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PROBABILISTIC ANALYSIS OF SINGULARITIES FOR

THE 3D NAVIER-STOKES EQUATIONS
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Abstract. The classical result on singularities for the 3D Navier-Stokes equations says that
the 1-dimensional Hausdorff measure of the set of singular points is zero. For a stochastic
version of the equation, new results are proved. For statistically stationary solutions, at
any given time t, with probability one the set of singular points is empty. The same result
is true for a.e. initial condition with respect to a measure related to the stationary solution,
and if the noise is sufficiently non degenerate the support of such measure is the full energy
space.
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1. Introduction and preliminary remarks

The present note is a review of the paper [12] and some elements from the re-
lated works [11], [17]; see also [18] for further results. For a few general references
on stochastic Navier-Stokes equations see [2], [20], [21], [9], among many others,
while for general references on Navier-Stokes equations on the one hand and infinite
dimensional stochastic analysis on the other, see [19] and [5].

1.1. Could probability tell us something new about classical problems
in fluid dynamics? This difficult challenging problem has a few positive answers
and works in progress. A first example is the ergodicity for the 2D stochastic Navier-
Stokes equations, proved first in [10] under some assumptions on the noise, and later
on by many authors under various sets of assumptions and with different techniques,
see for instance [6], [1], [14], [22]. Some ergodic properties are often tacitly assumed in
statistical fluid mechanics, but a proof for the deterministic Navier-Stokes equations
is still out of reach, in spite of the efforts spent on outstanding theories like the
Ruelle-Bowen-Sinai one.
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A second example is the probabilistic analysis of singularities for the 3D deter-
ministic and stochastic Navier-Stokes equations developed in [11], [12]. This is the
subject of the present note.
Finally, we mention a number of other directions like the probabilistic representa-

tions of solutions to Navier-Stokes equations, the vortex method, probabilistic model
of turbulence, statistical solutions of Foias-like equations, diffusion of passive scalars,
stochastic vortex filaments. Without the aim to list contributions in all these fields,
we mention only [4], [13], [15], [16], [7].
Two typical tools, beyond others, are employed: (1) irreducibility, (2) stochastic

stationarity. Tool (1) is usually introduced by means of a noise forcing term in the
Navier-Stokes equations. It is somewhat an idealization of the real behaviour of a
fluid, but it captures in a sort of idealized limit the extreme variability observed in
turbulent fluids. Tool (2) has some of the technical advantages of time-invariance,
even if the individual realizations (trajectories) may have a very complex time evo-
lution.

1.2. 3D Navier-Stokes equations and singularities. Consider the Navier-
Stokes equation in a bounded regular domain D ⊂ �

3

(1)

{
∂u
∂t + (u · ∇)u+∇P = ν�u+ f + σ ∂B

∂t ,

divu = 0, u|∂D = 0, u|t=0 = u0.

Speaking in terms of Physics, u is the velocity field, P the pressure, f a slowly
varying forcing term, ∂B

∂t a fast fluctuating forcing term. The kinematic viscosity ν

is assumed to be strictly positive, while the noise intensity σ � 0 may be equal to
zero (deterministic case), depending on the theorem.
Before giving a rigorous definition of a suitable weak solution, let us mention the

concept of singular points. A point (t, x) ∈ (0,∞) × D will be called regular if
u is locally (essentially) bounded around it. Otherwise, the point (t, x) is called
singular. The set of singular points of u will be denoted by S(u). We have S (u) ⊂
(0,∞)×D ⊂ �

4 . The fundamental result of Caffarelli, Kohn and Nirenberg [3] tells
us that the 1-dimensional Hausdorff measure of S(u) is zero provided u is a suitable
weak solution:

H1(S(u)) = 0.
This result is a refinement of previous results of Scheffer. Whether S(u) is empty or
not is the main open problem. It is empty for time-invariant solutions. In a sense,
we shall prove that it is empty also for stochastically stationary solutions.
A singularity corresponds to a local concentration of energy. The global ki-

netic energy cannot blow up: for σ = 0, 12
∫

D
|u (t, x)|2 dx (plus dissipation en-

ergy) is bounded by 12
∫

D
|u0 (x)|2 dx plus the work done by the body forces, and
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the same result is true (with a more involved inequality) also for σ > 0 under
reasonable assumptions on B. However, energy may concentrate, it may be trans-
ferred to smaller scales, and the (energy)/(unit volume) may blow up at some point:
r−3

∫
Br(x0)

|u (t, x)|2 dx → ∞ as r → 0 (this is an open problem). This problem is
similar to the concentration of energy in finite regions that can be seen for Hamil-
tonian systems of∞-many particles. Here and below we denote the ball of center x0
and radius r by Br (x0) or simply by Br.
Roughly speaking, the idea of the blow-up control is the following one. We have

a local energy balance of the form

d
dt

∫
Br

|u|2
2
+ ν

∫
Br

|∇u|2 �
∫

∂Br

|u|2
2

u · n+work done by forces

which says that the local variation (possible concentration) of kinetic energy
d
dt

∫
Br

|u|2
2 , plus the local dissipation ν

∫
Br

|∇u|2, are controlled by the energy
flux

∫
∂Br

|u|2
2 u · n plus the work terms. On the other hand, we have the Sobolev

inequality

∫
Br

|u|3 � C

( ∫
Br

|∇u|2
) 3
4
( ∫

Br

|u|2
) 3
4

+
C

r
3
2

( ∫
Br

|u|2
) 3
2

which allows us to control terms of the order of the energy flux by the local kinetic
and dissipation energy. These two tools together give rise to iterative ���������
relations for the above quantities, on a sequence of nested balls Brn . The resulting
inequalities may be closed if some quantity is small. The criterion discovered by
Caffarelli, Kohn and Nirenberg is that

(2) lim sup
r→0
1
r

∫ t+r2

t−r2

∫
Br(x)

|∇u|2 = 0

(or just smaller than a certain universal constant) implies (t, x) regular. Having
established this fact, it is not difficult to prove that H1 (S (u)) = 0.
How may probability enter this problem?
1) As for ∞-many particle Hamiltonian systems, one could try to prove a good

result in a stationary regime and for many initial conditions with respect to a prob-
ability measure. This is the content of this note.
2) Perhaps the emergence of singularities requires a great degree of organization

(only special fluid configurations may produce singularities). Perhaps this coherence
is broken by the noise. We cannot solve this problem with a true understanding of
the geometry of emerging singularities. We can only prove that in the presence of
noise that activates all modes, our results hold true for most initial conditions.
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1.3. Suitable weak solutions. Let H be the Hilbert space

H = {u : D → �
3 ; u ∈ (

L2 (D)
)3

, div u = 0, (u · n) |∂D = 0}

where n is the outer normal to ∂D (see for example Temam [19]), and let V be
the space of all u ∈ (H1(D))3 ∩ H such that u|∂D = 0. Define the Stokes operator
A : D(A) ⊂ H → H as Au = P�u, where P is the orthogonal projection from
(L2(D))3 onto H and D(A) =

(
H2 (D)

)3 ∩ V . Assume for sake of simplicity that
f ∈ L2loc (0,∞;H). Given any stochastic basis (Ω,F , (Ft)t�0,P, (Bt)t�0), where B is
a Brownian motion adapted to the filtration (Ft)t�0 with values in D(Aβ) for some
β > 0 (see [5] for the definition and basic results of stochastic integration), consider
the auxiliary Stokes system, written formally as

(3)

{
∂z
∂t +∇Q = ν�z + f + σ ∂B

∂t

div z = 0, z|∂D = 0, z|t=0 = 0.

and interpreted rigorously in the mild sense

(4) z(t) =
∫ t

0
e−(t−s)Af (s) ds+

∫ t

0
e−(t−s)Aσ dB (s) .

Since B is, in particular, a Brownian motion in H , the last stochastic integral is well
defined and gives us a continuous process in H . The auxiliary pressure Q does not
appear in (4) since such equation lives in H . However (see [12] for the details), from a
solution of (4) one may reconstruct a unique pair (z, Q) (Q is unique up to a constant)

with z (ω) ∈ C
(
[0, T ] ;L2 (D)

)
(and more, see [12]) and Q (ω) ∈ L

5
3
loc ((0, T )× D) for

P-a.e.ω ∈ Ω, which satisfies equation (3) in the sense of distributions.
Formally, if (u, P ) and (z, Q) are solutions to (1) and (3) respectively, then v =

u − z, π = P − Q satisfy the equation

(5)

{
∂v
∂t + ((v + z) · ∇) (v + z) +∇π = ν�v,

div v = 0, v|∂D = 0, v|t=0 = u0,

which is a Navier-Stokes type equation with random coefficients. This equation will
be interpreted in the sense of distributions.

Definition 1. A martingale suitable weak solution of (1) is a process (u, P ) de-
fined on a stochastic basis (Ω,F , (Ft)t�0,P, (Bt)t�0), where B is a Brownian motion
adapted to the filtration (Ft)t�0 with values in D(Aβ) for a β > 0, such that

ω ∈ Ω �→ (u (ω) , P (ω)) ∈ L2 (0, T ;H)× L
5
3
loc ((0, T )× D)
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is a measurable mapping and there exists a set Ω0 ⊂ Ω of full probability such that
for each ω ∈ Ω0 we have

u(ω) ∈ L∞(0, T ;L2(D)) ∩ L2(0, T ;H1(D)), P (ω) ∈ L
5
3
loc((0, T )× D),

and the new variables v (ω) = u (ω) − z (ω) and π (ω) = P (ω) − Q (ω) satisfy the
modified Navier-Stokes equations (5) in the sense of distributions over (0, T ) × D,
where (z, Q) is the unique solution given above of (3). Moreover, the following local
energy inequality has to hold for all ω ∈ Ω0:∫

D

|v(t, ω)|2ϕ+ 2
∫ t

0

∫
D

ϕ|∇v(ω)|2 �
∫ t

0

∫
D

|v(ω)|2
(

∂ϕ

∂t
+�ϕ

)

+
∫ t

0

∫
D

(|v(ω)|2 + 2v(ω) · z(ω)) ((v(ω) + z(ω)) · ∇ϕ)

+ 2
∫ t

0

∫
D

ϕz(ω) · ((v(ω) + z(ω)) · ∇) v(ω) +
∫ t

0

∫
D

2πv(ω) · ∇ϕ

for every smooth function ϕ : �3×D → �, ϕ � 0, with compact support in (0, T ]×D.

It is worth noticing that such solutions exist. A proof of this claim is given in
[17]. Also, the concept of martingale solution is equivalent to the one of statistical
solution, as given by Foias, Temam, and others. In the previous definition we did
not insist on the regularity properties of the auxiliary variables (z, Q); see [12] for
the details.

2. Main results

2.1. Extension of C-K-N theorem to stochastic Navier-Stokes equa-
tions.

Theorem 2. Assume that f ∈ Lp ((0, T × D)) for some p > 5
2 and B is a Brown-

ian motion taking values in D(A
1
4+β) for some β > 0. Let u be a martingale suitable

weak solution of (1). Then, for P-a.e. path u(ω), we have H1 (S (u (ω))) = 0.
The interpretation of this statement may be: fast (distributional in time) fluctu-

ations of the forces do not deteriorate the (upper) estimate on singularities.
About the proof, which is quite long, we only notice that one has first to prove

some regularity results for the auxiliary Stokes system (3), then one has to adapt
the proof of [3] for equation (5). See [12] for details.

2.2. Improvement for stationary solutions. We want to study stationary
solutions for the Navier-Stokes equations, stationary in the sense of probability or
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the ergodic theory. Let u be a martingale suitable weak solution of (1) on the time
interval [0,∞). The joint law µ of (u, B) is a probability measure on L2loc ([0,∞);H)×
C

(
[0,∞);D(Aβ)

)
(for a β > 0), concentrated on a smaller set due to the regularity

of u. In this setting the pressure P is treated as an auxiliary scalar field. We say
that such a solution u is stationary if the joint law in Hn of (u (t1 + s) , ..., u (tn + s))
is independent of s � 0 for every choice of n and 0 � t1 < ... < tn. Such laws are
well defined since u is weakly continuous in H .
We say that u has finite mean dissipation rate if

E
[ ∫ T

0

∫
D

|∇u|2 dxdt
]

< ∞

for all T > 0, where E is the expectation on (Ω,F ,P). A proof of the existence of a
stationary solution with finite mean dissipation rate is given in [17].

Theorem 3. Let u be a stationary martingale suitable weak solution of (1), with
B a Brownian motion taking values in D(A

1
4+β) for some β > 0. Assume that u has

finite mean dissipation rate. Then for every time t � 0 the set of singular points at
time t is empty for P-almost every trajectory of u.

In other words, if St (u) denotes the set of all x ∈ D such that (t, x) is a singular
point for the function u, then for all given t � 0, the set St (u (ω)) is empty for
P-almost every ω ∈ Ω.
About the proof (see [12]), by stationarity and finite mean dissipation rate we

have that

E
[
1
r

∫ t+r2

t−r2

∫
D

|∇u|2
]
= Cr

for some constant C > 0, so r−1
∫ t+r2

t−r2

∫
D
|∇u|2 converges to zero as r → 0 with prob-

ability one, by an argument based on the Borel-Cantelli lemma and the monotonicity
in r of the previous integral. This leads to (2). Notice that the result is true for all
σ � 0, hence it is uniquely due to the stationarity and not to the presence of noise.

2.3. Final results for a.e. initial conditions. From this theorem, a regularity
result for almost any initial condition can be deduced. Let u be a stationary martin-
gale suitable weak solution of (1) and let µ be the joint law of (u, B) as above. First
we define a measure µ0 on the space H of initial conditions given by a projection of
µ. Since weak solutions are continuous from [0,∞) to H with the weak topology, the
law in H of u (0) under µ is well defined and it will be denoted by µ0. In a heuris-
tic sense, µ0 is an invariant measure in H for the Navier-Stokes equations, but we
cannot state this in the usual sense since the Navier-Stokes equations do not define
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a dynamical system or a Markov semigroup (one may use the concept of infinitesimal
invariance).
One can prove that µ disintegrates with respect to µ0 (see the details in [12]):

µ (·) =
∫

H

µ (·|u (0) = u0) µ0 ( du0) .

For µ0-a.e.u0 ∈ H , it turns out that the measure µ (·|u (0) = u0) is the law of a
martingale suitable weak solution with the initial condition u0 (precisely, it is the
joint law of solution-Brownian motion).
As a consequence of the previous theorem one can prove (see [12]):

Corollary 4. For every t � 0, for µ0-a.e.u0 ∈ H ,

St (u) = ∅ µ (·|u (0) = u0) -a.s.

The interpretation is that we do not see singularities at any given time t, not only
in the stationary regime (the theorem of the previous section) but also for µ0-a.e.
initial condition. Hence only special (with respect to µ0) initial conditions may
produce a certain kind of singular behaviour.
The weak point of the previous theorem could be that µ0 is concentrated on a

very poor set, like a point or a periodic orbit. In the case of a single point it means
that µ was the delta Dirac mass over a time-invariant solution, and therefore the
absence of singularities is a well know fact (easy consequence of the result of [3]). It
is therefore interesting to know that under suitable assumptions of non-degeneracy
of the noise the support of µ0 is H . This is our first theorem where σ > 0 and
B cannot be just a deterministic function (we stated our previous theorems for a
Brownian motion B but they hold true for a suitable class of deterministic functions
too, see [12]). We assume that B directly acts on all Fourier components, namely
that its covariance is injective. Presumably this condition can be weakened. It
implies a form of ������	�
����� of the dynamic, proved in [8], which implies
that trajectories visit all open sets of H with positive probability.

Theorem 5. Assume that σ > 0 and the Brownian motion B has injective
covariance. Then the support of µ0 is the full space H :

supp (µ0) = H.

Therefore the set of initial conditions having the property from the corollary is
rich. This result is due to the noise, while all the previous ones hold true also for
σ = 0.
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