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WHAT’S THE PRICE OF A NONMEASURABLE SET?
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Abstract. In this note, we prove that the countable compactness of {0, 1}� together with
the Countable Axiom of Choice yields the existence of a nonmeasurable subset of �. This
is done by providing a family of nonmeasurable subsets of � whose intersection with every
non-negligible Lebesgue measurable set is still not Lebesgue measurable. We develop this
note in three sections: the first presents the main result, the second recalls known results
concerning non-Lebesgue measurability and its relations with the Axiom of Choice, the
third is devoted to the proofs.
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1. Introduction

Throughout this paper we assume that the axioms of the standard Zermelo-Frenkel
(ZF) set theory hold. The only choice assumption that we make is the Countable

Axiom of Choice (AC)ℵ0 , since “without the Countable Axiom of Choice it is im-
possible to define satisfactorily Lebesgue measure, or even Borel sets” ([8], p. 144).*

We will call “Greek fret functions” the functions ck(ξ) defined as follows. For every
ξ ∈ [0, 1[ and k ∈ � let ck(ξ) be the k-th digit in the binary expansion of ξ, i.e., the

sequence (ck(ξ))k∈� is the only sequence in {0, 1} which is not eventually 1 and such
that

ξ =
∞∑

k=1

ck(ξ)2−k.

* Indeed, without assuming (AC)ℵ0 , the set of real numbers could be a countable union
of countable sets (see [8], Th. 10.6): in that case the basic assumption of the countable
additivity of Lebesgue measure would trivialize the theory. We refer the reader to the
appendix of [4] which explores how to avoid (AC)ℵ0 in many applications using “coded”
Borel sets.
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We shall consider the functions ck as elements of {0, 1}� by extending them by 1-
periodicity, i.e., ck(ξ) = ck(ξ − [ξ]) where [ξ] denotes the integer part of ξ. Another
way to introduce the functions ck, suitable for graphical representation, is as follows.
Let

c(x) :=



0 if x ∈ ⋃

k∈�
[2k, 2k + 1[,

1 if x ∈ ⋃
k∈�
[2k + 1, 2k + 2[.

Then ck(x) := c(2kx). Let us set G := {ck : k ∈ �}.
We denote by D the set of dyadic numbers (the set of numbers whose binary

digits are eventually 0) and by D(G) the set of cluster points of G with respect to

the product topology in {0, 1}�. Moreover, in what follows, µ∗ (µ∗) denotes the
usual outer (inner) measure on �.

Note that each element of D(G) is the characteristic function χE of some subset
E of �. In order that D(G) be actually non-empty, the assumption that {0, 1}� is
countably compact (see [9]) is sufficient. Then, without any further hypothesis, we
can state

Main Result. Consider the family E := {E ⊂ � : χE ∈ D(G)}. Then the
following properties hold true for any element E ∈ E :
(a) E is invariant under translations by any dyadic number;

(b) the subsets E, −E and D give a partition of �;

(c) E is a saturated nonmeasurable set (i.e., by definitions µ∗(E) = 0 = µ∗(Ec)).

������ 1.1. Property (c) of Main Result admits the following equivalent for-

mulations [7]:

(i) the intersection of E with every measurable set of positive measure is nonmea-

surable;

(ii) µ∗(E ∩ A) = µ(A) = µ∗(Ec ∩ A) for every measurable subset A of �;

(iii) µ∗(E ∩ A) = 0 and µ∗(E ∩ A) = µ(A) for every measurable subset A of �.

As an immediate consequence of Main Result, we get

Theorem 1.2. Let us assume that (the axioms of the standard Zermelo-Fraenkel
set theory together with) the Countable Axiom of Choice (AC)ℵ0 hold true.
If {0, 1}� is countably compact, then there exists a saturated nonmeasurable set.
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2. Nonmeasurable sets versus the axiom of choice

The aim of this section is to examine the most important results concerning the

connection between the Axiom of Choice in its various forms and the existence of
nonmeasurable sets. In the sequel we will denote

(NM) := “there exists a nonmeasurable subset of the real line �”,

by (M) its negation, i.e.,

(M) := “every subset of the real line is Lebesgue-measurable”.

Actually, for each n ∈ �, (NM) is equivalent to the fact that “there exists a non-

measurable subset of �n” [4].

The existence of a nonmeasurable subset of � was first proved by G.Vitali [25]
by assuming the Axiom of Choice for a continuous family of sets (AC)c. The same

assumption was further used in the paradoxical decomposition of the ball in �3 due
to S. Banach and A.Tarski [1] (see also [8], [26]).

Another classical result is due to W. Sierpiński [19] who proved that Zermelo’s
Theorem for � (i.e., the real line can be well-ordered) implies the existence of a

nonmeasurable subset of �2 whose intersection with every line consists at most of
two points. One can prove in a constructive way that (NM) is equivalent to “there

exists a saturated nonmeasurable subset of the real line �” (see, e.g., [27]). Therefore,
(NM) is also equivalent to the proposition “there exist two measurable functions f

and g whose composition f ◦ g is nonmeasurable” (see, e.g., [5]).
The usual derivations of saturated nonmeasurable sets are obtained by assuming

either (AC)c, see P.H.Halmos [6]; or Zermelo’s Theorem for �, cf. A. Simoson [21];
or the existence of a Hamel basis on � for �, see M.Kuczma [11] (cf. [3], [18]).

Since we can prove that properties (a) and (b) of Main Result implies property

(c), one of the “cheaper” way to the existence of a saturated nonmeasurable set is
to spend (both the Countable Axiom of Choice and) the axiom C2 (i.e., for every

family F of pairs there exists a choice function).

Proposition 2.1. If we assume (AC)ℵ0 +C2, then the cardinality of the class of
saturated nonmeasurable sets is exactly equal to 2c.

�����. If we consider the quotient set X := �/D and the family F :=
{([x], [−x]) : x ∈ �}, a choice function v for F leads to the existence of a set Ẽ

composed by the classes of equivalence chosen from each pair of F by v. Hence, it
is easy to see that the set E, union of the classes of Ẽ, satisfies both (a) and (b) of
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Main Result, i.e., E is a saturated nonmeasurable set. Moreover, if Y is an arbitrary

subset of Ẽ then the set EY , obtained by the union of the classes [x] ∈ Y and the
classes [−x] where [x] ∈ Ẽ \ Y , satisfies in the same way (a) and (b): it follows that
the cardinality of the class of saturated nonmeasurable sets is exactly 2c. �
Actually, we can prove that if we assume both the Continuum Hypothesis (CH)

and the Axiom of Choice, then also the cardinality of E equals 2c. The rather
technical proof, not in the spirit of the paper, will not be presented.

The existence of a set E enjoying property (c) was explicitly obtained by
W. Sierpiński [20]. He proved his result by exploiting a result of S.Ulam [24],

who proved that Zermelo’s Theorem for P(�) (the power set of �) implies
(U) := “there exists a finitely additive function on P(�)

which is not countably additive”.

Actually, it can be proved that (U) is equivalent to the assumption that the set D(G)

is not empty.
In a sense, the present paper gives a “geometrical interpretation” of the Ulam-

Sierpiński result together with a topological interpretation of the hypothesis.
A noteworthy result is due to I. Halperin [7]. He established that “the existence of

a discontinuous solution of f(x+ y) = f(x) + f(y) which assumes only a countable
number of distinct values implies the existence of a partition of � into a countable

number of disjoint subsets which are saturated nonmeasurable and congruent under
translation”. The existence of such a function follows from the existence of a Hamel

basis on � for �.
D. Pincus [15] (cf. [16]) asked whether the Hahn-Banach Theorem (HB) implies

(NM); the question was answered affirmatively by M.Foreman and F.Wehrung [4];
later on, J.Pawlikowski, exploiting ideas from [4], proved that (HB) actually implies

the Banach-Tarski paradox!
Moreover, J.Mycielski and S. Swierczowski [13] proved that the property “every

infinite positional game with perfect information and a denumerable set of positions
is determinated”, an equivalent form of the Axiom of Determinateness (AD) (see

[8]), implies (M).
Finally, R. Solovay [23] exhibited a model of the usual Zermelo-Frenkel set theory

(ZF) in which the principle of Dependent Choices (DC) holds and, nevertheless,
every subset of � is Lebesgue-measurable. In his proof, he used an additional axiom

“there exists a weakly inaccessible cardinal” (WIC), (see [8]). S. Shelah [22] showed
that one cannot get rid of this hypothesis (cf. [17] or [26] p. 209). In Solovay’s model

the Axiom of Determinateness (AD) fails.
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3. Proofs

����� �� Main Result. First of all we make the following remarks (whose simple
proofs are left to the reader):

(i) E ∈ E if and only if for each finite J ⊂ � there exists k ∈ � such that χE = ck

on J . Since {0, 1}� is a Hausdorff topological space, the set of such integers k is

necessarily infinite.
(ii) Let E ∈ E , x ∈ � and y ∈ �, assume that ck(x) = ck(y) for large k ∈ �; then

either both x and y belong to E, or both x and y do not belong to E.
(iii) Let E ∈ E , x ∈ � and y ∈ �, assume that ck(x) �= ck(y) for large k ∈ �; then

either x ∈ E and y /∈ E, or x /∈ E and y ∈ E.
Fix E ∈ E ; we first prove (a). Let x ∈ E and d ∈ D; since ck(d) = 0 for large

k ∈ �, one has ck(x) = ck(x+ d) for large k ∈ �; by (ii) it follows that x+ d ∈ E.
Proof of (b). Let d ∈ D: by (i) we have χE(d) = ck(d) for infinitely many k ∈ �,

hence χE(d) = 0. This proves that E∩D = ∅. Moreover, (−E)∩D = (−E)∩(−D) =

−(E∩D) = ∅. Let x ∈ �\D: then [x]+1−x = 1−
∞∑

k=1
ck(x)2−k =

∞∑
k=1
(1 − ck(x))2−k.

Since 1−ck(x) does not eventually equal 1, we have ck(x) = ck([x]+1−x) = 1−ck(x)
for each k ∈ �. In view of (iii), we conclude that (if x /∈ D then) x ∈ E if and only

if −x /∈ E. This proves that E ∩ (−E) = ∅ and E ∪ (−E) = � \D. By summing up,
E ∪ (−E) ∪ D gives a partition of �.

As to (c), it is a consequence of the following lemma:

Lemma 3.1. Let E ⊂ � be such that µ∗(E) > 0 and let D be a dense subset of

� such that E +D = E. Then µ∗(E ∩ A) = µ∗(A) for each measurable set A.

Indeed, both E and �\E satisfy the hypothesis of the lemma; so we get µ∗(E∩A) =
µ(A) = µ∗(� \ E ∩ A) for each measurable set A, which is equivalent to (c).

������ 3.2. Proof of Lemma 3.1 can be achieved by means of standard measure

theory arguments (see Appendix 1) despite the fact that it is commonly gained via
Lebesgue’s point theorem (see [10]).

4. Appendix 1

����� �� 	���� 3.1. Let us fix 0 < α < 1.


��� 1. For every σ > 0 there exist a, b (in D) with 0 < b − a < σ and
µ∗(E ∩ [a, b[) � α(b − a).

Let us argue by contradiction and fix σ > 0 such that µ∗(E ∩ [a, b[) < α(b − a)
whenever a, b ∈ D and 0 < b−a < σ. Let Ẽ := E∩ [0, 1]. Note that, since D is dense
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in �, we can take µ∗(Ẽ) as the infimum of the set of numbers
∞∑

i=1
|Ii|, where (Ii)i∈� is

a sequence of non-degenerate intervals of the form ]a, b] with ends belonging toD and

lengths |Ii| < σ, and such that Ẽ ⊂ ⋃
i∈�

Ii. Let us fix one of these sequences (Ii)i∈�.

Then µ∗(Ẽ) �
∞∑

i=1
µ∗(E ∩ Ii) < α

∞∑
i=1

|Ii|. It follows that µ∗(Ẽ) � αµ∗(Ẽ). On the

other hand, from the hypothesis we have µ∗(E) > 0, thus reaching a contradiction.


��� 2. µ∗(E ∩ ]x, y[) = |y − x| for each real numbers x, y.
Let x, y ∈ � with x < y. Fix ε ∈ ]0, y − x[ and σ such that 0 < σ < y − x − ε, let

a and b as in Step 1. Let d1 ∈ D be such that a+ d1 ∈ [x, x+ ε/2[, then b+ d1 < y.
If y − (b+ d1) � σ+ ε/4, then let d2 ∈ D be such that a+ d2 ∈ [b+ d1, b+ d1+ ε/4[.

It follows that 0 < (a+ d2)− (b + d1) < ε/4 and b+ d2 < y.
If we repeat these choices, we can find a finite set {d1, . . . , dn} ⊂ D such that

(i) [a, b] + di ⊂ [x, y] (i = 1, . . . , n);
(ii) 0 < (a + di+1) − (b + di) < ε/2i+1 (i = 1, . . . , n − 1) and 0 < y − (b + dn) <

σ + ε/2n;

(iii) µ
( n⋃

i=1
([a, b] + di)

)
> y − x − (ε+ σ).

Actually, since the intervals [a, b] + di are disjoint, from (iii) and E +D = E we
get

µ∗
(

E ∩
n⋃

i=1

([a, b] + di)

)
� αµ

( n⋃
i=1

([a, b] + di)

)
> α(y − x − (ε+ σ)).

This leads, due to (i) and the arbitrariness of ε, σ, α, to µ∗(E ∩ [x, y]) � |y − x|.
The converse inequality is trivial.


��� . If A is an arbitrary measurable subset of � we have µ∗(E ∩A) = µ(A).
If A is open then the proof is trivial since, by using Carathéodory, we have µ∗(E∩

n⋃
i=1

Ii

)
=

n∑
i=1

µ∗(E ∩ Ii) and then the equality holds true whenever A is a finite union

of open intervals, hence also when A is an open subset of �. Let now A = K be a

compact subset of � andG a bounded open set containingK. Then by subaddictivity
and the result for open sets, we have

µ∗(E ∩ K) � µ∗(E ∩ G)− µ∗(E ∩ (G \ K)) = µ∗(G)− µ∗(G \ K) = µ∗(K).

Finally, let A be a measurable subset of � with positive measure. Let 0 < ε < µ∗(A).
Then there exists a compact set F ⊂ A such that µ∗(F ) > ε. Then ε < µ(F ) =
µ∗(F ∩ E) � µ∗(A ∩ E) so that µ∗(E ∩ A) � µ∗(A) by the arbitrariness of ε.
Indeed, without assuming (AC)ℵ0 , the set of real numbers could be a countable

union of countable sets (see [8], Th. 10.6): in that case the basic assumption of
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the countable additivity of Lebesgue measure would trivialize the theory. We refer

the reader to the appendix of [4] which explores how to avoid (AC)ℵ0 in many
applications using “coded” Borel sets.
���������������. We wish to thank A.Arosio for posing the question of

measurability of the set of class E and for his insightful help, G. Letta and E.Vitali
for their useful comments.
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