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PURE STATES ON JORDAN ALGEBRAS
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Abstract. We prove that a pure state on a C∗-algebra or a JB algebra is a unique
extension of some pure state on a singly generated subalgebra if and only if its left kernel
has a countable approximative unit. In particular, any pure state on a separable JB algebra
is uniquely determined by some singly generated subalgebra. By contrast, only normal pure
states on JBW algebras are determined by singly generated subalgebras, which provides a
new characterization of normal pure states. As an application we contribute to the extension
problem and strengthen the hitherto known results on independence of operator algebras
arising in the quantum field theory.
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1. Introduction and preliminaries

In mathematical foundations of the traditional Hilbert-space quantum mechanics

the basic role is played by pure normal states on the algebra B(H) of all bounded
operators on a separable Hilbert space H . (Each normal state on B(H) corresponds

to a σ-additive measure on projections by Gleason’s theorem [12].) It is well known
that for each such a state � there is a unique one-dimensional projection p which

determines � in the following sense: � is the only pure state on B(H) attaining value
one at p. (We shall call p the determining element for �.) This fact embodies the
one-to-one correspondence between physical states and rays in the Hilbert space H .

The aim of this note is to investigate the analogy of this duality in general operator
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algebraic quantum mechanics. Namely, in the first part of the paper we show that

any pure state � on a separable C∗-algebra and JB algebra admits a norm one,
positive, determining element c. In this case c can be considered a ‘generalized ray’
representing the state �. More generally, we prove that a pure state � on a JB algebra

(unital or non-unital) possesses a determining element if and only if its left kernel
L� has a strictly positive element or, which is the same, if and only if L� is σ-unital.

The proof is based on an analysis of approximate units on pure state spaces. As a
consequence of our results we get that for any pure state on a separable C∗-algebra
A there is a maximal abelian subalgebra B of A such that � is the only extension
of some pure state on B—a result proved in [3]. This contributes to the study of

restrictions of pure states to real-valued homomorphisms on associative subalgebras
which has been pursued intensively in the C∗-algebraic setting [1–3, 5–10, 21, 24].
In the second part of this note normal pure states on von Neumann algebras

are characterized as those that admit determining elements. Therefore, any pure

state � on a von Neumann algebra with a determining element is a vector state,
�(x) = (xξ, ξ), the support of which is a one-dimensional projection generated by

the unit vector ξ. (In the more general context of JBW algebras the pure states
on M8

3 and spin factors are also involved.) In other words, any pure state with a

determining element has to be σ-additive on projections. This advocates on a more
plausible physical ground the assumption of σ-additivity of states in Hilbert-space

quantum mechanics adopted for solely technical reasons.

In the final part an application of the technique of determining elements to finding
simultaneous extensions from infinitely many algebras is discussed. This situation
often appears in the quantum field theory where extensions from local subalgebras

corresponding to space-like separated regions in the space-time are considered. We
generalize the hitherto known results on independence of two subalgebras [11, 14,

22, 25] to any collection of subalgebras so improving the classical characterization of
C∗-independent commuting C∗-algebras due to H.Roos [22].
Besides, the results of this paper may be relevant to the discussion on hidden

variables in quantum theory. Indeed, re-stating Theorem 2.5 we can say that a
pure state with a σ-unital kernel is always uniquely determined by some pure state

on a singly generated subalgebra, i.e. by a preparation of some minimal classical
subsystem.

Let us recall basic facts on JB algebras and fix the notation. (For more details we
refer the reader to the monograph [16].)

In the sequel A will always denote a JB algebra endowed with a product ◦. We
write A1 = {a ∈ A ; ‖a‖ � 1}, A+ = {a2 ; a ∈ A}, A+1 = A1 ∩ A+. For a ∈ A,

mappings Ta, Ua : A→ A are defined by putting Ta(b) = a ◦ b, Ua(b) = 2a ◦ (a ◦ b)−
a2 ◦ b. It is well known that Ua(A+) ⊂ A+.
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A closed subspace I of A is called a Jordan ideal if Ta(A) ⊂ I for all a ∈ I.

Similarly, a closed subspace U of A is said to be a quadratic ideal if Ua(A) ⊂ U for
all a ∈ U . Both the Jordan and the quadratic ideal is a subalgebra. We will use
the symbol C[a1, . . . , an] to denote the JB subalgebra of A generated by elements

a1, . . . , an. The elements a, b ∈ A are said to be operator commuting if TaTb = TbTa.

The algebra A is called associative if it consists of operator commuting elements.

The associative subalgebra C[a] is said to be singly generated.

Denote by A∗ the dual space of A. The state space S(A) and the quasi-state space
Q(A) of A is defined as the set of all positive, norm one elements in A∗ and the set
of all positive elements in the unit ball of A∗, respectively.
The second dual A∗∗ of A is a JBW algebra whose product is separately weak∗

continuous and extends the original product in A. In the sequel A will always be

viewed as a weak∗ dense subalgebra of its second dual. Under this identification all
functionals on A can be viewed as normal functionals on A∗∗. The range projection
r(a) of a ∈ A is a projection in A∗∗ defined as the smallest projection p with p◦a = a.
The symbol S will always denote the weak∗ closure of the set S in a given JBW
algebra.

In this paper we will be mainly concerned with pure states (extreme points) in

S(A). For every pure state � on A there exists a unique minimal non-zero projection
s(�) in A∗∗ such that Us(�)(a) = �(a)s(�) for every a ∈ A [16]. We shall call s(�)

the support projection of a pure state �. The symbol zat will denote the supremum
of all atomic projections in A∗∗. Denote by Lf = {a ∈ A ; f(a2) = 0} the left
kernel of a positive functional f on A. The space Lf is a quadratic ideal contained
in the kernel Ker f . Moreover, (Ker f)+ = L+f . With any pure state � we associate
a representation π� : A → c(�)A∗∗ : a → c(�)a, where c(�) is the smallest central
projection in A∗∗ covering the support projection s(�).
The symbolM8

3 will denote a matrix Jordan algebra of all 3×3 hermitean matrices
over Cayley numbers. (It is known that M8

3 is not isomorphic to any JC algebra.)

2. Approximate units and pure states

An approximate unit in a JB algebra A is a family (uλ)λ∈J of elements in A
+
1

indexed by an upwards directed set J such that

(i) 0 � uλ � uµ whenever λ � µ in J ,

(ii) ‖uλ ◦ a− a‖ → 0 (λ ∈ J) for all a ∈ A.

Note that a functional f ∈ A∗ is positive exactly when ‖f‖ = lim
λ∈J

‖f(uλ)‖ whenever
(uλ) is an approximate unit of A (see e.g. [16]). Conversely, it has been proved by
C.A.Akemann [4] that an increasing net (uλ)λ∈J of non-negative elements in the
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unit ball of a C∗-algebra A is an approximate unit if and only ‖f‖ = lim f(uλ) for

all pure states f on A. The equivalence of conditions (ii) and (iii) in the following
theorem is a generalization of this result to the context of JB algebras. The proof
is, except one step, the same as for C∗-algebras. Nevertheless, we state the full
argument here for the sake of completeness.

2.1. Theorem. Let (uλ)λ∈J ⊂ A+1 be an increasing net of elements in a JB

algebra A. The following statements are equivalent:

(i) uλ ↗ 1 in A∗∗,
(ii) f(uλ)↗ 1 for every pure state f of A,
(iii) (uλ)λ∈J is an approximate unit of A.

�����. The implication (i)=⇒ (ii) is trivial because every state on A is normal
when considered as a state on A∗∗.
(ii)=⇒ (iii) Observe that for each fixed x ∈ A the net (x2−Ux(uλ))λ is a decreasing

net of non-negative elements in A. Since (uλ) is an increasing net in A∗∗, there is an
element 0 � u � 1 in A∗∗ with uλ ↗ u. Therefore, f(u) = 1 whenever f is a pure
state on A. Hence, u ◦ zat = zat. Every pure state f being concentrated on zatA

∗∗,
simple calculations give

f
(
x2 − Ux(uλ)

)
= f

(
zatx

2 − zatUx(uλ)
) → f

(
zatx

2 − zatUx(u)
)

= f(zatx
2 − zatx

2) = 0.

As
(
x2 − Ux(uλ)

)
is decreasing, ‖x2 − Ux(uλ)‖ ↘ ε � 0. Assume ε > 0 and try

to reach a contradiction. Putting Kλ =
{
f ∈ Q(A) ; f

(
x2 − Ux(uλ)

)
� ε

}
we

get a system of weak∗ closed non-empty faces in the quasi-state space which enjoys
the finite intersection property. Employing the compactness of Q(A), we have that
K =

⋂
Kλ 
= ∅. By the Krein-Milman theorem there is an extreme point f of the

weak∗ compact convex setK. SinceKλ is a face f has to be a non-zero extreme point
of Q(A), i.e. a pure state on A. But this is absurd because of f(x2 − Ux(uλ)) → 0.
Therefore ‖x2 − Ux(uλ)‖ → 0 for all x ∈ A. Evoking the inequality

‖a ◦ b‖ � ‖a‖ · ‖Ub(a)‖ for all a ∈ A+ and b ∈ A

[16, Lemma 3.5.2. (ii), p. 86] we can write

‖x− x ◦ uλ‖2 = ‖x ◦ (1− uλ)‖2 � ‖1− uλ‖ ‖Ux(1 − uλ)‖
= ‖1− uλ‖ ‖x2 − Ux(uλ)‖ → 0.

(iii)=⇒(i) Let (uλ)λ∈J be an approximate unit forA. By separate weak∗ continuity
of multiplication in A∗∗ we have uλ ↗ p for some projection p ∈ A∗∗. Suppose that
p < 1. Then there is a normal state � on A∗∗ with �(p) = 0. Hence,
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0 � �(u2λ) � �(uλ) � �(p) = 0,

and so �(x ◦ uλ)2 � �(x2)�(u2λ) = 0 by the Schwarz inequality. On the other hand,
since ‖x◦uλ−x‖ → 0, we obtain that �(x) = 0 for every x ∈ A, which is impossible.

Therefore p = 1 and the result follows. �

An element x of a JB algebra A is said to be strictly positive if f(x) > 0 for every
non-zero f ∈ A∗

+. Employing now Theorem 2.1 and arguments analogous to the well
known case of C∗-algebras we see that A admits a strictly positive element exactly
when there is h ∈ A+ with r(h) = 1, or equivalently, when A admits (an operator
commuting) countable approximate unit.

The question of when a pure state is determined by its values on some singly
generated subalgebra gives impetus to the following definition.

2.2. Definition. Let � be a pure state on a JB algebra A. We say that an
element a ∈ A1 is determining for � if � is the only pure state on A with �(a) = 1.

It is easily verified that if a is a determining element for � then its positive part is
determining for � as well.

2.3. ������. Note that if f is a state on A, a ∈ A+1 , and f(a) = 1, then f
is multiplicative on a in the sense of the equality f(a2) = f(a)2. In that case even

f(a ◦ b) = f(a)f(b) for any b ∈ A. (These observations can be derived by using the
Schwarz inequality and the technique of the approximate unit in the same way as in

the case of C∗-algebras considered e.g. in [5, 21].)

In particular, if a is a determining element for a pure state �, then � restricts to

a pure state on C[a] and is uniquely determined by this restriction. By the Hahn-
Banach and Krein-Milman theorem � is then uniquely determined by its (necessarily

pure) restriction to any maximal associative subalgebra containing a. On the other
hand, whenever a pure state � is the only extension of some pure state on a singly

generated subalgebra B of A, then �|B has a determining element a ∈ B (use Ex-
ample 2.5 below and the spectral theorem) and so a must be a determining element

for � as well.
Therefore, the presence of a determining element implies the restriction property

of � studied in [1, 2, 5, 7, 9, 10, 21].

2.4. 	
�����. Let us examine the case of A being associative. Then A is

representable as an algebra CR
0 (X) of all real-valued continuous functions defined on

a locally compact Hausdorff space X vanishing at infinity. Given a pure state �, we

can find a point x ∈ X such that �(f) = f(x) for all f ∈ CR
0 (X). A state � has a

determining element if and only if there is a countable system (Un) of neighbourhoods
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of x such that
⋂
n
Un = {x}. Indeed, suppose f is a non-negative determining element

for �. So 0 � f � 1, and f(y) = 1 exactly when y = x. Putting Un = f−1(1−1/n,∞)
we get the desired system of neighbourhoods of x. For the converse, let (Un) be a

countable system of neighbourhoods of {x} satisfying ⋂
Un = {x}. Assume that the

system (Un) is decreasing. We can always find fn ∈ CR
0 (X) such that 0 � fn � 1,

fn(x) = 1 and fn|(X \Un) = 0. Set f =
∞∑

n=1
(1/2n)fn. Then 0 � f � 1, and f(y) = 1

exactly when fn(y) = 1 for all n; or alternatively, if and only if y ∈ ⋂
Un = {x}.

This example shows that only those pure states on associative algebras which can
be, as points in the spectrum of A, separated from the other points by a countable

system of neighbourhoods admit determining elements. Thus, if we consider e.g.X =
[0, 1]c, where c is the continuum, then no pure state on the corresponding function

algebra has a determining element. The following theorem is a generalization of this
facts to general JB algebras.

2.5. Theorem. Let � be a pure state on a JB algebra A. If the left kernel L�

has a strictly positive element, then � admits a determining element.

The converse implication is true provided A is unital.

�����. We first prove the existence of an element a ∈ A+1 with �(a) = 1. This

follows from [15, Proposition].
Let now 0 � x � 1 be a strictly positive element of L�. Set c = a− x and take a

pure state ϕ of A such that ϕ(c) = 1. Then ϕ(a), ϕ(x) ∈ [0, 1] immediately implies
that ϕ(a) = 1 and ϕ(x) = 0. An element x being a strictly positive element of L�,

we have ϕ|L� = 0. The projection 1 − s(�) is open in A∗∗ and so 1 − s(�) is in the
weak∗ closure of L�. Hence ϕ(1 − s(�)) = 0 by normalcy of ϕ. Therefore ϕ = �.

Conversely, assume that A is unital and 0 � c � 1 is a determining element for
�. Letting x = 1 − c we get a strictly positive element of L�. For this let us take
an arbitrary pure state ϕ of L� with ϕ(x) = 0. On extending ϕ canonically to a

normal pure state on A∗∗, we have that ϕ(c) = 1, while ϕ 
= �, contradicting the
assumption. The proof is completed. �

2.6. ������. The assumption of unitality of A is essential in Theorem 2.5. For
a counterexample take a JB algebra A = R ⊕M , where R is one-dimensional and

M has no strictly positive element. Then a pure state � on M concentrated at the
one-dimensional direct summand R has a determining element 1R. On the other

hand L� =M .

Let us remark that any separable algebra has a strictly positive element because

it has a countable approximate unit. Therefore Theorem 2.5 improves results in [1,
3, 14] concerning separable algebras.
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3. Determinacy of pure states on JBW algebras

3.1. Lemma. LetM be an associative JBW algebra with an atomless projection
lattice. For any f ∈M+ of norm one there are two pure states �1, �2 ofM such that

�1(f) = �2(f) = 1.

�����. We can assume thatM = L∞(X,M,m), wherem is an atomless Radon
measure on an algebraM of all Borel sets of a locally compact Hausdorff space X .
Set Mn =

{
x ∈ X ; f(x) > 1 − 1

n

}
. Then (Mn) is a decreasing sequence of Borel

sets with non-zero measures. Employing atomlessness we can find disjoint Borel sets
A and B such that both A and B have intersections of non-zero measures with any

member of the sequence (Mn). Hence, ‖f |A‖∞ = ‖f |B‖∞ = 1. In other words, if
we take f1 = fp, f2 = f(1− p), where p is a characteristic function of A, then

f1, f2 � f, f1f2 = 0 and ‖f1‖∞ = ‖f2‖∞ = 1.

By the Hahn-Banach and Krein-Milman theorems there are pure states �1, �2 of
M such that �1(f1) = �2(f2) = 1. Since any pure state is multiplicative on M we

have
0 = �1(f1f2) = �1(f1)�1(f2).

Hence, �1(f2) = 0 and so �1 
= �2. The proof is completed. �

Unlike separable JB algebras for which every pure state has a determining element,
on JBW algebras only normal pure states have this property.

3.2. Theorem. Let � be a pure state on a JBW algebra M . Then � has a
determining element, if and only if � is normal.

�����. Let us suppose that � is a pure state on M admitting a determining

element c. Fix a maximal associative subalgebra of M containing c. Decompose
A into the discrete and continuous parts Ad and Ac, respectively. So Ad is either

zero or has an atomic projection lattice and Ac has no non-zero minimal projection.
Suppose that � is concentrated on Ac. It means that �|Ac has a determining element

f ∈ A+c , ‖f‖ = 1. But this is impossible according to Lemma 3.1. Therefore � has
to be concentrated on Ad and has a determining element in this algebra. Since Ad

is discrete it is isomorphic to the algebra CR(βκ) of all continuous real-valued func-
tions on the Stone-Čech compactification of a cardinal κ endowed with the discrete

topology. Therefore �|Ad is a Dirac measure concentrated at a point x� ∈ βκ. Now
we can use Example 2.4 to deduce that {x�} has a countable basis of neighbour-
hoods. This can occur exactly when x� ∈ κ. So � has to be concentrated at a point
x� ∈ κ which corresponds to an atomic projection p in A. Since A is maximal p has
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to be an atomic projection in M . This implies that � is normal, which concludes the

proof. �

4. Extension problem

In the concluding part of this paper we show one application of the technique
of determining elements to the problem of the simultaneous extensions of states.

Suppose we are given a system (Aα) of JB subalgebras of a JB algebra A. We shall
consider the question of when there is a simultaneous extension for any system of

states defined on local subalgebras Aα’s. According to the Hahn-Banach theorem an
obvious necessary condition for the existence of such extension is the following one:

for any n-tuple (aα1 , . . . , aαn) ∈ (Aα1 , . . . , Aαn) of positive, norm one elements there
is a state ϕ of A with ϕ(aα1) = . . . = ϕ(aαn) = 1. In the following theorem we show

that this condition is also sufficient.

4.1. Theorem. Let (Aα)α∈G be a system of JB subalgebras of a JB alge-

bra A. Suppose that for any finite system of positive, norm one elements aα1 ∈
Aα1 , . . . , aαn ∈ Aαn there is a state � of A with

�(aα1) = . . . = �(aαn) = 1.

Assume that ϕα is a state on Aα. Then there is a state ϕ on A extending all states

of ϕα’s.

�����. First we prove the statement under the condition that A is separable.

Let us consider finitely many subalgebras Aα1 , . . . , Aαn . Let ψαi (i = 1, . . . , n) be a
pure state on Aαi . Our previous results guarantee the existence of a positive, norm

one determining element cαi ∈ Aαi for each ψαi . By assumption there is a state ψ
of A with ψ(cαi) = 1 for all i = 1, . . . , n. The state ψ is automatically an extension

of ψαi for all i = 1, . . . , n. Let us suppose first that

ϕα1 =
m∑

i=1

λi�i

is a convex combination of pure states �1, . . . , �m on Aα1 , the states ϕα2 , . . . , ϕαn

being pure. The above reasoning implies that there is a state ϕ of A extend-
ing ϕα1 , . . . , ϕαn . Finally, employing the Krein-Milman theorem and the compact-

ness of the quasi state space we can find the simultaneous extension of the states
ϕα1 , . . . , ϕαn , where ϕα1 is arbitrary and ϕα2 , . . . , ϕαn are pure. Proceeding in
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the same way we can show that there is a common extension for arbitrary states

ϕα1 , . . . , ϕαn . Let K denote the system of all finite subsets of the index set G. For
each K ∈ K the set SK =

{
ϕ ∈ Q(A) ; ϕ|Ai = ϕi|Ai for all i ∈ K

}
is a non-empty

and closed subset of Q(A). Moreover, the system (SK)K∈K has the finite intersection
property. By compactness there is a state in the intersection of all sets SK that is a
common extension of the family (ϕα)α∈G.

Let A be now arbitrary. Denote by F the set of all non-empty finite subsets of
the set

⋃
α∈G

Aα. For F ∈ F set

SF = {� ∈ Q(A) ; �|F ∩Aα = ϕα for all α ∈ G with F ∩Aα 
= ∅}.

Every set SF is non-empty. Indeed, we can take a separable JB algebra A(F ) gener-

ated by a set F . By the previous part of the proof there is a state on A(F ) extending
all states ϕα|A(F ) ∩ Aα. By extending this state to the whole algebra we get an

element of SF . Moreover, it can be easily checked that the system (SF )F∈F is a
system of closed subsets of Q(A) enjoying the finite intersection property. Therefore,⋂
F∈F

SF 
= ∅ and any element of this intersection is the desired common extension of
the states (ϕα)α∈G. The proof is completed. �

It has been proved by H.Roos [22] that any pair of states ϕ1 and ϕ2 of mutually

commuting C∗-algebras A1 and A2 has a common extension to some larger algebra if
and only if ab 
= 0 whenever a and b are non-zero elements of A1 and A2, respectively.
As a consequence of Theorem 4.1 we can generalize this result to infinite families of
operator commuting JB algebras.

4.2. Corollary. Let (Aα)α∈G be a system of mutually operator commuting JB

subalgebras of a JB algebra A. Suppose that every finite collection of non-zero

elements aα1 ∈ Aα1 , . . . aαn ∈ Aαn has a non-zero product aα1 ◦ . . .◦aαn . Then there

is a common extension of any family (ϕα)α∈G of states on Aα’s.

�����. Let us take the positive, norm one elements a1 ∈ Aα1 , . . . , an ∈ Aαn .
Then ‖a1 ◦ . . . ◦ an‖ = 1. Indeed, if ‖a1 ◦ . . . ◦ an‖ < 1 held then the homomorphism

Φ : C[a1]⊗ C[a2]⊗ . . .⊗ C[an]→ C[a1, a2, . . . , an]

defined on the tensor product of associative algebras which is uniquely determined
by the condition

Φ(f1 ⊗ . . .⊗ fn) = f1 . . . fn, for all f1 ∈ C[a1], . . . , fn ∈ C[an]
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would not be an isometry. Therefore KerΦ would be non-trivial and we would be

able to find non-zero elements f1 ∈ C[a1], . . . , fn ∈ C[an] with Φ(f1 ⊗ . . . ⊗ fn) =
f1 . . . fn = 0—contradicting the assumption of Corollary.

Hence, there is a pure state ϕ of A such that ϕ(a1 ◦ . . . ◦ an) = 1 and so ϕ(a1) =
. . . = ϕ(an) = 1 since a1 ◦ . . . ◦ an � ai for each i by commutativity. The assertion

now follows from Theorem 4.1. �

��������������. The author would like to express his gratitude to Prof.
D.Kölzow, who acted as the scientific host during the author’s stay at the University

of Erlangen, for his hospitality, helpful discussions and encouragement in the author’s
research work.
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