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1. Introduction

Bellman systems of the type, say

(1.1)
−1
2
∆uν + αuν = Hν(x, Du), ν = 1, . . . , N

uν|∂O = 0

with certain structure conditions on H and quadratic cost functionals have been
studied in order to solve stochastic games.

For instance, in [1] the authors solved the differential game

(1.2)
dy =

(
g(y(t)) +

N∑
µ=1

vµ(t)
)
dt+ dw(t),

y(0) = x, x ∈ �
n ,

where v1(·), . . . , vN (·) are controls at the disposal of N decision makers. In (1.2),
w(t) is a Wiener process in �n , and yx,v = y(·) is the solution of an Ito stochastic
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differential equation. Let O be an open smooth bounded domain of �n , and let

(1.3) τ = inf{t ; yx,v(t) /∈ O}

be the first exit time of the process yx,v(t) outside O. Using the notation

(1.4) v(t) = (vν(t), vν(t))

where vν represents the vector of all components which are different from vν and

(1.5) vν(t) =
∑
µ�=ν

vµ(t), ν, µ = 1, . . . , N,

we consider the cost function of the player ν, given by

(1.6)

Jν(x, v(·)) = Jν(x, vν(·), vν(·))

= �

τ∫

0

e−αt
(
fν(yx,v(t)) + 12 |vν(t)|2 + θvν(t) · vν(t)

)
dt.

A Nash point of the functionals Jν(x, v(·)) is a control v̂(·) such that

(1.7) Jν(x, v̂ν(·), v̂ν(·)) � Jν(x, vν(·), v̂ν(·)), ν = 1, . . . , N

for any admissible control v(·) = (v1(·), . . . , vN (·)). Defining a function

(1.8) Lν(v, p) =
1
2
|vν |2 + θvν · vν + pν ·

∑
µ

vµ

where p = (p1, . . . , pN) ∈ �
nN , v = (v1, . . . , vN ) ∈ �

nN and considering a Nash
point v̂1(p), . . . , v̂N (p) of the functions (1.8) (the definition is similar to (1.7), but it

is pointwise in x), then setting

(1.9) Lν(p) = Lν(v̂(p), p)

it is proved that the functions

(1.10) uν(x) = Jν(x, v̂(·))

are solutions of the system of partial differential equations

(1.11) −1
2
∆uν − g(·) · Duν + αuν = fν + Lν(Du)
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which is of the form (1.1) with

(1.12) Hν(x, p) = Lν(p) + fν(x) + g(x) · pν .

Note that the discount factor e−αt gives the 0-order term αuν in the Bellman system
(1.11).

This term helps very much in obtaining L∞-estimates, via Maximum Principle
type of argument.

In recent years, there has been a rising interest in taking into consideration risk
aspects in the cost functions. One convenient way of modelling risk is to consider

the cost functions (instead of (1.6))

(1.13)

Jδ
ν (x, v(·)) = Jδ

ν (x, vν(·), vν(·))

=
1
δ
log � exp δ

[ τ∫

0

(
fν(yx,v(t)) +

1
2
|vν(t)|2 + θvν(t) · vν(t)

)
dt

]

where δ is called the risk factor (δ > 0 represents an aversion to risk, δ < 0 represents

an attraction to risk).

Note that in the integral
τ∫
0
, there is no discount factor any more.

The reason for omitting the discount factor is that Nash points of functionals of

the type (1.13) are amenable to systems of partial differential equations similar to
(1.11). Introducing the discount factor leads unfortunately to parabolic systems and

not to elliptic ones.
If v̂(·) is a Nash point for (1.13), then

uν(x) = Jν(x, v̂(·))

is a solution of the system

(1.14) −1
2
∆uν − g(x) · Duν =

δ

2
|Duν|2 + fν(x) + Lν(Du)

and thus we are led to systems of the type

(1.15)
−1
2
∆uν = Hν(x, Du)

uν |∂O = 0.

One of the main difficulties is to recover L∞-estimates. In this note we present some
cases where the L∞-estimate is available. In particular, we show that the drift g(x)
can have an influential role in obtaining these estimates.
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2. Statement of problem and results

2.1. Assumptions and model. We consider here the system

(2.1)
−1
2
∆uν − g(x) · Duν = Hν(x, Du)

uν |∂O = 0,

where Hν(x, p) are Carathéodory functions, g ∈ W 1,∞(O) with the following as-
sumptions ∑

ν

Hν(x, p) � −λ ∀x, p,(2.2)

Hν(x, p) � λν + λ0ν |pν |2.(2.3)

If Γ is an N × N -matrix and if we set

(2.4) HΓν (x, p) = (ΓH)ν(x,Γ−1p)

where H(x, p) represents the vector (H1(x, p), . . . , HN (x, p)) then we assume that

(2.5) there exists a matrix Γ such that HΓν (x, p) = Q(x, p) · pν +H0ν (x, p)

with

|Q(x, p)| � k +K|p|,(2.6)

|H0ν (x, p)| � kν +Kν

∑
µ�ν

|pµ|2.(2.7)

The assumptions (2.5), (2.6), (2.7) represent the special structure assumption (note
that this special structure may not be available on the original Hν but only after a

linear manipulation represented by the matrix Γ).
An additional smallness condition on the product λνλ0ν is assumed, namely

(2.8) 4λνλ0ν < k0 + inf div g

where k0 is the constant arising in the Poincaré inequality

(2.9) k0

∫

O

ϕ2 dx �
∫

O

|Dϕ|2 dx ∀ϕ ∈ H10 (O).

2.2. Statement of the results.

Theorem 2.1. Assuming O to be smooth bounded and Hν(x, p), Carathéodory
functions satisfying (2.2), (2.3), (2.5), (2.6), (2.7) as well as (2.8) there exists a

solution u of (2.1) such that u ∈ (W 2,s(O))N , for every 2 � s < ∞.
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3. Proof of the L∞-estimate

We will not give the complete proof of Theorem 2.1, nevertheless, we will show
some details how the L∞-estimates are obtained.
Write

ũ =
∑

uν ,

then adding up the equations (2.1) we have

(3.1) −1
2
∆ũ − gDũ � −λ.

For any point ξ of O consider the Green function

(3.2)
−1
2
∆Gξ + div(gGξ) = δ(x − ξ)

Gξ|∂O = 0.

We test (3.1) with ũ−Gξ obtaining, from the definition of the Green function,

(3.3)
1
4

∫

O

D(ũ−)2DGξ dx+
1
2
(ũ−(ξ))2 � λ

∫

O

ũ−Gξ dx.

Suppose now ξ is a point where ũ− reaches a positive maximum (necessarily in O),

then we get

‖ũ−‖∞ � 2λ
∫

O

Gξ dx � C

so that we have proved the first L∞-estimate

(3.4)
∑

uν � −C.

Next, we introduce the function Eν = exp2λ0νuν . We can check from (2.1) and

assumption (2.3) that

(3.5) −1
2
∆Eν − gDEν � 2λνλ0νEν .

Testing (3.5) with (Eν − 1)+, which vanishes on the boundary, yields
∫

O

|D(Eν − 1)+|2 dx+
∫

O

div g(Eν − 1)+2 dx

� 4λνλ0ν

∫

O

(Eν − 1)+2 dx+ 4λνλ0ν

∫

O

(Eν − 1)+ dx
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and from Poincaré’s inequality we obtain∫

O

(k0 + div g)(Eν − 1)+2 dx � 4λνλ0ν

∫

O

(Eν − 1)+2 dx+ 4λνλ0ν

∫

O

(Eν − 1)+ dx.

Thanks to the smallness condition (2.8), we deduce easily

(3.6)
∫

O

E2 dx � C.

Using this knowledge we are going to check that E is in L∞, without using anymore
the smallness condition. For that purpose, we test again (3.5) with EνGξ, using the

Green function (3.2). We obtain

(3.7)
1
2

(
E2ν (ξ)− 1

)
� 2λνλ0ν

∫

O

E2νGξ dx,

hence, taking ξ as a point of maximum of E2ν ,

(3.8) ‖E2ν‖∞ � 1 + 4λνλ0νL2
∫

O

Gξ dx+ 4λνλ0ν‖E2ν‖∞
∫
{Eν>L}

Gξ dx ∀L.

But from (3.6) one has

Meas {Eν > L} � C

L2
,

and thus ∫
{Eν>L}

Gξ dx � C‖Gξ‖Lq

1
L2q

.

So by picking L sufficiently large, we can make the coefficient of ‖E2ν‖∞ on the right
hand side of (3.8) as small as we wish, in particular, strictly smaller than 1. So (3.8)

yields an estimate on ‖E2ν‖∞.
������ 3.1. We see from (2.8) that, if inf div g is large, the limitation on the

product λνλ0ν is not so restrictive. The role of the drift, as a way to soften some

restrictions, has already been investigated by H.Nagäı [2]. Furthermore, if λν � 0,
λ0ν may be “large”.
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