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SOLVABILITY PROBLEM FOR STRONG-NONLINEAR

NONDIAGONAL PARABOLIC SYSTEM

A. A. Arkhipova, St.Petersburg

Abstract. A class of q-nonlinear parabolic systems with a nondiagonal principal matrix
and strong nonlinearities in the gradient is considered.We discuss the global in time solv-
ability results of the classical initial boundary value problems in the case of two spatial
variables. The systems with nonlinearities q ∈ (1, 2), q = 2, q > 2, are analyzed.
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Let Ω be a bounded domain in �
n , n � 2, with a sufficiently smooth boundary.

For a fixed T > 0 and Q = Ω × (0, T ), we consider a solution u : Q → �
N , u =

(u1, . . . , uN), N > 1, of the parabolic system

(1) uk
t − d

dxα
ak

α(z, u, ux) + bk(z, u, ux) = 0, z = (x, t) ∈ Q, k = 1, . . . , N.

We define the set D = Q × �
N × �

nN and assume that

a) the functions a = {ak
α}k�N

α�n and b = {bk}k�N are sufficiently smooth on D;
b) for a fixed q > 1, a(·, ·, p) ∼ |p|q−1, b(·, ·, p) ∼ |p|q, |p| � 1, all derivatives of a

and b that we need have the natural growth with respect to the gradient;
c) the nondiagonal principal matrix

{∂ak
α

∂pl
β

}α,β�n

k,l�N
satisfies the following assumptions

on D:

(2)
∂ak

α(z, u, p)

∂pl
β

ξk
αξl

β � ν(1 + |p|)q−2|ξ|2,
∣∣∣∣∂a(. . .)

∂p

∣∣∣∣ � µ(1 + |p|)q−2, ∀ξ ∈ �
nN ;

d) the strongly nonlinear term b satisfies the condition

(3) |b(z, u, p)| � b0(1 + |p|)q, (z, u, p) ∈ D.

Here ν, µ, b0 = const > 0.
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We investigate the solvability of the Cauchy-Dirichlet problem

(4) u|∂′Q = ϕ,

where ∂′Q is the parabolic boundary of Q and ϕ is a given smooth function.
First of all, we recall some known results.

We fix the class
V = Lq

(
(0, T ), W 1

q (Ω)
) ∩ L∞(Q)

and note that the global solvability of (1), (4) in V was stated for the scalar situation
(N = 1) in the following sense. Assume that for a fixed M > 0 an apriori estimate

(5) ‖u‖∞,Q � M

can be derived. Then there exists a solution u ∈ V ∩ �
α (Q) with some α ∈ (0, 1).

Further regularity of the solution follows provided all the data are smooth enough
[1].

In some sense this result is also valid for a class of quasilinear diagonal systems
(N > 1, q = 2). More precisely, if estimate (5) and the “smallness” condition

b0M < ν hold then a solution u of (1), (4) exists in V ∩ �
α (Q).

It should be remarked that due to the maximum principle we are able to formulate

sufficient conditions which provide estimate (5) in the cases mentioned above.
Now, let us consider a parabolic (elliptic) system with a nondiagonal principal

matrix. In this situation, the following questions arise: i) How to guarantee estimate
(5)? ii) Is the class V suitable for proving global solvability of (1), (4)?

Under the conditions a)–d), the global solvability problem for (1), (4) has not been
solved yet.

Certainly, we cannot expect classical global solvability of this problem. As is
known, there are counterexamples of the regularity for quasilinear nondiagonal sys-

tems even if b ≡ 0 (q = 2, n > 2) [2]. On the other hand, for systems (1) whose
main part is the heat operator, but the term b(z, u, p) is non-zero and satisfies (3),

singularities can appear in Q at some time. The heat flow of harmonic maps provides
an example of such a situation (see, for example, [3], [4]).

From the above, it follows that there are two reasons that cause nonsmoothness
of solutions of the problem under consideration.

During the recent years, the author has investigated the global solvability for (1),
(4) under assumptions a)–d) in the following particular case.
We define the functional

(6) E[u] =
∫
Ω

f(x, u, ux) dx, u = (u1, . . . , uN ), N > 1,
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and denote by L = {Lk}k�N the Euler operator of E:

Lku = − d
dxα

fpk
α
+ fuk .

Then system (1) is the gradient flow for the functional E. Consider the problem

(7)
uk

t − d
dxα

fpk
α
(x, u, ux) + fuk(x, u, ux) = 0, (x, t) ∈ Q, k � N,

u
∣∣
Γ
= 0, u

∣∣
t=0
= ϕ0(x),

where Γ = ∂Ω× (0, T ).
The variational structure of system (7) provides an apriori estimate of the solution

u:

(8) ‖ut‖22,Q + sup
(0,T )

‖ux(·, t)‖q
q,Ω � e0,

where e0 = const depends on the data only.
Moreover, this structure also ensures monotonicity of the global energy

E[u(·, t1)] � E[u(·, t2)], ∀ t1 > t2,

and a local energy estimate

(9) ‖ut‖22,PR(z0) + sup
λR(t0)

‖ux(·, t)‖q
q,ΩR(x0)

� c

Rq

∫
P2R(z0)

(1 + |ux|)q dP.

In (9) and below, we denote

PR(z0) = QR(z0) ∩ Q, QR(z0) = BR(x0)× λR(t0),

BR(x
0) =

{
x ∈ �

n ; |x − x0| < R
}
, λR(t

0) = (t0 − Rq, t0 +Rq),

ΩR(x0) = BR(x0) ∩ Ω.

We say that QR(z0) is a q-parabolic cylinder and denote by

(10) δq(z1, z2) = sup
{|x1 − x2|, |t1 − t2|1/q

}
, ∀ z1, z2 ∈ �

n+1 ,

the q-parabolic distance in �n+1 .

To introduce an example of system (7), we put

(11) f(x, u, p) = 〈A(x, u)p, p〉 (1 + |p|)q−2, q > 1,
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in the definition (6) of E. We assume that A(·, ·) is a nondiagonal positive definite
and smooth matrix on Ω × �

N , and, in addition, Aαβ
kl = Aβα

lk . Generated by the
function (11) the system (7) satisfies conditions a)–d), in particular, fu(·, ·, p) ∼ |p|q,
|p| � 1.
Let us now proceed to discussing some solvability results recently proved by the

author.

We stated some solvability results for problem (7) in the case of two spatial vari-

ables.

First, we considered problem (7) with n = q = 2. We analyzed it with quasilinear

and nonlinear operators under the Dirichlet or Neumann type conditions ([5]–[8]).
For all these situations the following result was proved.

Theorem 1. For a fixed number T > 0, there exists a global solution of (7),
which is almost everywhere smooth in Q. The singular set consists of at most finitely

many points. The solution u has a finite norm (8), and it is a weak solution in the
sense of distributions.

This result was proved with help of the continuability theorem of smooth solu-
tions from a semiclosed time interval. We essentially exploited the imbedding theo-

rems for two dimensional domains and the fact that the “local normalized energy”
1

Rn−q

∫
BR(x0)

|ux(x, t)|q dx is a monotonic function of R if n = q = 2.

For the case n = 2 and q > 2, we have the following result.

Theorem 2. Let q > 2, n = 2, and let T be a positive fixed number. There

exists a smooth solution of problem (7) in Q if all the data are sufficiently smooth.

Now, we give a sketch of the proof of this result.We start by deriving some apriori
estimates for solutions u of (7) smooth on the time interval [0, T ).

First of all, from (8) one can deduce an apriori estimate

(12) ‖u‖Cγ(Q,δq) � const

where γ is a number in (0, 1).

Estimate (12) allows us to derive apriori estimates for stronger norms of u in Q.

From this point, we study problem (7) in a local setting. Let v(y, t) = u(x(y), t)

be a solution of the problem

(13)
vt − d

dyα
Ak

α(y, v, vy) + �
k (y, v, vy) = 0, (y, t) ∈ Q+2 , k, . . . , N,

v
∣∣
t=0
= ϕ0(x(y)), v

∣∣
Γ+2
= 0,
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where Q+R = B+R(0) × (0, T ), B+R(0) = BR(0) ∩ {y2 > 0}, Γ+R = γR(0) × (0, T ) and
γR(0) = BR(0) ∩ {y2 = 0}. On the set D = Q+2 × �

N × �
2N , functions Ak

α and �
k

satisfy conditions (2) and (3) with some other constants.

With help of (12), one can derive the inequality

(14)
sup

λR(t0)

∫
ΩR(y0)

|vy(y, t)|2 dy +
∫

PR(z0)

[
(1 + |vy|)q−2|vyy|2

+ (1 + |vy|)q+2
]
dP � cR2α, ∀R � R0, z0 = (y0, t0) ∈ Q+3/2,

with α ∈ (0, 1) and R0 > 0.

Next, we state that for some s ∈ (0, 1) we have

(15) sup
(0,T )

‖vt(·, t)‖2+2s,B+1 (0)
� c1.

Here and below, ci, i = 1, . . . , 4, are positive constants depending on the data only.
To derive (15), we use (14) for estimating the strongly nonlinear terms generated by

functions � k . After that, we are able to look at our problem as at an elliptic one for
a fixed t ∈ (0, T ).
The reverse Hölder inequalities hold for

V (·, t) = (1 + |vy(·, t)|)
q−2
2 |vyy(·, t)|

in B+1
2
(0).

Due to the Gehring Lemma, we have the estimate of ‖V (·, t)‖p,B+1
2
(0) with some

p > 2. As a consequence, we arrive at the estimates

(16) sup
(0,T )

‖vyy(·, t)‖p,B+1
2
(0) � c2, sup

(0,T )
‖vy(·, t)‖

�β (B+1
2
(0))

� c3, β = 1− 2/p > 0.

Estimates (12), (16) guarantee that

‖ux‖�β0 (Q;δq)
� c4

with some β0 > 0.

Apriori estimates of stronger norms of u up to t = T follow from the linear theory.

It means that u can be extended as a smooth function up to t = T .

Due to the known solvability results, there exists a smooth solution u of (7) on
some time interval [0, T0). Let T0 define the maximal interval of existence of a smooth
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solution u. Suppose that T0 < T . As was explained above, u can be extended as a

smooth function up to t = T0. Thus, one obtains a contradiction with the definition
of T0. From all that was said above, it follows that T0 � T . Theorem 2 is proved.
A more complicated case is n = 2, q ∈ (1, 2). To prove the solvability of (7), we

introduce approximate problems

(17)
ut + Lu − ε∆u = 0 in Q,

u
∣∣
Γ
= 0, u

∣∣
t=0
= ϕε, ε ∈ (0, 1].

Here ϕε is an approximation of ϕ, ϕε satisfies the compatibility conditions for

system (17), ϕε tends to ϕ in the strong sense if ε → 0.
For a fixed ε > 0, we prove global classical solvability of (17) in the space

H2+α,1+α/2(Q) with Hölder exponent α ∈ (0, 1) (the definition of this space see
in [1], Ch. I, §1). Certainly, the norm of the solutions uε of (17) in this space tends

to infinity if ε → 0. We are able to estimate different norms of uε due to the fact that
for a fixed ε > 0 the Laplace operator forms the main part of the elliptic operator

of system (17), and functions fu(x, u, ux) are not the strongly nonliner terms with
respect to the Laplace operator. Also, it is worth noting that all estimates of uε are

derived in the standard cylinders (q = 2 in the definition of QR).
The sequence uε tends in some sense to the limit function u if ε → 0, and u is a

solution of (7). More exactly, the following fact was proved.

Theorem 3. Let q ∈ (1, 2) and let T be a fixed positive number. There ex-

ists a solution u of problem (7), which is almost everywhere smooth in Q; u ∈
L∞((0, T );

◦
W
1

q(Ω)), and ut ∈ L2(Q). The closed singular set Σ of u has dimq−H Σ �
2 (dimH Σ � 4− q). Moreover, dimH Στ � 2− q, ∀ τ > 0, where Στ = Σ ∩ {t = τ}.
In the statement of Theorem 3, the estimate dimq−H Σ � 2 means that for all

η > 0 we have H2−q+η(Σ; δq) = 0, where the δq-parabolic metric is defined in (10).
Now, we explain the main steps of the proof of Theorem 3.

Lemma 1. There exists a number ω0 depending on the data only, such that if

(18) ω
εj

R0
(z0) ≡ osc

PR0 (z
0)

uεj � ω0

for a point z0 ∈ Q with some R0 > 0 and a sequence εj → 0, then

(19) ‖uεj‖
�γ1 (PR∗(z0);δq)

+ ‖uεj
x ‖Cγ2(PR∗ (z0);δq)

� c0

with some γ1, γ2 ∈ (0, 1) and R∗ = R∗(R0, ω0) < R0, and uεj is a solution of (17).
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It should be remarked that, in general (in the case of nondiagonal matrix and

condition (3)), the smallness of the oscillation of a solution does not guarantee an
estimate of the Hölder norm of the solution.

It is evident that condition (18) provides smoothness of the solution u at the point
z0.

The next step is to introduce an integral description of a regular point of u.

Lemma 2. Suppose that for a point z0 ∈ Q there exist numbers K > 0, β > 1,

R0 > 0 and a sequence εj → 0 such that

(20) sup
ẑ∈PR0(z

0)
sup

R�R0

(
log2

2R0
R

) βq2

2(q−1)

R2

∫
PR(ẑ)

H2εj
dz � K,

where H2ε = (1 + |uε
x|)q + ε|uε

x|2. Then estimate (18) holds in PR1(z
0) with some

R1 < R0.

To derive (18) from (20), we exploit a local energy estimate for solutions uε of
(17). We also use a certain condition for functions from the Sobolev space W 1

q (Ω),

n = 2, that makes it possible to estimate their oscillation. To prove (18), we analyze

both cases εj < R2−q

χ(R) and εj � R2−q

χ(R) , where χ(R) = K
2−q

q

(log2
2R0

R )γ
, γ = q(2−q)β

2(q−1) , and

R � R0. Next, we denote by R the set of all points z0 in Q, where (20) holds with
some parameters K, β, R0, and {εj}j∈N , εj → 0, and put Σ = Q \ R.
We have the following description of Σ:

A point z0 belongs to Σ if for all Mk → ∞ and Rk → 0, there exist sequences of
points ξk ∈ PRk

(z0) and numbers �k � Rk such that

(21) lim
ε→0

(
log2

2Rk

�k

)γ

�2k

∫
P�k

(ξk)

H2ε dz > Mk,

where γ = βq2

2(q−1) .

The relation (21) does not allow us to estimate the Hausdorff measure of Σ and,

therefore, instead of (21), we prove that one can exploit the following description of
z0 ∈ Σ:
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for arbitrary sequences Mk → ∞ and Rk → 0, there exist a sequence of numbers
rk � 2Rk and an absolute number c∗ > 1 such that

(22) lim
ε→0

(
log2

4Rk

rk

)γ

r2k

∫
Prk
(z0)

H2ε dz >
Mk

c∗
.

From (22), we deduce an estimate of the Hausdorff dimension of the set Σ as was

pointed in Theorem 3.
It should be noted that the presence of the logarithmic multiplier in (22) does not

allow us to assert that

(23)
H2(Σ; δq) < +∞ (H4−q(Σ; δ) < +∞, δ = δ2)

and H2−q(Σ
τ ) < +∞, ∀ τ > 0.

If (23) were proved, then we could pass to the limit in the integral identity corre-
sponding to problem (17) and state that the limit function u is a weak solution of

(22) in the sense of distributions.
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