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PARTIALLY IRREGULAR ALMOST PERIODIC SOLUTIONS OF

ORDINARY DIFFERENTIAL SYSTEMS
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Abstract. Let f(t, x) be a vector valued function almost periodic in t uniformly for x, and
let mod(f) = L1 ⊕ L2 be its frequency module. We say that an almost periodic solution
x(t) of the system

ẋ = f(t, x), t ∈ �, x ∈ D ⊂ �
n

is irregular with respect to L2 (or partially irregular) if (mod(x) + L1) ∩ L2 = {0}.
Suppose that f(t, x) = A(t)x+X(t, x), where A(t) is an almost periodic (n × n)-matrix

and mod(A) ∩ mod(X) = {0}. We consider the existence problem for almost periodic
irregular with respect to mod(A) solutions of such system. This problem is reduced to a
similar problem for a system of smaller dimension, and sufficient conditions for existence of
such solutions are obtained.
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1. Introduction

Let D be a compact subset of �n and let AP (D,�n ) be a class of functions
h : � × D → �n such that each h(t, x) ∈ AP (D,�n ) is continuous on � × D and

almost periodic in t uniformly for x ∈ D. By mod(h) we will denote the frequency
module of h(t, x). Consider the system

(1) ẋ = f(t, x), t ∈ �, x ∈ D,

where f ∈ AP (D,�n ). The study of almost periodic solutions to (1) is an important
problem of the theory of ordinary differential equations. Many authors have investi-

gated this problem, see e.g. [1–7]. It should be noted that most of them have supposed
that mod(x) ⊂ mod(f), where x(t) is the solution under consideration. However,
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there can be various relations between mod(x) and mod(f). In [8], J.Kurzweil and

O.Vejvoda have shown that there exists a system (1) admitting an almost periodic
solution x(t) such that mod(x) ∩mod(f) = {0}. This result enables us to introduce
the following

Definition 1. An almost periodic solution x(t) of system (1) is called irregular
if mod(x) ∩mod(f) = {0}.
The interest in such solutions is inspired by the analogous problem for periodic

systems, see [8–12]. In [13] and [14] we obtained necessary and sufficient conditions
of existence of almost periodic irregular solutions to (1). For linear systems, we

also studied some properties of such solutions in these papers. The same problems
are investigated for quasiperiodic systems in [15]. For solutions of such systems,

irregularity is equivalent to linear independence of the solution’s and the system’s
frequency bases over �.

In [16] we have shown that some classes of quasiperiodic systems admit quasiperi-
odic solutions that have some of the right hand part base frequencies. It is interesting

to investigate similar phenomena for the almost periodic system.

Definition 2. Let mod(f) = L1⊕L2 be the frequency module of the right hand
part of system (1). An almost periodic solution x(t) of the system (1) is called

irregular with respect to L2 (or partially irregular) if (mod(x) + L1) ∩ L2 = {0}.
The aim of this paper is to study the conditions of existence of almost periodic

partially irregular solutions of system (1), where f(t, x) = A(t)x +X(t, x). To this

effect we reduce the existence problem of almost periodic irregular with respect to
mod(A) solutions to a similar problem for a system of smaller dimension.

2. Preliminaries

Definition 3. A real number γ is called a Fourier exponent (or frequency) of

h(t, x) ∈ AP (D,�n ), if

lim
T→∞

1
T

∫ T

0
h(t, x) exp (−iγt) dt �≡ 0, x ∈ D.

The set Γ of all Fourier exponents of h(t, x) is called the frequency set of this function.

It is well known that Γ is countable [3].

Definition 4. The set ω = {ω1, ω2, . . .} is called a frequency base for h(t, x) if
the following conditions hold: i) ω is linearly independent over the rationals; ii) any

frequency γ ∈ Γ may be written in the form γ = a1ω1+ . . .+ akωk, where a1, . . . , ak

are rational numbers.
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Note that ω need not be a part of Γ in general [4].

Definition 5. The frequency module mod(h1, . . . , hk) of hj(t, x) ∈ AP (D,�n )

(j = 1, k; 1 � k < +∞) is the smallest additive group of real numbers that contains
all Fourier exponents of this functions.

Now let us consider the system

(2) ẋ = F (t, x) +G(t, x), t ∈ �, x ∈ D,

where F (t, x), G(t, x) ∈ AP (D,�n ).
By F̂ we denote the mean value of F , i.e.

F̂ (x) = lim
T→∞

1
T

∫ T

0
F (t, x) dt.

Lemma 1. Suppose that mod(F ) ∩ mod(G) = {0}. System (2) has an almost
periodic irregular with respect to mod(F ) solution x(t) iff x(t) is a solution to

(3) ẋ = F̂ (x) +G(t, x), F (t, x)− F̂ (x) = 0.

�����. Let x(t) be an almost periodic solution of system (2) such that

mod(x, G) ∩ mod(F ) = {0} and let {ν1, ν2, . . .} be the frequency set of F (t, x).
Let

F (t, x)− F̂ (x) ∼
∑

k,νk �=0
fk(x) exp (iνkt)

be the Fourier-series expansion of F (t, x) in t, where

fk(x) = lim
T→∞

1
T

∫ T

0
F (t, x) exp (−iνkt) dt (k = 1, 2, . . . ; νk �= 0).

Put
fk(x(t)) ∼

∑
m

fkm exp (iµmt),

where

fkm = lim
T→∞

1
T

∫ T

0
fk(x(t)) exp (−iµmt) dt, µm ∈ mod(x) (k, m = 1, 2, . . . ; νk �= 0).

Then
F (t, x(t)) − F̂ (x(t)) ∼

∑
k,νk �=0

∑
m

fkm exp (i(νk + µm)t).
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Put

−ẋ(t) + F̂ (x(t)) +G(t, x(t)) ≡ f0(t).

Note that f0(t) is almost periodic by [4, p. 27] and mod(f0) ⊂ mod(x, G). Let
{µ̃1, µ̃2, . . .} be the frequency set of f0(t). We can write

f0(t) ∼
∑

s

f0s exp (iµ̃st), f0s = lim
T→∞

1
T

∫ T

0
f0(t) exp (−iµ̃st) dt.

Since x(t) is a solution to (2), we have

0 ≡ f0(t)− F̂ (x(t)) + F (t, x(t)) ∼
∑

s

f0s exp (iµ̃st)

+
∑

k,νk �=0

∑
m

fkm exp ((i(νk + µm)t).

Since mod(f0) ⊂ mod(x, G), mod(x, G) ∩ mod(F ) = {0}, we obtain mod(f0) ∩
mod(F ) = {0}. Hence, µ̃s �= µm + νk (νk �= 0; s, m, k = 1, 2, . . .). In this case all

coefficients will be zero in this Fourier-series expansion. By the uniqueness theorem
for almost periodic functions, we have f0(t) ≡ 0, F (t, x(t)) − F̂ (x(t)) ≡ 0, i.e.x(t)
satisfies (3).
Conversely, let x(t) be an almost periodic irregular with respect to mod(F ) solution

of system (3). Then F (t, x(t)) − F̂ (x(t)) ≡ 0 and, therefore, x(t) satisfies (2). This
completes the proof of Lemma 1. �

Corollary. System (2) has an almost periodic irregular with respect to mod(F )
solution x(t) iff x(t) satisfies the conditions

ẋ = F (t0, x) +G(t, x), F (t, x) − F (t0, x) = 0, t0 ∈ �.

Let H(t) be (m×n)-matrix function (i.e. the elements of H(t) are some real-valued

function on �). By rankH we denote the column rank of H .

Lemma 2. Let P (t) be an almost periodic (m × n)-matrix with

P̂ = lim
T→∞

1
T

∫ T

0
P (t) dt = 0.

The system

(4) P (t)z = 0 (z ∈ D ⊂ �
n )
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has a nontrivial almost periodic irregular solution iff rankP < n.

�����. Let z(t) be a nontrivial almost periodic irregular solution to (4) and let

{µ1, µ2, . . .} be the frequency set of z(t). Let

z(t) ∼
∑

s

zs exp (iµst), zs = lim
T→∞

1
T

∫ T

0
z(t) exp (−iµst) dt (s = 1, 2, . . .),

be the Fourier-series expansion of z(t). Then

(5)
∑

s

P (t)zs exp (iµst) ∼ 0.

Denote by ν = {ν1, ν2, . . .} the Fourier exponents of P (t)zs. Note that νj �= 0; j =
1, 2, . . . ; and ν ⊂ mod(P ). Then

P (t)zs ≡ ps(t) ∼
∑

k

psk exp (iνkt),

psk = lim
T→∞

1
T

∫ T

0
ps(t) exp (−iνkt) dt (k = 1, 2, . . .).

Now we rewrite (5) as

∑
s

∑
k

psk exp [i(µs + νk)t] ∼ 0.

Since mod(z)∩mod(P ) = {0} and νk �= 0, we have µs + νk �= µp + νr (s �= p; k �= r;
s, k, p, r = 1, 2, . . .). Hence psk = 0 for all s, k. By the uniqueness theorem for almost

periodic functions [2], we obtain

(6) P (t)zs ≡ 0 (s = 1, 2, . . .).

Since z(t) �≡ 0, there exist r, j such that z
(j)
r �= 0; zr = (z

(1)
r , . . . , z

(j)
r , . . . , z

(n)
r )

(1 � j � n). By (6) we have

pl1(t)z(1)r + . . .+ plj(t)z(j)r + . . .+ pln(t)z(n)r ≡ 0 (l = 1, m; z(j)r �= 0).

This implies that rankP < n.
To conclude the proof, it remains to note that if rankP = k < n, then system

(5) has n − k linear independent constant solutions z1, . . . , zn−k. Let h(t) be an
almost periodic function such that mod(h) ∩ mod(P ) = {0}. It can be easily seen
that z1h(t), . . . , zn−kh(t) satisfy (5) too. Lemma 2 is proved. �
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3. The main theorem

Further, we consider the system

(7) ẋ = A(t)x +X(t, x), t ∈ �, x ∈ �
n ,

where A(t) is an almost periodic (n × n)-matrix; X(t, x) ∈ AP (�n ).

Assume that

(8) mod(A) ∩mod(X) = {0}.

We shall study the conditions of existence of almost periodic irregular with respect

to mod(A) solutions of system (7).
By Lemma 1, system (7) has an almost periodic irregular with respect to mod(A)

solution x(t) iff x(t) satisfies the system

(9) ẋ = Âx+X(t, x), [A(t)− Â]x = Ã(t)x = 0, Â = lim
T→∞

1
T

∫ T

0
A(t) dt.

If all columns of the matrix Ã(t) are linearly independent over �, then system (9) has

no nontrivial almost periodic irregular with respect to mod(A) solution by Lemma 2.
Therefore, we suppose that

(10) rankÃ = n1 < n.

Denote n − n1 by m. Then there exists an (n × n)-matrix S, detS �= 0, such that
the transformation

(11) x = Sy

reduces (9) to the form

(12) ẏ = By + Y (t, y), B̃(t)y = 0,

where B = S−1ÂS = [bij ]n1 ; Y (t, y) = S−1X(t, Sy) = col(Y1, . . . , Yn); B̃(t) = Ã(t)S,

the first m columns of B̃(t) are zero and the remaining n − m columns are linearly
independent over �. From Lemma 2 we have that the last n − m components of

the almost periodic irregular with respect to mod(A) solution y to (12) are zero,
i.e. y has the following structure: y = (ỹ, 0, . . . 0), ỹ = (y1, . . . , ym). Substituting

y = (ỹ, 0, . . . 0) into (12), we obtain

(13) ˙̃y = Bm,mỹ + Y ′(t, ỹ), 0 = Bn−m,mỹ + Y ′′(t, ỹ),
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where Bm,m = [bij ]m1 ; Bn−m,m = [bij ] (i = m+ 1, n, j = 1, m); col(Y ′, Y ′′) =
Y (t, y1, . . . , ym, 0, . . . , 0).
Thus, the problem of existence of an almost periodic irregular with respect to

mod(A) solution of (7) is reduced to a similar problem for system (13).

Consider the system

(14) ˙̃y = Bm,mỹ + Y ′(t, ỹ).

Assume that all eigenvalues λ1(Bm,m), . . . , λm(Bm,m) of Bm,m have nonzero real

parts

(15) Reλj(Bm,m) �= 0 (j = 1, m)

and Y ′(t, ỹ) satisfies the Lipschitz condition

(16) ‖Y ′(t, ỹ′′)− Y ′(t, ỹ′′)‖ � L‖ỹ′′ − ỹ′‖, ỹ′, ỹ′′ ∈ �
m , L = const.

Then by [4, p. 143] the system (14) has an almost periodic solution ỹ(t) such that
mod(ỹ) ⊂ mod(Y ′). Since mod(Y ′) ⊂ mod(X), we have mod(ỹ) ∩mod(A) = {0}. It
is clear that ỹ(t) is a solution to (13) if

(17) Bn−m,mỹ(t) + Y ′′(t, ỹ(t)) ≡ 0.

Let (17) be true. Taking into account (11), we obtain an almost periodic irregular
with respect to mod(A) solution of (7)

(18) x(t) = Scol[ỹ(t), 0, . . . , 0], mod(x, X) ∩mod(A) = {0},

where ỹ(t) is an almost periodic solution to (14).
Thus, we have proved

Theorem. Suppose system (7) satisfies conditions (8), (10), (15), (16), (17); then
(7) has the almost periodic irregular with respect to mod(A) solution (18).

������. By Lemma 2 we can state that system (7) has an almost periodic
irregular with respect to mod(A) solution x(t) iff x(t) satisfies the system

ẋ = A(t0)x +X(t, x), [A(t)− A(t0)]x = 0, t0 ∈ �.
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