P a mapping ψp is an isomorphism from A onto Ap. For every p ∈ P

and a ∈ A we denote ap = ψp(a) and A∗
p = ψp(A∗).

The algebra A is connected and A has a cycle of the same length as A∗. If p ∈ P

and x ∈ A∗
p, then x belongs to the cycle of A.

Suppose that A is not isomorphic to A. We need to prove that A is a cycle. Let
p ∈ P . We need to prove that for every a ∈ A we can find s ∈ P such that p � s

and ϕps(ap) ∈ A∗
s.

By induction on k we show:

If a ∈ A is such that fk(ap) ∈ A∗
p and f

k−1(ap) /∈ A∗
p, then there exists s ∈ P

such that p � s and ϕps(ap) ∈ A∗
s.

Let a ∈ A and k ∈ �. It is obvious that the following three assertions are
equivalent:

(i) fk(a) ∈ A∗ and fk−1(a) /∈ A∗;
(ii) there exists p ∈ P such that fk(ap) ∈ A∗

p and f
k−1(ap) /∈ A∗

p;

(iii) for every q ∈ P we have fk(aq) ∈ A∗
q and f

k−1(aq) /∈ A∗
q .

Let k = 1. Put Q = {q ∈ P : p � q}. Then {Q,A, ϕq,q′} → A. Assume that

the equality ϕpq(ap) = aq is satisfied for every q ∈ Q. Let q, q′ ∈ Q be such that
q � q′. Then ϕqq′ (aq) = ϕqq′ (ϕpq(ap)) = ϕpq′ (ap) = aq′ . That means ϕqq′ is an
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isomorphism. Therefore A ∼= A, a contradiction. We conclude that there exists

q ∈ Q such that ϕpq(ap) �= aq. This implies that there exists i ∈ � such that
ϕpq(ap) = f i(aq) and so ϕpq(ap) ∈ A∗

q .
Let k ∈ �, k > 1 and let the claim hold for every natural number less than k.

Analogously as in the first step there exist q ∈ P such that p � q and ϕpq(ap) = f i(aq)
for some i ∈ �. If i � k, then ϕpq(ap) ∈ A∗

q . If i < k, then there exists s ∈ P such

that q � s and ϕqs(f i(aq)) ∈ A∗
s by the induction hypothesis (for q ∈ P and f i(aq)).

Thus ϕps(ap) = ϕqs(ϕpq(ap)) = ϕqs(f i(aq)) ∈ A∗
s .

We conclude L[A] = [A,A∗].
Now suppose that A is not connected. Take B and D from Lemma 9. Then

A∗ = B∗ +D.
Let (2) be valid. According to Lemma 2 we have that {P,B, ϕpq}, {P,D, ϕpq},

where ϕpq are the corresponding restrictions, are direct families. If {P,B, ϕpq} → B,
then B ∈ [B,B∗] since B is a connected algebra from T1. If {P,D, ϕpq} → D, then

D ∼= D according to 5. In view of Lemma 2 we obtain

A = B +D ∈ [B +D,B∗ +D] = [A,A∗].

�

3. Classes T2, T3

We denote

T2 = {A ∈ U : there exist B ∈ T and k, l ∈ � such that

A = B + C, where C is a cycle of length l, B contains a cycle of

length k and l is a multiple of k}.

If A ∈ T2, then we denote by A∗ a subalgebra of A which is isomorphic to the algebra
B from the definition of T2.
Further, we denote

T3 = {A ∈ U : there exists B ∈ T such that A = B + Z}.

If A ∈ T3, then we denote by A∗ a subalgebra of A such that A∗ ∈ T and A−A∗ is
an algebra isomorphic to Z.
If A ∼= Z + Z, then we denote by A∗ a subalgebra of A which is isomorphic to Z.

Theorem 2. Let A ∈ T2 ∪ T3 ∪ [Z + Z]. Then L[A] = [A,A∗].
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�����. Let us remark that if ϕ is an endomorphism of A, then ϕ has the

following tree properties:
1. ϕ(A∗) ∼= A∗;
2. ϕ(A) = A or ϕ(A) ∼= A∗;
3. if ϕ is onto A, then ϕ is an isomorphism.
It is obvious that {A,A∗} ⊆ L[A]. Let (2) be valid.
Suppose that there exists p ∈ P such that for every q ∈ P the following conditon

is valid: if p � q then ϕpq(Ap) = Aq. Denote Q = {q ∈ P : p � q}. Let q, s ∈ Q

be such that q � s. In view of ϕps = ϕpq ◦ ϕqs we have ϕqs(Aq) = ϕqs(ϕpq(Ap)) =
ϕps(Ap) = As. Thus ϕqs is an isomorphism between Aq and As. The set Q is cofinal

with P and thus the direct limit of the family {Q,A, ϕqs} is isomorphic to A. We
obtain A ∼= A according to Lemma 1 (i).
Suppose that for every p ∈ P there exists q ∈ P such that p � q and ϕpq(Ap) �= Aq.

Thus for every p ∈ P there exists q ∈ P, p � q such that ϕpq(Ap) ∼= A∗. Choose
p ∈ P . Let Bp be a subset of Ap such that Bp

∼= A∗. Denote R = {r ∈ P : p � r}
and Br = ϕpr(Bp) for every r ∈ R. Then Br

∼= A∗ for every r ∈ R and {R,Br, ϕrs}
is a direct family. Assume that {R,Br, ϕrs} → B. Since A∗ ∈ T or A∗ ∼= Z we have
B ∼= A∗ according to Lemma 5.
Let q ∈ R. Take s ∈ P such that q � s and ϕqs(Aq) ∼= A∗. Then s ∈ R and

ϕqs(Aq) = Bs according to Bs
∼= A∗. We obtain that B ∼= A; an isomorphism is

ψ(b) = a, where a ∈ b. �

4. Class T4

Let us denote

T4 = {A ∈ Uc : there exists a chain R of A such that A−R ∼= Z}.

In this section we will prove that if A ∈ T4, then L[A] = [Z,A].

Lemma 10. Let A ∈ T4 and let R be a subset of A such that A−R ∼= Z. If R is
finite, then L[A] = [A,Z].

�����. Obviously {A,Z} ⊆ L[A].
Let C be a subalgebra of A which is isomorphic to Z. Since R is finite there exists

exactly one element a ∈ A such that f(x) �= a for every x ∈ A. Suppose that n ∈ �

is such that fn(a) ∈ C and fn−1(a) /∈ C. Assume that {P,A, ϕpq} → A. Let ψp be

an isomorphism from A into Ap for every p ∈ P . For every p ∈ P and x ∈ A denote
xp = ψp(x) and Cp = ψp(C).
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Let p, q ∈ P, p � q. We remark that

1. ϕpq(Ap) ∼= A if and only if ϕpq(ap) = aq;
2. ϕpq(Ap) ∼= Z if and only if ϕpq(ap) ∈ Cq;
3. if ϕpq is onto Aq, then ϕpq is an isomorphism.

Denote
(∗) There exists p ∈ P such that ϕpq(Ap) ∼= A whenever q ∈ P and p � q.

(∗∗) For every p ∈ P there exists q ∈ P such that p � q and ϕpq(Ap) ∼= Z.
We will prove that

a) (∗) is not fulfilled if and only if (∗∗) is fulfilled;
b) (∗) implies A ∼= A;
c) (∗∗) implies A ∼= Z.
a) Clearly if (∗∗) is fulfilled then (∗) is not fulfilled.
Suppose that (∗) is not fulfilled, i. e., for every p ∈ P there exists q ∈ P such that

p � q and ϕpq(Ap) is not isomorphic to A.

Let p0 ∈ P . Choose p1, . . . , pn ∈ P such that ϕpipi+1(Api) is not isomorphic to
A for i ∈ {0, . . . , n − 1}. We get ϕpipi+1(api) �= api+1 for every i ∈ {0, . . . , n − 1}.
Therefore ϕp0pn(ap0) ∈ Cpn and thus ϕp0pn(Ap0 ) ∼= Z.
b) Let (∗) hold. If ϕpq(Ap) ∼= A, then ϕpq(Ap) = Aq. Denote Q = {q ∈ P : p � q}.

Let q, s ∈ Q be such that q � s. We have ϕqs(Aq) = ϕqs(ϕpq(Ap)) = ϕps(Ap) = As.
Therefore ϕqs is an isomorphism and A ∼= A.
c) Assume that (∗∗) is valid. The algebra A is connected and contains no cycle

according to Lemma 1. We need to show that A has a bijective operation.

Let p, q ∈ P, x ∈ Ap, y ∈ Aq and f(x) = f(y). Then f(x) = f(y) and thus there
exists s ∈ P such that p, q � s and ϕps(f(x)) = ϕqs(f(y)). The validity of (∗∗)
yields that there exists t ∈ P such that s � t and ϕst(As) ∼= Z. We have

f(ϕst(ϕps(x))) = ϕst(ϕps(f(x))) = ϕst(ϕqs(f(y))) = f(ϕst(ϕqs(y))).

Therefore ϕst(ϕps(x)) = ϕst(ϕqs(y)) according to the injectivity of the operation of
the algebra ϕst(As). We conclude that ϕpt(x) = ϕqt(y) and x = y.

Let p ∈ P and x ∈ Ap. Choose q ∈ P such that ϕpq(Ap) ∼= Z. Then there is
y ∈ Aq such that f(y) = ϕpq(x). Hence f(y) = x. �

Lemma 11. Let A ∈ T4 and let R be a subset of A such that A−R ∼= Z. If R is
infinite, then L[A] = [A,Z].

�����. According to Lemma 3 we have Z ∈ L[A] .
Suppose that {P,A, ϕpq} → A. The algebra A is connected and Z is isomorphic

to a subalgebra of A according to Lemma 1.
Let p ∈ P and x ∈ Ap. Take y ∈ Ap such that f(y) = x. Then f(y) = x.
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Let a, b, u, v ∈ A be such that a �= b, u �= v, a �= u, f(a) = f(b) and f(u) = f(v). It
is easy to verify that then there exists s ∈ P such that the set As contains elements
a′, b′, u′, v′ which satisfy a′ �= b′, u′ �= v′, a′ �= u′, f(a′) = f(b′) and f(u′) = f(v′).
This is a contradiction since As

∼= A.
We conclude that A ∼= Z or A ∼= A. �

Theorem 3. Let A ∈ T4. Then L[A] = [A,Z].

�����. It follows from Lemmas 10 and 11. �

5. Main result

In this section we will characterize all monounary algebras A such that the class

L[A] contains exactly two nonisomorphic types of monounary algebras.
Lemmas 3, 7 and 8 will be often used. Further, we will apply some results of

D. Jakubíková-Studenovská from [7], [8].
Let A ∈ U and k ∈ �. If L[A] contains at least k nonisomorphic types of algebras,

then we will write |L[A]| � k. If L[A] contains exactly k nonisomorphic types of
algebras, then we will write |L[A]| = k. If L[A] contains at most k nonisomorphic
types of algebras, then we will write |L[A]| � k.

Lemma 12. Let A be an algebra without a cycle and let A be not isomorphic to
N . If A does not contain a subalgebra isomorphic to Z, then |L[A]| � 3.

�����. Let K be a component of A. We have K� ∼= Z, because A is an algebra
without a cycle. Further, K� is not isomorphic to K, because A does not contain a
subalgebra isomorphic to Z.
Suppose that M = {Ki, i ∈ I} is the set of all components of A which are isomor-

phic to N .
First let M �= ∅. Let K ∈ M . If M possesses only one component of A, then

A−K is a retract of A and the algebras A, A�, A−K are nonisomorphic algebras
from L[A]. If M − {K} �= ∅, then K is a retract of the algebra

⋃
i∈I

Ki. In view of

Lemma 6 we have that
(
A−

⋃
i∈I

Ki

)
∪K is a retract of A. Thus A,

(
A−

⋃
i∈I

Ki

)
∪K,

A� are nonisomorphic algebras from L[A].
Now let M = ∅. Let K be a component of A. Then K contains at least two

nonisomorphic retracts according to Lemma 3.1 of [8]. Assume that K ′ is a retract
of K such that K ′ �∼= K. Let L = {K ′

j, j ∈ J} be the set of all components of A
which are isomorphic to K. Since K ′ is a retract of the algebra

⋃
j∈J

K ′
j, we obtain
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that the algebra
(
A−

⋃
j∈J

K ′
j

)
∪K ′ is a retract of A according to Lemma 6. Moreover,

(
A−

⋃
j∈J

K ′
j

)
∪K ′ �∼= A because the algebra

(
A−

⋃
j∈J

K ′
j

)
∪K ′ contains no component

isomorphic to K. Thus A,
(
A−

⋃
j∈J

K ′
j

)
∪K, A� are nonisomorphic algebras from

the class L[A]. �

Lemma 13. Let A� ∈ T ∪ [Z]. If |L[A]| � 2, then

A ∈ T ∪ T1 ∪ T4 ∪ [N,Z].

�����. Let A /∈ T ∪ T1 ∪ T4 ∪ [N,Z].
If A� ∈ T , then in view of A /∈ T ∪ T1 there exists a component K of A such

that K satisfies the assumptions of Lemmas 1.1, 1.2, 1.5, 1.6 or 2.3 from the paper
[7]. It is proved in these lemmas that the algebra K has a retract K ′ such that
K ′ �∼= K and K ′ is not a cycle. Let L = {K ′

j, j ∈ J} be the set of all components
of A which are isomorphic to K. Since K ′ is a retract of A, Lemma 6 yields that(
A −

⋃
j∈J

K ′
j

)
∪K ′ is a retract of A. Further, A �∼=

(
A −

⋃
j∈J

K ′
j

)
∪K ′ because the

algebra
(
A−

⋃
j∈J

K ′
j

)
∪K ′ does not contain a component isomorphic to K. Thus A,

(
A−

⋃
j∈J

K ′
j

)
∪K ′, A� are nonisomorphic algebras from the class L[A].

If A contains a subalgebra isomorphic to Z, then A is connected. In view of
A /∈ T4 ∪ [Z] the algebra A satisfies the assumptions of Lemma 2.3 or of Lemma 3.1
from the paper [8]. It is proved there that A has a retract B such that B �∼= A and
B �∼= Z. We have A,B,Z ∈ L[A].
If A does not contain a subalgebra isomorphic to Z and A� ∼= Z, then |L[A]| � 3

according to Lemma 12. �

Lemma 14. Let A� /∈ T ∪ [Z]. If |L[A]| � 2, then

A ∈ T2 ∪ T3 ∪ [Z + Z].

�����. The algebra A is not connected and A /∈ T1 ∪ T4. Suppose that
A /∈ T2 ∪ T3 and A is not isomorphic to Z + Z.
Assume that A has no cycle. If A does not contain a subalgebra isomorphic to

Z, then |L[A]| � 3 according to Lemma 12. If A contains a subalgebra isomorphic
to Z and A is not isomorphic to A�, then A,A�, Z are nonisomorphic algebras of
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L[A]. If A contains a subalgebra isomorphic to Z and A ∼= A�, then A,Z +Z,Z are
nonisomorphic algebras of L[A].
Assume that A has a cycle. Let T ∈ T be a retract of A. If A� is not isomorphic

to A, then A,A�, T are mutually nonisomorphic and are in L[A].
Let A� ∼= A. Then f is a bijective operation on A.
Let A contain a component K such that A−K ∈ T . In view of A /∈ T3 the algebra

K is a cycle. Further, in view of A /∈ T2 ∪ T there exists a component K1 of A−K

such that the number of elements of K1 is a multiple of the number of elements of

K. Hence A−K1 is a retract of A. We obtain A−K1 /∈ T according to A /∈ T2. We
conclude that A, T,A−K1 are nonisomorphic algebras of L[A].
Now let A−K /∈ T for every component K of A. Then the algebra A− T has at

least two components and so A has at least three nonisomorphic retracts. �

Theorem 4. Let A ∈ U . Then |L[A]| = 2 if and only if

A ∈ T1 ∪ T2 ∪ T3 ∪ T4 ∪ [Z + Z,N ].

�����. Let |L[A]| = 2. Then A ∈ T ∪T1 ∪T2 ∪T3 ∪T4 ∪ [Z,Z+Z,N ] according
to Lemmas 13 and 14. In view of Lemma 5 we have A �∈ T ∪ [Z].
Theorems 1, 2, 3 and Lemma 4 yield the opposite implication. �
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