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MEAN VALUES AND ASSOCIATED MEASURES OF
0-SUBHARMONIC FUNCTIONS
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Abstract. Let u be a d-subharmonic function with associated measure p, and let v be a
superharmonic function with associated measure v, on an open set E. For any closed ball
B(z,r), of centre x and radius r, contained in E, let M(u,z,r) denote the mean value of
u over the surface of the ball. We prove that the upper and lower limits as s,t — 0 with
0 < s < t of the quotient (M(u, z, s) — M(u, z,t))/(M(v, z,s) — M(v,z,t)), lie between the
upper and lower limits as r — 0+ of the quotient p(B(z,r))/v(B(z,r)). This enables us to
use some well-known measure-theoretic results to prove new variants and generalizations of
several theorems about §-subharmonic functions.
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1. INTRODUCTION

Let F be an open subset of R™, let u be J-subharmonic on E, and let v be
superharmonic on F. Let p and v be the Borel measures associated with v and v by
the Riesz Decomposition Theorem, so that p is signed and v is positive. Let B(x,r)
denote the closed ball with centre x and radius r contained in F, and let M (u,x,r)
denote the spherical mean value of u over 9B(z,r). We shall prove that the upper
and lower limits as s, — 0 with 0 < s <t of

M(u,x, ) — M(u,z,t)

(1) M(v,z,8) — M(v, z,t)

lie between the upper and lower limits as r — 0+ of

u(B(x,r))
2) B
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This enables us to use the measure-theoretic results of Besicovitch [3], [4] to study
the behaviour of §-subharmonic functions.

This work was inspired by a recent paper of Sodin [12]. However, the techniques we
devised have much wider ramifications, so that Sodin’s results appear only as fairly
minor details. We generalize not only Sodin’s results, but also some due to Armitage
[2] and Watson [14]. We also present new analogues of some theorems about Poisson
integrals which appeared in [1], [5], and [16], a new form of the Domination Principle,
and variants of recent results of Fuglede [10].

Our starting point is the well-known formula

t
M(u,,5) = M(u, 2, ) + pn / P (B, 7)) dr,

in which 0 < s < ¢, B(z,t) C E, and p, = max{l,n — 2}. See, for example, [2]
Lemma 3. We shall put

t
L(x;5,t) = pa / = (B (x, ) dr.

Then the quotient (1) can be written as either

@ rien
M(u,x, 8) — M(u, z,t)
) I, (x;8,t) '

From (3) it is easy to see the connection with (2).
If we take v to be the Lebesgue measure A, we have

IA($; S, t) = pnvn(tz - 82)/27

where v, = A(B(0,1)). Then, up to a multiplicative constant, (4) becomes

M(u, x, 8) — M(u, z,t)

t2—32

Theorem 3 below gives conditions on this quotient which ensure that x4 can be written

,uzw—ch(Sj
J

in the form
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where w is a positive measure, each c; is a specific positive constant, each d; is a unit
mass at a given point x;, and there are countably many indices. This is analogous
to decomposition formulas for the boundary measures of Poisson integrals given in
[5], [1], and [16].

Theorem 4 shows how the quotient (4) can be used to determine which sets are
positive for p. Roughly, if

limsup M(uvxv S) - M(’U,,.’E,t)

>0
0<s<t—0 I,,(Jf,S,t) -

for all x € S, then S is positive for p. The condition can be weakened on a v-null
subset of S. This result contains as special cases those due to Sodin [12], which
include the one known as Grishin’s lemma [11].

Theorems 5 and 6 generalize results of Armitage [2] by extending them to points
where his conditions that an infinity occur no longer hold. Theorems 10 and 11
similarly extend results of Watson [14].

By analogy with results on half-space Poisson integrals given in [1] and [16], Theo-
rem 7 gives conditions on the quotient (1) which ensure that u— Av is superharmonic
for some real number A. For example, the condition

Jim sup M(u,x, 8) — M(u, z,t)

> A
0<s<t—0 M(va, 3) - M(’U,I,C,t)

for all x € FE, is sufficient. A minor modification of the proof, in the special case
where u is a positive superharmonic function, F is Greenian, and v = Ggv is a Green
potential, yields the following domination principle as Theorem 8: If

limsup 247 8) = M(u, ,1)
0<s<t—I>)0 M(v,x,s) — M(v,z,t)

is never —oo, and is greater than or equal to 1 for v-almost all z, then u > v.

In Theorem 9, we use (1) to determine the y-null subsets of E. One of its corollaries
is an extension to J-subharmonic functions of the fact that polar sets are null for the
restriction of v to the set where v is finite. A different such extension was established
by Fuglede [10].

Given a Borel subset B of F, we denote by up the restriction of u to B.
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2. THE MEASURE-THEORETIC CONNECTION

Theorem 1 contains the necessary measure theory. It is implicit in [15], but may
not have been stated explicitly before. References are given to the original papers of
Besicovitch; an alternative source is [9].

Theorem 1. Let p be a signed measure and v a positive measure on E. Let

. p(B(x,7))

= 1 _—

J@) =l B
whenever the limit exists, let ZT = {z € E: f(x) = oo}, and let Z~ = {x €
E: f(x) = —oo}. Then f is defined and finite v-a.e.on E, and there are positive
v-singular measures o and o, concentrated on Zt and Z~ respectively, such that

(5) dp= fdv+dot — do™.

Proof. By [3] Theorem 2, f is defined and finite v-a.e. By [4] Theorem 6, f
is the Radon-Nikodym derivative of y with respect to v, so that (5) holds with o™
and o~ the positive and negative variations of the v-singular part of u.

To show that o is concentrated on ZT, we put dw = fdv — do~. Then both v
and w are ot -singular, so that by [3] Theorem 3,

lim 2B@r)
r—0 ot (B(z,r))

and
iy LEE) _ w(Bl)
r—0 ot (B(z,r)) r—0 ot (B(z,r))

for oF-almost all . Hence f(z) = oo for o -almost all z, so that oT is concentrated

+1=1,

on Z*. Similarly, o~ is concentrated on Z~.

Corollary 1. Let pu be a signed measure and v a positive measure on FE, and let
S be a Borel subset of E. If

: w(B(z,r))
(6) llr?jélp V(B > —00

for all x € S at which the upper limit is defined, and

, wB(z,7))
" P LB )

for v-almost all x € S, then (u — Av)s > 0.

Proof. By Theorem 1, dus = fdvs + dod — dog with f(z) equal to the
upper limit in (7) and oy concentrated on {z € S: f(r) = —oco}. By (6) this set is
empty, and by (7) f > A. Hence dug — Advg > dag > 0. O
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Corollary 2. Let u be a signed measure and v a positive measure on E. Let S
be a Borel subset of E such that, for each x € S, either

. w(B(z,r))

8 lim ————= =0

i " v(B(a.)

or the limit does not exist. Then ps = 0.

Proof. By Theorem 1, {z € E: (8) holds} is p-null, and the set of points
where f is undefined is also p-null. O

We include for completeness the definition of

limsup f(s,?),

0<s<t—0
although it is the natural one. Those of the corresponding lim inf and lim are then
obvious.

Definition. Suppose that f(s,t) is defined as an extended-real number whenever
0 < s <t<a,and that £ € R. We write

limsup f(s,t)=1¢

0<s<t—0
if to each € > 0 there corresponds ¢ > 0 such that f(s,t) < ¢+ e whenever 0 < s <
t < 4, and there is a sequence {(sg,tx)} such that 0 < s, < ¢, — 0 and f(sg,tx) — £
as k — oo. We also write

limsup f(s,t) = 0
0<s<t—0

if there is a sequence {(sk,t;)} such that 0 < sx < tx — 0 and f(sg,tx) — oo.
Finally, we write

limsup f(s,t) = —o0
0<s<t—0

if to each A € R there corresponds § > 0 such that f(s,t) < A whenever 0 < s <
t<é.

We can now establish the connection on which all our results are based.

Theorem 2. If u is §-subharmonic on E with associated measure 1, and v is a
positive measure on F, then

. M(U,J},S)—M(U,Ji,t) . K B
9 lim su < limsup —————=
( ) 0<s<t—1?0 IV(:E; S,t) T’—>0p V(B(.’Eﬂ"))
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whenever the latter exists. The reverse inequality holds for lower limits, and

(10) by M) = M t) (B, )

0<s<t—0 I,(z;s,1) r—0 v(B(z,r))

for v-almost all x € E.

Proof. Given z for which the upper limit on the right-hand side of (9) exists,
denote that upper limit by ¢. If £ = co there is nothing to prove. Otherwise, given
a real number A > ¢ we can find § > 0 such that

whenever 0 < r < 4.

If v(B(z,7)) = 0 for all » < n (< 0), then the above inequality can hold only if
w(B(z,r)) < 0 for all such r. Then I, (z;s,t) = 0 whenever ¢ < 7, and

M(u,z, s) — M(u,z,t) = I,(x;s,t) <0,

so that (9) holds with both sides —oo. On the other hand, if v(B(x,r)) > 0 for all
r, then
M(U,J},S)—M(U,Jf,t) Dn

_ fin u(B(x, 1))
I, (z;8,1) B L,(x;s,t)/s r (B, ) mdr <4

whenever 0 < s <t < §, and again (9) holds.
Obviously (9) implies the reverse inequality for lower limits. Now (10) follows
from [3] Theorem 2. O

The particular cases of Theorem 2, in which v is the Lebesgue measure A or the

unit mass J, at x, are of special importance.

Corollary 1. If u is §-subharmonic with associated measure p on F, then

- n B ’
i M@ s) = Muat)  pa o p(B(,r)
0<s<t—0 t2 — 52 2 r—0 rm

whenever the latter exists.

Proof. Whenever B(x,t) C FE, we have

t
I(z;s,t) = pn/ T (0r™) dr = pav, (82 — 52)/2,
so that the result follows from Theorem 2. O
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Corollary 2. If u is §-subharmonic with associated measure y on E, then for
each x € E we have

M(’U,7.’E78) - M(’U,,.’E,t)

nteh) = 0<£1<Htlao log(t/s) ifn=2,
and M(u,z,8) — M(u,z,1)
U, r,s) — u,xr
— : L » Ly s
p({z}) = lim JE " - ifn > 3.

Proof. Writing 6 =6,, we have

t log(t/s ifn=2,
Is(z; 5,) =pn/ rThdr = { ff«b/ 12_71 }

s if n>3,

so that Theorem 2 gives the result. O

3. A REPRESENTATION THEOREM

Theorem 2 and its corollaries enable us to prove a new representation theorem
for d-subharmonic functions, which is analogous to known results about Poisson
integrals on a ball due to Bruckner, Lohwater and Ryan [5], and on a half-space due
to Armitage [1] and Watson [16].

Theorem 3. Let u be 6-subharmonic with associated measure i on E. If

M(u7$78) - M(U,Jf,t)

i >
(11) 0<llgt1—>o 2 — 52 >0
for A-almost all x € E, and
(12) llm M(u7x]7s) M(u7x]7 ) = —00

0<s<t—0 12 — 52

for only the points x; in a countable set C, then p can be written in the form

_ : M(uaxj78)_M(u7$jat) .
(13) p=wt zj: <0<£1<Htlao log(t/s) >5J

0<s<t—0 g2—n _ 2—n

(14) u:w—i—Z( lim M(u,xj,s)—/\/l(u,xj,t)>5j
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if n > 3, where w is a positive measure such that w(C) = 0, and 6; is the unit mass
at xj.

Proof. In view of Theorem 2 Corollary 1, condition (11) implies that

for A-almost all x € E, and condition (12) implies that

fi HB@ )

b NB@,r)
only if x € C. Therefore, by Theorem 1,
dp = fdA\+ dot — do™

with f > 0 and ¢~ concentrated on C. Furthermore, for each j, Theorem 2 Corol-
lary 2 shows that the limits in (13) and (14) are equal to p({z;}). Thus

du = (fdr+ do™) + 3 u({a; 1),

yields the required representation. O

In particular, Theorem 3 allows the following characterization of a point mass.

Corollary. Let u be d-subharmonic with associated measure p on E. If

lim M(u,z,s) — M(u, z,t)

0<s<t—0 12 — 52

is 0 for A-almost all x € FE, is finite except at xg, and is co at xg, then pu is a positive
constant multiple of the unit mass at .

Proof. Applying Theorem 3 to —u, we obtain

_ ) M(u, zg, s) — M(u, xo,1)
ThEwT (0<£l<nt1—>0 log(t/5) )50

if n =2,

) M(u, zg, 8) — M(u,x0,t)
THEwT <o<}sl<ntl—>0 §2—n —2-n )60
if n > 3, where w is a positive measure such that w({zo}) = 0. By Theorem 2
Corollary 2, —p = w — u({zo})do in either case. Applying Theorem 3 to u itself, we
find that p is positive, so that w is null. O
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4. POSITIVE SETS FOR ASSOCIATED MEASURES

The proof of its corollary illustrates how Theorem 3 can sometimes be used to show
that the measure associated with a §-subharmonic function is positive. Theorem 4
below is a refinement that allows us to determine which are the positive sets for the
measure. It is similar in essence to the case Y = ) of [15] Theorem 6.

Recall that ps denotes the restriction of p to the set S.

Theorem 4. Let u be §-subharmonic with associated measure p on E, let S be
a Borel subset of E, and let v be a positive measure on E. If

. M(u,z,s) — M(u, z,t)
lim sup
0<s<t—0 I,,(Jf, Sat)

is not —oo for any x € S, and is nonnegative for v-almost all x € S, then pg > 0.

Proof. By Theorem 2,
. w(B(z, 1))
limsup ———————=
o v(B(x,1))

is not —oo for any x € S, and is nonnegative for v-almost all x € S. Therefore
s = 0, by Theorem 1 Corollary 1. O

Theorem 4 contains the results of Sodin [12] which, in turn, are extensions of
Grishin’s lemma [11]. Other extensions of Grishin’s lemma were obtained by Fuglede
[10]. Our next corollary extends Sodin’s theorem to n-dimensions.

Corollary 1. Let u be d-subharmonic with associated measure p on E, and let
S be the set of points in E with the following property: There are sequences {sy, }
and {t;}, which depend on the point x, such that 0 < s <t — 0 and

(15) M(u, z, s;) < M(u,x,ty)
for all k. Then pg < 0.
Proof. Sodin proved that S is a Borel set. If x € S, then

— M(u,z,8) — M(u,x,t)

<0.
0<5<t—0 I(z;8,t) =

Therefore g < 0, by Theorem 4. (]
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Theorem 4 is much stronger than its first corollary. To see this, consider the case
where du(y) = f(y)dy with f continuous and nonnegative, and with the zero set Z
of f nonempty but with empty interior. Then, whenever B(x,t) C E and 0 < s < t,
we have M(u, z, s) > M(u,z,t), so that the corollary can only be applied to —u and
not to u, and it yields only the inequality p > 0. However, for any x € Z we have

- pu(B(z,r))
M B

so that
lim M(u7x78) —M(u,x,t)

=0
0<s<t—0 I(z; s,t)

by Theorem 2. Now Theorem 4 can be applied to both v and —u (with S = Z), and
confirms that pz is null.

The next corollary generalizes both of Sodin’s “remarks” to n-dimensions, with
weaker hypotheses.

Corollary 2. Let u be d-subharmonic with associated measure p on E, and let
S be a Borel subset of E on which there is defined a positive measure v such that
for some constant 3 > 0
v(B(z,r)) > kP

whenever x € S and 0 < r < r,, where Kk = k; > 0. Let a > 0, and let h be an
absolutely continuous function on [0, a] such that h'(r) = o(r?~"*1) as r — 0. If,
to each x € S, there correspond sequences {sy} and {t;} such that 0 < s <t — 0
and

M(u, x, i) — M(u,z,tr) = h(sg) — h(ty) vk,
then pug > 0.
Proof. Given z € S and £ > 0, for all sufficiently large k we have

173
rB=ntldqp

ty
M(u, z, s) — M(u, x, t) > —/ B (r)dr > —Elipn/

Sk Sk

ty
> —Epn/ rl_"u(B(x,r)) dr = —el, (z; sk, tr),

Sk

so that
Jim sup M(u,z,8) — M(u,x,t)

0<s<t—0 Il/(x;skatk)

By Theorem 4, ps = 0. (]

> 0.
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In the above corollary, the case n = 8 = 2 is [12] Remark 1, which does not

mention a measure v. The choice v = A gives the result. The case n =2, > 0, is

[12] Remark 2. With regard to the existence of v, Sodin mentioned only the work

of Tricot [13]. However, there are many other results in this direction. For example,

if S is a g-set for some ¢ € [0,n] (as, for example, in [8]), then the g-dimensional

Hausdorff measure v on S satisfies v(B(z,r)) ~ (2r)? as r — 0, at every regular

point of S.

5. SPECIFIC RATES

The next theorem generalizes one due to Armitage [2], which we deduce as a

corollary.

Theorem 5. Let u be j-subharmonic with associated measure p on E. Let o > 0,

let f be a positive, increasing, absolutely continuous function on [0, o], and let

F(5.1) = pn / A F () dr

S

whenever 0 < s <t < «. Then

B
< limsup “BE )

(16) lim sup n st )

0<s<t—0

M(u, x, s) — M(u,x,t)
f(s,t)

for every x € E.

Proof. Given z, define a positive measure v on B(x,«) by putting

dv(y) = llz =y (2 = yll) dy + 0. £(0) dés (y),

where o, is the surface area of the unit sphere in R™. Then

v(B(z.1)) = 0w / " F(s)ds + 0 f(0) = 0u (1)

if 0 < r < a, so that

t ~
I, (2 5,1) = pa / P () dr = 00 f(5,1)

whenever 0 < s < t < o. The result now follows from Theorem 2.
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Armitage’s result did not involve differences of spherical mean values, and so
required an additional hypothesis on f , as follows.

Corollary 1. Let u be ¢-subharmonic with associated measure p on E. Let
a > 0, let f be a positive, increasing, absolutely continuous function on [0, o], and
let

t
fsst) =pu [ s ar
whenever 0 < s <t < a. Iff(O, a) = oo, then

lim sup M < lim sup a
s—0 f(S, Oé) r—0 f(T)

for all x € E.

Proof. Given x € E, let ¢ denote the left-hand side of (16). In view of (16), it
suffices to prove that

(17) lim sup M </
5—0 f(S,OZ)

We may assume that ¢ < co. Given a real number A > ¢, choose § > 0 such that

— M(u,x,t)
(s,t)

<A whenever 0 < s <t < 0.

M(u,x,s)
f

Fix t < 6. Given € > 0, choose 1 < t such that both

[t )

t
M<5 and — <e

f(s.a) f(s,q)

whenever 0 < s < 7. Then

M(u,z,8)  M(u,z,8) — M(u,z,t)  f(s,1) n M(u, z,t)
7 -

(s,q) Af(s, t) f(s,a) (s, )
< A(l — ;Ei’)?)) +e<max{A, (1—e)A} +¢
it 0 < s <7, and (17) follows. O
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The extra generality of Theorem 5 over Corollary 1 allows us to generalize the
corollary of Armitage’s theorem and remove its restrictions on g.

Corollary 2. Let u be §-subharmonic with associated measure p on F, and let
x € E. Then

. M(uyxys) —M(U,Jf,t) n—2 1 M(B(x,r))
oliglftlg)o ga+2—n _ tq+2—n < (n —q— 2> hlzljélp o
1f0 < q <n-— 2’
_ t B
limsup M(u,x,s) — M(u,z,t) < py, limsup w,
O smrs0 log(t/s) r—0 rn—
‘ u,z,8) — u,x,t Pn . 1% z,T
1 < ( )1 o
0£1<Stlg)o ta+2-n _ gqg+2-n q+2—n lr:I—S;le rd
ifg>n—2.

Proof. If we take f(r) = 7?7 (¢ > 0) in Theorem 5, so that f(s,t) =
¢
pn/ riT1=" dr) then f(s,t) is equal to p, times

Sq+2—n _ tq+2—n

ifg<n-—2,
n—q—2
log(t/s) ifg=n-—2,
$at2-n _ gq+2-n
_ if g>n-—2,
P — ifg>n
which gives the result. O

If S is a regular g-set [8] contained in F, and p is the g-dimensional Hausdorff

measure on .S, then
L AB@)

r—0 rd

for p-almost all z € S. Therefore, for such z,

M(u,x,s) _M(uvxvt) pn2q

0<1’1<nt1—>0 §at2—n _ tg+2-n T qg—2
if g ##n — 2, and
lim M(u,x,s) — M(u, z,t) 2
o<oio log(1/5)

if ¢ = n— 2, for any superharmonic function u whose associated measure is p. These
identities follow easily from Theorem 5 Corollary 2.
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6. CONDITIONS FOR SUPERHARMONICITY

Theorem 2 can easily be re-written in a form that generalizes [2] Theorem 1, which
we deduce as a corollary. This formulation is then used to provide conditions under
which v — Av is superharmonic for some real number A, as well as a new version of
the domination principle.

Theorem 6. Let u be j-subharmonic and v superharmonic on E, with associated
measures p and v respectively. Then
M(u,x,s)—/\/l(u,x,t) B(Jf,’/‘))

. . 1
18 lim su < limsup ————%
(18) 02t M) = My, t)  so” w(Bla,)

whenever the latter exists. The reverse inequality holds for lower limits, and

: M(U,JZ,S) - M(U,J),t) BT /J,(B(Jf,’/‘))
0<£lgtl—>0 M(v,z,8) — M(v,z,t) }E% v(B(z,r))

for v-almost all x € E.

Proof. The result follows from Theorem 2, because
M(’U, z, S) - M(’U, z, t) = L,(LU, S, t)
by [2] Lemma 3. O

Corollary. Let u be d-subharmonic and v superharmonic on E, with associated
measures p and v respectively. If x € E and v(z) = oo, then

. . p(B(z,r))
lim su < limsup —————=
s—>0p (U,l‘,S) T’—>0p V(B(Jf,’/‘))

and the reverse inequality holds for lower limits.

Proof. Given z € E such that v(z) = oo, let £ denote the left-hand side of
(18). In view of (18), it suffices to prove that

(19) llTj(l)lp 7/\4(”, P

We may assume that ¢ < co. Given a real number A > ¢, choose § > 0 such that

M(U,IE,S) - M(’U,,.’E,t)

4 h t <o
M(v,z,5) — M(v,z,1) < whenever 0 < s <t <
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Since M(v,z,7) — 00 as r — 0, we may suppose that M(v,z,r) > 0 for all r < 4.
Fix t < 6. Given € > 0, choose 1 < t such that both

<e and

whenever 0 < s < 7. Then

M(u,x, ) _ M(u, z,8) — M(u,x,t) (1 B M(v,x,t)) n M(u, z,t)
M(v,z,s)  M(v,z,8) — M(v,z,t) M
<max{A, (1 —¢)A} +¢

if 0 < s < n. This proves (19). O

We now use Theorem 6 to prove analogues of a domination theorem and a unique-
ness theorem about Poisson integrals on half-spaces given in [1] and [16]. Conditions
for the measure to be positive or null in that context translate into conditions for
superharmonicity or harmonicity here.

Theorem 7. Let u be d-subharmonic on F, and let v be superharmonic on E
with associated measure v. If

i su (u,z,8) — M(u,z,t)
0<S<t—F>)0 M(U,Jj, 3) - M(U,l‘,t

is never —oo, and is greater than or equal to A for v-almost all x, then u — Av is
superharmonic on E.

Proof. Let u be the measure associated to u. By Theorem 6, our hypotheses
imply that
, 1(B(z, 7))
limsup —————==
0" v(B(x,r))
is never —oo, and is greater than or equal to A for v-almost all . Therefore, we can

use Theorem 1 Corollary 1 to show that y— Av > 0. Hence u — Av is superharmonic
on F. U

Note that the case A = 0 of Theorem 7 gives a condition for u itself to be superhar-
monic. Theorem 7 is analogous to both [16] Theorem 2 and an earlier result about
Poisson integrals on a disc, [5] Theorem 2. It also implies the following condition for
u to be harmonic; compare [1] Theorem 4 and the comment on that result in [16]
(p. 470).
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Corollary. Let u be d-subharmonic on F, and let v be superharmonic on E with
associated measure v. If
lim M(u,x,8) — M(u, z,t)
0<s<t—0 M(v,x,8) — M(v,z,t)

is finite whenever it exists, and is 0 for v-almost all x, then u is harmonic on E.

Proof. Applying Theorem 7 to both u and —u, we see that both functions are
superharmonic on FE. O

A minor variation in the proof of Theorem 7 yields a new form of the Domination

Principle ([7], pp. 67, 194).

Theorem 8. Let E be Greenian, let v = Ggv be the Green potential of a positive
measure v on E, and let u be a positive superharmonic function on E. If

T M(u,z,s) — M(u, z,t)
0<s<t—1:>)0 M(v,z,8) — M(v,z,t)

is never —oo, and is greater than or equal to 1 for v-almost all x, then u > Gguv.

Proof. Let ube the measure associated to u. As in the proof of Theorem 7, our
Ggv. Since u is positive, its greatest
GEV. O

hypotheses imply that u > v, so that Ggu >
harmonic minorant is nonnegative, and so u >

7. NULL SETS FOR ASSOCIATED MEASURES

Theorem 4 obviously implies a condition for a set to be null for the associated mea-
sure p. In this section we state the result explicitly and relate it to known theorems.
For example, if u is superharmonic on E and S = {z € E: u(z) < oo}, it is well-
known that any polar subset of F is pg-null ([7], p.68). That result was generalized
to d-subharmonic functions, with S replaced by {z € E: fine lif,njff lu(y)| < oo}, by

Fuglede [10] Theorem 2.1. Theorem 9 Corollary 2 gives a different generalization.
Theorem 9. Let u be j-subharmonic and v superharmonic on E, with associated
measures i and v respectively, and let S be a Borel subset of E. If

lim M(u,z,8) — M(u,z,t)
0<s<t—0 M(v,z,s) — M(v,x,t)

is not infinite for any x € S, and is zero for v-almost all x € S, then pug is null.

Proof. Write M(v,z,s) — M(v,z,t) as I,(x;s,t), and apply Theorem 4 to
both v and —u. ]
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The first corollary gives a restricted version of the theorem which involves quotients
of the form M(u,z,s)/M(v,z,s), and thus parallels Theorem 6 Corollary.

Corollary 1. Let u be d-subharmonic with associated measure p on E, let v be
superharmonic on E, and let S be a Borel subset of E. If, for each x € S, v(z) = o0
and there is a null sequence {ry} such that

. M(u,z )
) % M)

then pg is null.

Proof. For any € S we have M(v,2,r) — oo as r — 0. Therefore, for any
fixed ¢ such that B(x,t) C E,

lim M(u, z, 1) — M(u, z,t)

k—oo M(v,z, 1) — M(v, 2, 1) =0

in view of (20). Therefore

lim M(u,z,s) — M(u, z,t)
0<s<t—0 M(v,z,s) — M(v,z,t)

is zero if it exists, and it exists for v-almost all  (where v is the measure associated
to v) by Theorem 6. Now Theorem 9 shows that ug is null. g

Corollary 2. Let u be §-subharmonic with associated measure w on E. If S is a
Borel subset of E such that for each x € S

(21) limi(r)lf |IM(u, z,7)| < o0,

then any polar subset of E is pg-null.

Proof. Let N be a polar subset of F/, and let v be a superharmonic function on
E such that v(z) = oo for every « € N. Then, for any x € SN N, the condition (21)
implies the existence of a null sequence {ry} such that (20) holds. By Corollary 1,
wsnn is null. [l

Corollary 1 is considerably stronger than Corollary 2. To illustrate this, we con-
sider an open ball B with a G5 polar subset N. We construct two positive superhar-
monic functions u,v on B, with u(z) = v(z) = oo for all x € N, such that u(N) =10
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(see [2], p.61) and v(B\ N) = 0 (see [6]), where u, v are the measures associated to
u, v respectively. Since p and v are mutually singular, we have

w(B(z, 7))

li =0
20 v(B(z.1)

for v-almost all z [3], so that
lim 227

r—0 M(v,z,1))

by [2] Theorem 1. So Corollary 1 confirms that there is a v-null set M such that
g\ is null, but Corollary 2 is inapplicable because (21) fails to hold for any » € N.

8. MORE EXTENSIONS OF KNOWN RESULTS
We conclude with two extensions of results in [14].

Theorem 10. Let u be §-subharmonic and v superharmonic on E, with associated
measures p and v respectively. Let

~ lim M(u,z,8) — M(u,x,t)
 0<s<i—0 M(v,x,8) — M(v,2,t)

f(=)

whenever the limit exists, let ZT = {z € E: f(z) = o}, and let Z= = {x €
E: f(z) = —oo}. Then f is defined and finite v-a.e.on FE, and there are positive
v-singular measures o and o~, concentrated on ZT and Z~ respectively, such that
dp=fdv+ dot — do™.

Proof. By Theorem 6,

_ iy MB( 7))
T =% B, )

whenever this limit exists. The result now follows from Theorem 1. O

Note that, if f(x) is finite whenever it exists, then p is absolutely continuous with
respect to v.
Theorem 10 generalizes [14] Theorem 6, which we now deduce as a corollary.

Corollary. Let u be §-subharmonic and v superharmonic on FE, with associated
measures p and v respectively, let X = {z € E: v(x) = 0o}, let
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whenever the limit exists, let ZT = {x € X: g(x) = o}, and let Z= = {x €
X: g(x) = —oo}. Then g is defined and finite v-a.e.on X, and there are positive
v-singular measures o and o~, concentrated on ZT and Z~ respectively, such that
dux = gdvy + dot — do™.

Proof. Ifxz € X, then

lim su M(u,z,7) < limsu M(u, 2, 5) = M(u, z,1)
r—»Op M(v,x,r) 0<s<t—r>)0 M, z,8) — M(v,z,t)

by (19), and the reverse inequality holds for lower limits. Therefore g(x) is equal to
the f(x) in Theorem 10, whenever f(z) exists. The result follows. O

Theorem 10 enables us to prove a corresponding generalization of [14] Theorem 8,
as follows. This generalization provides conditions under which a Borel set is a pos-
itive set for the Riesz measure of a d-subharmonic function, whereas [14] Theorem 8
applied only to a Borel polar set.

Theorem 11. Let u be §-subharmonic and v superharmonic on F, with associated
measures p and v respectively. Let q € [0,n — 2], and let S be a Borel subset of E.

If
Jimn sup M(u,z, 8) — M(u, z,t) S oo

0<s<t—0 M(vav 3) - M(’U,.’E,t)

for allz € S\'Y, where Y is an mg-null Borel set, if

Vv

limsup (U,J},S) - M(U,$,t)

>0
o<s<t—0 M(v,z,5) — M(v,z,t)

for v-almost all x € S\'Y, and if

(22) liminf r" 92 M(u, z,7) > —00

r—0

for |p]-almost all x € Y, then ug > 0. If (22) is replaced by

liminf 7"~ 92 M (u, x,7) > 0,

r—0

then the result remains valid if 0 < mg,(Y) < oo.

Proof. Follow the proof of [14] Theorem 8, but use Theorem 10 above instead
of [14] Theorem 6. O

101



(1]
2]

3]

[11]
[12]
[13]
[14]
[15]

[16]

References

D. H. Armitage: Domination, uniqueness and representation theorems for harmonic func-
tions in half-spaces. Ann. Acad. Sci. Fenn. Ser. A.I. Math. 6 (1981), 161-172.

D. H. Armitage: Mean values and associated measures of superharmonic functions. Hi-
roshima Math. J. 18 (1983), 53-63.

A. S. Besicovitch: A general form of the covering principle and relative differentiation of
additive functions. Proc. Cambridge Phil. Soc. 41 (1945), 103-110.

A. S. Besicovitch: A general form of the covering principle and relative differentiation of
additive functions II. Proc. Cambridge Phil. Soc. 42 (1946), 1-10.

A. M. Bruckner, A.J. Lohwater, F. Ryan: Some non-negativity theorems for harmonic
functions. Ann. Acad. Sci. Fenn. Ser. A.I. 452 (1969), 1-8.

G. Choquet: Potentiels sur un ensemble de capacité nulle. Suites de potentiels. C. R.
Acad. Sci. Paris 244 (1957), 1707-1710.

J. L. Doob: Classical Potential Theory and its Probabilistic Counterpart. Springer, New
York, 1984.

K. J. Falconer: The Geometry of Fractal Sets. Cambridge University Press, Cambridge,
1985.

H. Federer: Geometric Measure Theory. Springer, Berlin, 1969.

B. Fuglede: Some properties of the Riesz charge associated with a d-subharmonic func-
tion. Potential Anal. 1 (1992), 355-371.

A. F. Grishin: Sets of regular increase of entire functions. Teor. Funkts., Funkts. Anal.
Prilozh. 40 (1983), 36-47. (In Russian.)

M. Sodin: Hahn decomposition for the Riesz charge of d-subharmonic functions. Math.
Scand. 83 (1998), 277-282.

C. Tricot: Two definitions of fractional dimension. Math. Proc. Cambridge Phil. Soc. 91
(1982), 57-74.

N. A. Watson: Superharmonic extensions, mean values and Riesz measures. Potential
Anal. 2 (1993), 269-294.

N. A. Watson: Applications of geometric measure theory to the study of Gauss-Weier-
strass and Poisson integrals. Ann. Acad. Sci. Fenn. Ser. A.I. Math. 19 (1994), 115-132.
N. A. Watson: Domination and representation theorems for harmonic functions and tem-
peratures. Bull. London Math. Soc. 27 (1995), 467-472.

Author’s address: Neil A. Watson, Department of Mathematics, University of Canter-

bury, Christchurch, New Zealand, e-mail: N.Watson@math. canterbury.ac.nz.

102



