ON ITERATED LIMITS OF SUBSETS OF A CONVERGENCE ℓ -GROUP

MATHEMATICA BOHEMICA

JÁN JAKUBÍK, Košice

(Received February 12, 1999)

Abstract. In this paper we deal with the relation

$$\lim_{\alpha} \lim_{\alpha} X = \lim_{\alpha} X$$

for a subset X of G, where G is an ℓ -group and α is a sequential convergence on G.

Keywords: convergence $\ell\text{-}\mathrm{group},$ disjoint subset, direct product, lexico extension $MSC~2000\colon$ 06F15, 22C05

For a convergence ℓ -group (shorter: cl-group) we apply the same notation and definitions as in [4] with the distinction that now we do not assume the commutativity of the group operation.

Let (G, α) be a cl-group (where G is an ℓ -group and α is a convergence on G). For $X \subseteq G$ the symbol $\lim_{\alpha} X$ has the usual meaning. X will be said to be regular with respect to (G, α) if the relation

$$\lim_{\alpha} \lim_{\alpha} X = \lim_{\alpha} X$$

is valid.

An ℓ -group G will be called absolutely regular, if whenever (G, α) is a convergence ℓ -group and H is an ℓ -subgroup of G, then H is regular with respect to (G, α) .

We denote by F the class of all ℓ -groups K such that each disjoint subset of K is finite; such ℓ -groups were studied in [1] (cf. also [2] and [6]).

Supported by grant VEGA 2/5125/99.

In the present paper we prove that each ℓ -group belonging to F is absolutely regular.

This generalizes a result from [5] concerning ℓ -groups which can be represented as direct products of a finite number of linearly ordered groups.

1. Preliminaries

In the whole paper G is an ℓ -group; the group operation is written additively, but we do not assume commutativity of this operation.

For the notion of convergence $\alpha \in \operatorname{conv} G$ we apply the same definition as in [4] with the distinction that to the conditions for α used in [4] we add the following one:

(*) α is a normal subset of $(G^N)^+$ (i.e., if $s \in (G^N)^+$, then $s + \alpha = \alpha + s$).

The corresponding convergence ℓ -group will be denoted by (G, α) .

If X is a nonempty subset of G, then by $\lim X$ we denote the set of all $g \in G$ such that there exists a sequence $(x_n) \in X$ with $x_n \to_{\alpha} g$.

It is easy to verify that

(i) if X is an ℓ -subgroup of G, then $\lim X$ is an ℓ -subgroup of G as well;

(ii) if X is convex in G, then the same holds for $\lim_{X \to T} X$.

We shall often apply the following rule:

If $x_n \to_{\alpha} g$ and $x_n \leq g$ for each $n \in N$, then $\bigvee_{n \in N} x_n = g$ (and dually). A subset Y of G is called disjoint if $Y \subseteq G^+$ and $y_1 \wedge y_2 = 0$ whenever y_1 and y_2 are distinct elements of G.

The direct product of ℓ -groups G_1, G_2, \ldots, G_k is defined in the usual way; it will be denoted by $G_1 \times G_2 \times \ldots \times G_n$.

If H is a convex ℓ -subgroup of G such that g > h for each $g \in G^+ \setminus H$ and each $h \in H$, then G is said to be a lexico extension of H; we express this fact by writing $G = \langle H \rangle$. For the properties of the lexico extension cf., e.g., [2].

2. Auxiliary results

Let (G, α) be a cl-group.

2.1. Lemma. Let (x_n) be a sequence in G, $x_n \leq x_{n+1}$ for each $n \in N$, $g \in G$, $x_n \to_{\alpha} g$. Then $\bigvee_{n \in N} x_n = g$.

Proof. If there exists a subsequence (x_n^1) of (x_n) such that $x_n^1 \leq g$ for each $n \in N$, then $\bigvee_{n \in N} x_n^1 = g$, and hence we have also $\bigvee_{n \in N} x_n = g$. If such a subsequence

 (x_n^1) does not exist, then there is a subsequence (x_n^2) of (x_n) such that for each $n \in N$, either $x_n^2 > g$ or x_n^2 is incomparable with g. Hence $x_n^2 \vee g > g$ for each $n \in N$. Thus we obtain

$$(*_1) x_n^2 \lor g \to_\alpha g$$

and

$$g < x_1^2 \lor g \leqslant x_n^2 \lor g$$
 for each $n \in N$,

so that the relation $(*_1)$ cannot be valid.

2.2. Lemma. Let *H* be an ℓ -subgroup of the ℓ -group *G*. Suppose that *H* can be represented as a lexico extension $H = \langle A \rangle$ with $A \neq \{0\}$. Then

$$\lim_{\alpha} H = \bigcup_{h \in H} \lim_{\alpha} (h + A).$$

Moreover, if $h_1, h_2 \in H$ and $h_1 \notin h_2 + A$, then

$$\lim_{\alpha} (h_1 + A) \cap \lim_{\alpha} (h_2 + A) = \emptyset.$$

Proof. For $h \in H$ we put $\overline{h} = h + A$. If $h_1, h_2 \in H$ and $h_1 \notin h_2 + A$, then from the properties of the lexico extension we infer that either

(i) $h'_1 < h'_2$ for each $h'_1 \in h_1 + A$ and each $h'_2 \in h_2 + A$,

or

(ii) $h'_2 < h'_1$ for each $h'_1 \in h_1 + A$ and each $h'_2 \in h_2 + A$.

Let $g \in G$ and suppose that there exists a sequence (h_n) in H such that $h_n \to_{\alpha} g$. a) First suppose that there exist $h_1 \in H$ and a subsequence (h'_n) of (h_n) such that $h'_n \in h_1 + A$ for each $n \in N$. Then $h'_n \to_{\alpha} g$, whence $g \in \lim_{\alpha} (h_1 + A)$.

b) Now suppose that the assumption from a) is not valid. Then there exists a subsequence (h'_n) of (h_n) such that, whenever n(1) and n(2) are distinct positive integers, then

$$h'_{n(1)} + A \neq h'_{n(2)} + A$$

Thus in view of the relations (i) and (ii) above, if n(1) and n(2) are distinct, then either $h'_{n(1)} < h'_{n(2)}$ or $h'_{n(1)} > h'_{n(2)}$. This implies that there exists a subsequence (h''_n) of (h'_n) such that either

$$h_n'' < h_{n+1}''$$
 for each $n \in N$,
55

$$h_n'' > h_{n+1}''$$
 for each $n \in N$.

Suppose that the first case occurs (in the second case we apply a dual argument). We have $h''_n \to_{\alpha} g$ and thus according to 2.1 the relation

$$\bigvee_{n\in N}h_n''=g$$

is valid.

If there exists $n(1) \in N$ such that $h''_{n(1)} + A = g + A$, then $h''_{n(1)+1} > g$, which is a contradiction. Hence

$$h_{n(1)}'' + A \neq g + A$$
 for each $n(1) \in N$.

Since $A \neq \{0\}$, there exists $a \in A$ with a > 0. Then

$$h_n'' < g - a \quad \text{for each } n \in N,$$

which is imposible. Thus we have verified that the condition from a) must be valid. Therefore

$$\bigcup_{h \in H} \lim_{\alpha} (h+A) \subseteq \lim_{\alpha} H \subseteq \bigcup_{h \in H} \lim_{\alpha} (h+A),$$

which proves the first assertion of the lemma.

c) Let g be as above; we have shown that there is $h_1 \in H$ such that $g \in \lim_{\alpha} (h_1 + A)$. Let $h_2 \in H$, $h_1 \notin h_2 + A$. By way of contradiction, suppose that $g \in \lim_{\alpha} (h_2 + A)$. Hence there exists a sequence (h_n^2) in $h_2 + A$ such that $h_n^2 \to_{\alpha} g$. At the same time, there exists a sequence (h_n^1) in $h_1 + A$ such that $h_n^1 \to_{\alpha} g$. Let a be as above. If (i) is valid, then

$$h_n^1 + a < h_n^2$$
 for each $n \in N$,

thus $g + a \leq g$, which is a contradiction. In the case when (ii) is valid we proceed dually.

2.3. Lemma. Let H be as in 2.2. Then $\lim_{A \to A} H = \langle \lim_{A \to A} A \rangle$.

Proof. We obviously have $\lim_{\alpha} A \subseteq \lim_{\alpha} H$ and thus $\lim_{\alpha} A$ is an ℓ -subgroup of $\lim_{\alpha} H$. Let $h_1, h_2 \in \lim_{\alpha} A$, $h \in \lim_{\alpha} H$, $h_1 \leqslant h \leqslant h_2$. Then there exist sequences $(h_n^1), (h_n^2)$ in A and (h'_n) in H such that

$$h_n^1 \to_\alpha h_1, \quad h_n^2 \to_\alpha h_2, \quad h_n' \to_\alpha h.$$

Put $(h'_n \vee h^1_n) \wedge h^2_n = h''_n$. Then $h''_n \in A$ for each $n \in N$ and

$$h_n'' \to_\alpha (h \lor h_1) \land h_2 = h,$$

whence $h \in \lim_{\alpha} A$. Thus $\lim_{\alpha} A$ is a convex subset of $\lim_{\alpha} H$. Let $h \in (\lim_{\alpha} H)^+ \setminus \lim_{\alpha} A$. In view of 2.2 there exist $h^1 \in H$ and a sequence (h_n) in $h^1 + A$ such that $h_n \to_{\alpha} h$. Moreover, h^1 does not belong to A. Since $h \in G^+$, without loss of generality we can suppose that all h_n belong to G^+ . Further, 2.2 yields that there is a subsequence (h_n^1) of (h_n) such that for each $n \in N$ the relation $h_n^1 \notin A$ is valid. Thus $h_n^1 > a$ for each $a \in A$. Therefore $h \ge a$; since $h \notin A$ we obtain that h > a for each $a \in A$.

If $a' \in \lim A$, then there exists a sequence (a_n) in A with $a_n \to_{\alpha} a'$. Thus $h > a_n$ for each $n \in N$, hence $h \ge a'$. Since $h \notin \lim_{\alpha} A$ we get h > a' for each $a' \in \lim_{\alpha} A$. Therefore $\lim_{\alpha} H = \langle \lim_{\alpha} A \rangle$. \square

2.4. Corollary. If H is as in 2.2 and if A is regular with respect to (G, α) , then H is regular with respect to (G, α) .

2.5. Corollary. Let H be and ℓ -group, $H = \langle A \rangle$, $A \neq \{0\}$ and suppose that A is absolutely regular. Then H is absolutely regular.

2.6. Proposition. Let A be an ℓ -group which can be represented as a direct product of a finite number of linearly ordered groups. Suppose that $A \neq \{0\}$ and $H = \langle A \rangle$. Then H is absolutely regular.

Proof. This is a consequence of 2.6 and of Theorem 3.6, [3].

2.7. Lemma. Let H be an ℓ -subgroup of G such that

- (i) *H* can be represented as a direct product $H_1 \times H_2 \times \ldots \times H_k$;
- (ii) there are ℓ -subgroups A_i of H_i such that $H_i = \langle A_i \rangle$, $H_i \neq A_i \neq \{0\}$ (i = $1, 2, \ldots, k$).

Then $\lim_{\alpha} H = \lim_{\alpha} H_1 \times \ldots \times \lim_{\alpha} H_k$.

Proof. Let $i \in \{1, 2, \dots, k\}$. In view of 2.3,

$$\lim_{\alpha} H_i = \langle \lim_{\alpha} A_i \rangle.$$

Now we proceed by induction with respect to k. For k = 1 the assertion is trivial. Let k > 1. Consider an element $g \in \lim H$ with g > 0. Then there exists a sequence (z_n) in H such that $z_n \to_{\alpha} g$ and $z_n > 0$ for each $n \in N$.

a) First we prove that g cannot be an upper bound of the set H. In fact, if $g \ge h$ for each $h \in H$, then $g \ge z_n$ for each $n \in N$, whence $g = \bigvee_{n \in N} z_n$ and thus $g = \sup H$. There exists $h_0 \in H$ with $h_0 > 0$. Then $h + h_0 \in H$ for each $h \in H$, yielding that $h + h_0 \leq g$. Hence $h \leq g - h_0 < g$ for each $h \in H$, which is a contradiction.

b) For $h \in H$ and $i \in I$ we denote by $h(H_i)$ the component of h in H_i . If $h \ge 0$, then

$$h = h(H_1) + h(H_2) + \ldots + h(H_n) = h(H_1) \lor h(H_2) \lor \ldots \lor h(H_n).$$

Thus in view of a) there exists $i_0 \in \{1, 2, \dots, k\}$ such that g fails to be an upper bound of the set H_{i_0} . Without loss of generality we can suppose that $i_0 = k$. Therefore there exists $x_0 \in H_k^+$ such that $x_0 \nleq g$.

We have

$$z_n \wedge x_0 = (z_n(H_1) \lor z_n(H_2) \lor \ldots \lor z_n(H_k)) \land x_0 = z_n(H_k) \land x_0 \in H_k$$

(since $z_n(H_i) \wedge x_0 = 0$ for i = 1, 2, ..., k - 1). Then

$$z_n(H_k) \wedge x_0 \to g \wedge x_0,$$

whence $g \wedge x_0 \in \lim_{\alpha} H_k \subseteq \lim_{\alpha} H$. For each $h^k \in H_k$ we denote $\overline{h^k} = h^k + A_k$. Further we put

$$\overline{H}_k = \{ \overline{h^k} \colon h^k \in H_k \}.$$

If $\overline{h_1^k}$ and $\overline{h_2^k}$ are distinct elements of \overline{H}_k and $h_1^k < h_2^k$, then we put $\overline{h_1^k} < \overline{h_2^k}$. In this way \overline{H}_k turns out to be a linearly ordered set.

Consider the sequence $(\overline{z_n(H_k)})$. If there existed a subsequence $(\overline{y_n})$ of $(\overline{z_n(H_k)})$ such that $\overline{y}_n > \overline{x}_0$ for each $n \in N$, then we would have $g \ge x_0$, which is a contradiction. Hence there is a subsequence (\overline{y}_n) of $(\overline{z_n(H_k)})$ such that $\overline{y}_n \leq \overline{x}_0$ for each $n \in N.$

Since $H_k \neq A_k$ there exists $x'_0 \in H_k$ such that $\overline{x}_0 < \overline{x'_0}$. We can replace \overline{x}_0 by $\overline{x'_0}$ and then the previous considerations remain valid. Moreover, $\overline{y}_n < \overline{x'_n}$ for each $n \in N$. We have $y_n = z_n^1(H_k)$, where (z_n^1) is a subsequence of (z_n) . Thus

$$z_n^1(H_k) < x'_0 \quad \text{for each } n \in N,$$

and $z_n^1(H_k) \wedge x'_0 \to_{\alpha} g \wedge x'_0$. Hence $z_n^1(H_k) \to_{\alpha} g \wedge x'_0$. This yields that

$$z'_n - z'_n(H_k) \rightarrow_{\alpha} g - (g \wedge x'_0).$$

Since

$$z'_n - z'_n(H_k) = z'_n(H_1) + z'_n(H_2) + \ldots + z'_n(H_{k-1}) \in H_1 \times \ldots \times H_{k-1},$$

in view of the induction hypothesis we obtain

$$g - (g \wedge x'_0) \in \lim_{\alpha} H_1 \times \lim_{\alpha} H_2 \times \ldots \times \lim_{\alpha} H_{k-1}.$$

Denote

$$\lim_{\alpha} H_1 \times \lim_{\alpha} H_2 \times \ldots \times \lim_{\alpha} H_{k-1} = Y_{k-1}$$

It is easy to verify that if $y_{k-1} \in (Y_{k-1})^+$ and $y_k \in (\lim_{\alpha} H_k)^+$, then

$$y_{k-1} \wedge y_k = 0.$$

Further, we obviously have

$$0 \in (Y_{k-1})^+ \cap (\lim H_k)^+.$$

Let Y be the sublattice of the lattice G^+ generated by the set

$$(Y_{k-1})^+ \cup (\lim H_k)^+.$$

Since the lattice G^+ is distributive, we obtain

$$Y = \{ y_{k-1} \lor y_k \colon y_{k-1} \in (Y_{k-1})^+ \text{ and } y_k \in (\lim H_k)^+ \}.$$

Thus in view of Lemma 3.4 in [5] we get

(1)
$$Y = (Y_{k-1})^+ \times Y_k^+,$$

where Y_k^+ is the underlying lattice of the lattice ordered semigroup $(\lim_{\alpha} H_k)^+$. For $A, B \subseteq G$ we put

$$A - B = \{a - b \colon a \in A \text{ and } b \in B\}.$$

Clearly

$$\lim_{\alpha} H_k = Y_k^+ - Y_k^+.$$

Therefore according to (1) and by applying Theorem 2.9 in [3] we obtain

$$\lim_{\alpha} H = Y - Y = \left((Y_{k-1})^+ - (Y_{k-1})^+ \right) \times \left(Y_k^+ - Y_k^+ \right) = Y_{k-1} \times \lim_{\alpha} H_k$$
$$= \lim_{\alpha} H_1 \times \lim_{\alpha} H_2 \times \ldots \times \lim_{\alpha} H_{k-1} \times \lim_{\alpha} H_k.$$

2.8. Lemma. Let H and H_1, H_2, \ldots, H_k be as in 2.7. Further suppose that all A_i $(i = 1, 2, \ldots, k)$ are regular with respect to (G, α) . Then $\lim_{\alpha} H$ can be represented in the form

$$\lim_{\alpha} H = \langle \lim_{\alpha} A_1 \rangle \times \langle \lim_{\alpha} A_2 \rangle \times \ldots \times \langle \lim_{\alpha} A_k \rangle$$

and all $\lim_{\alpha} A_i$ (i = 1, 2, ..., k) are regular with respect to (G, α) .

Proof. The first assertion is a consequence of 2.7 and 2.3; the latter is obvious. $\hfill \Box$

2.9. Lemma. Let H and H_1, H_2, \ldots, H_k be as in 2.8. Then H is regular with respect to (G, α) .

Proof. In view of 2.3, 2.7 and 2.8 we have

$$\lim_{\alpha} \lim_{\alpha} H = \lim_{\alpha} \langle \lim_{\alpha} A_1 \rangle \times \ldots \times \lim_{\alpha} \langle \lim_{\alpha} A_k \rangle$$
$$= \langle \lim_{\alpha} \lim_{\alpha} A_1 \rangle \times \ldots \times \langle \lim_{\alpha} \lim_{\alpha} A_k \rangle$$
$$= \langle \lim_{\alpha} A_1 \rangle \times \ldots \times \langle \lim_{\alpha} A_k \rangle = \lim_{\alpha} H.$$

2.10. Corollary. Let H and H_i (i = 1, 2, ..., k) be ℓ -groups such that the conditions (i) and (ii) from 2.7 are valid. Further suppose that all A_i (i = 1, 2, ..., k) are absolutely regular. Then H is absolutely regular.

3. On ℓ -groups belonging to F

In this section we assume that H is an ℓ -group belonging to the class F and that $H \neq \{0\}$.

It follows from the results of [1] concerning the structure of ℓ -groups belonging to the class F that there exist a positive integer n and finite systems F_1, F_2, \ldots, F_n of convex nonzero subgroups of H such that

- (i) $F_1 = \{A_1^1, A_2^1, \dots, A_{n(1)}^1\}$, all ℓ -groups A_i^1 $(i = 1, \dots, n(1))$ are linearly ordered and $A_{i(1)}^1 \cap A_{i(2)}^1 = \{0\}$ whenever i(1), i(2) are distinct elements of the set $\{1, 2, \dots, n(1)\}$.
- (ii) If k > 1, then $F_k = \{A_1^k, A_2^k, \dots, A_{n(k)}^k\}$ such that (ii₁) $A_{i(1)}^k \cap A_{i(2)}^k = \{0\}$ whenever i(1), i(2) are distinct elements of the set $\{1, 2, \dots, n(k)\};$

- (ii₂) if $i \in \{1, 2, ..., n(k)\}$, then either A_i^k is equal to an element of F_{k-1} , or there are $B_1, B_2, ..., B_{t(i)} \in F_{k-1}$ such that $t(i) \ge 2$ and $A_i^k = \langle B_1 \times B_2 \times ... \times B_{t(i)} \rangle$.
- (iii) $F_n = \{H\}.$

3.1. Lemma. Let us apply the above notation and let $k \in \{1, 2, ..., n\}$. Then all ℓ -groups of the system F_k are absolutely regular.

Proof. We proceed by induction with respect to k. For k = 1, this is a consequence of Theorem 3.6 in [5]. Suppose that k > 1 and that the assertion is valid for k - 1. Then 2.10 yields that the elements of F_k are absolutely regular. \Box

As a corollary we obtain

3.2. Theorem. Each ℓ -group belonging to F is absolutely regular.

If an ℓ -group H is a direct product of a finite number of linearly ordered groups, then H belongs to F. Hence 3.2 generalizes Theorem 3.6 from [5].

References

- P. Conrad: The structure of a lattice ordered group with a finite number of disjoint elements. Michigan Math. J. 7 (1960), 171–180.
- [2] P. Conrad: Lattice Ordered Groups. Lecture Notes, Tulane University, 1970.
- [3] J. Jakubik: Direct decompositions of partially ordered groups, II. Czechoslovak Math. J. 11 (1961), 490–515. (In Russian.)
- [4] J. Jakubik: Sequential convergences in ℓ-groups without Urysohn's axiom. Czechoslovak Math. J. 42 (1992), 101–116.
- [5] J. Jakubik: Closed convex l-subgroups and radical classes of convergence l-groups. Math. Bohem. 122 (1997), 301–315.
- [6] V. M. Kopytov, N. Ya. Medvedev: The Theory of Lattice Ordered Groups. Kluwer Academic Publishers, Dordrecht-Boston-London, 1994.

Author's address: Ján Jakubík, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia.