CANTOR-BERNSTEIN THEOREM FOR LATTICES

JÁN JAKUBÍK, Košice

(Received October 30, 2000)

Abstract. This paper is a continuation of a previous author's article; the result is now extended to the case when the lattice under consideration need not have the least element.

Keywords: lattice, direct product decomposition, Cantor-Bernstein Theorem

MSC 2000: 06B05

In the paper [6] a result of Cantor-Bernstein type was proved for lattices which (a) have the least element, (b) are σ -complete, and (c) are infinitely distributive.

In the present paper we modify the method from [6] to obtain a generalization of the mentioned result such that the condition (a) is omitted and the conditions (b), (c) are substantially weakened.

We remark that a theorem of Sikorski [10] (proved independently by Tarski [13], cf. also Sikorski [11]) concerning σ -complete Boolean algebras is a corollary of the result from [6].

1. Preliminaries

We denote by \mathcal{T}^0_{σ} the class of all lattices satisfying the conditions (a), (b) and (c) above.

Let *L* be a lattice and $x_0 \in L$. An indexed system $(x_i)_{i \in I}$ of elements of *L* will be called orthogonal over x_0 if (i) $x_i \ge x_0$ for each $i \in I$, and (ii) $x_{i(1)} \land x_{i(2)} = x_0$ whenever i(1) and i(2) are distinct elements of *I*. The orthogonality under x_0 is defined dually.

Supported by grant VEGA 2/5125/98.

Let α be an infinite cardinal. Consider the following conditions for L:

- (\mathbf{b}'_{α}) If $x_0 \in L$ and $(x_i)_{i \in I}$ is an indexed system of elements of L which is orthogonal over x_0 and if card $I \leq \alpha$, then the join $\bigvee_{i \in I} x_i$ exists in L.
- (\mathbf{b}''_{α}) If the assumption of (\mathbf{b}'_{α}) is satisfied and if, moreover, the system $(x_i)_{i \in I}$ is upper bounded in L, then $\bigvee_{i \in I} x_i$ exists in L.
- (c'_{α}) If the assumption of (b'_{α}) is satisfied and if, moreover, the join $\bigvee_{i \in I} x_i$ exists in L, then for each element $y \in L$ the relation

$$y \land (\bigvee_{i \in I} x_i) = \bigvee_{i \in I} (y \land x_i)$$

is valid in L.

We denote by $(\mathbf{b}'_{\alpha d})$, $(\mathbf{b}''_{\alpha d})$ and $(\mathbf{c}'_{\alpha d})$ the conditions which are dual to (\mathbf{b}'_{α}) , (\mathbf{b}''_{α}) or (\mathbf{c}'_{α}) , respectively.

Let \mathcal{T}_{α}^{1} be the class of all lattices which satisfy the conditions (\mathbf{b}_{α}') , (\mathbf{c}_{α}') , $(\mathbf{b}_{\alpha d}')$ and $(\mathbf{c}_{\alpha d}')$. Next let \mathcal{T}_{α}^{2} be the class of all lattices satisfying (\mathbf{b}_{α}') , (\mathbf{c}_{α}') , $(\mathbf{b}_{\alpha d}')$ and $(\mathbf{c}_{\alpha d}')$.

We use the notion of internal direct factor with a given central element of a lattice in the same sense as in [6].

The main results of the present paper are Theorem 2.7 and Theorem 3.8. The first one of these theorems says that if $L \in \mathcal{T}^1_{\alpha}$ and $x^0 \in L$, then the Boolean algebra of all internal direct factors of L with the central element s^0 is α -complete. Theorem 3.8 is a result of Cantor-Bernstein type for lattices belonging to \mathcal{T}^2_{α} , where $\alpha = \aleph_0$; this result is stronger than Theorem 2 of [6].

We substiantially apply the methods from [6].

Some theorems of Cantor-Bernstein type for lattice ordered groups and for MV-algebras were proved in [1]–[5], [7]–[9].

2. INTERNAL DIRECT PRODUCT DECOMPOSITIONS

Let L be a lattice belonging to \mathcal{T}^1_{α} , where α is an infinite cardinal. Further let s^0 be an arbitrary but fixed element of L.

We use the terminology and the notation as in [5]; the reader is assumed to be acquainted with the results of Section 2 of [5].

Let I be a set with card $I = \alpha$. Assume that for each $i \in I$ we have an internal direct product decomposition

(1)
$$L = (s^0)L_i \times L_i^{\dagger}$$

with the central element s^0 . We suppose that whenever i(1) and i(2) are distinct elements of I, then

(2)
$$L_{i(1)} \cap L_{i(2)} = \{s^0\}.$$

For $x \in L$ and $i \in I$ we denote

$$x_i = x(L_i), \quad x'_i = x(L'_i).$$

Let $x, y \in L$. We put xR_iy if $x(L'_i) = y(L'_i)$. Analogously, we set xR'_iy if $x(L_i) = y(L_i)$. Then R_i and R'_i are permutable congruence relations on L with $R_i \wedge R'_i = R_{\min}$ and $R_i \vee R'_i = R_{\max}$.

For each congruence relation ϱ on L and each $x \in L$ we put

$$x_{\rho} = \{ y \in L \colon x \varrho y \}.$$

Then we have

(3)
$$L_i = s_{R'_i}^0, \ L'_i = s_{R_i}^0, \ \{x(L_i)\} = s_{R_i}^0 \cap x_{R'_i}, \ \{x(L'_i)\} = s_{R'_i}^0 \cap x_{R_i}.$$

We shall systematically apply the relations (3).

2.1. Lemma. Let $x^0 \in L$. Then

$$x^0_{R_{i(1)}} \cap x^0_{R_{i(2)}} = \{x^0\}$$

whenever i(1) and i(2) are distinct elements of I.

Proof. This is an immediate consequence of (3). \Box

Let $a, b \in L$, $a \leq b$. Further let $i \in I$. There exist uniquely determined elements x^i and y^i in L such that

$$(x^i)_i = b_i, \quad (x^i)'_i = a'_i,$$

 $(y^i)_i = a_i, \quad (y^i)'_i = b_i.$

Then

(4)
$$\{x^i\} = a_{R_i} \cap b_{R'_i}, \quad \{y^i\} = a_{R'_i} \cap b_{R_i}.$$

From the definition of x^i and y^i we obtain

(5)
$$x^i, y^i \in [a, b]$$
 for each $i \in I$.

2.2. Lemma. Let i(1) and i(2) be distinct elements of I. Then

$$x^{i(1)} \wedge x^{i(2)} = a, \quad y^{i(1)} \vee y^{i(2)} = b.$$

Proof. Put $x^{i(1)} \wedge x^{i(2)} = t$. In view of (5), $t \ge a$. Then $t \in [a, x^{i(1)}]$ and hence according to (4), $t \in a_{R_{i(1)}}$; similarly, $t \in a_{R_{i(2)}}$. Thus 2.1 yields that t = a. Therefore $x^{i(1)} \wedge x^{i(2)} = a$. Analogously we obtain $y^{i(1)} \vee y^{i(2)} = b$.

2.3. Corollary. Under the notation as above, the indexed system $(x^i)_{i \in I}$ is orthogonal over a, and the indexed system $(y^i)_{i \in I}$ is orthogonal under b.

Since these systems are bounded, we get

2.4. Corollary. There exist elements x and y in L such that

$$x = \bigvee_{i \in I} x^i, \quad y = \bigwedge_{i \in I} y^i$$

2.5. Lemma. $x \wedge y = a$ and $x \vee y = b$.

Proof. We apply the same steps as in proving the relations (4) and (5) in [6], Section 4 with the distinction that instead of infinite distributivity we apply 2.3 and the relation $L \in \mathcal{T}^1_{\alpha}$.

The assertions of 4.3, 4.4 and 4.5 in [6] remain valid for our case (again, in the proof of 4.3 we have to use Lemma 2.3 above).

Now we can use the same argument as in Section 5 of [6] (instead of Lemma 4.2 of [5] we take Lemma 2.5 above). We apply the definitions of R and R' on L (cf. [5]) and we obtain

2.6. Lemma. $L = (s^0)s^0_R \times s^0_{R'}$ and the relation

$$s_R^0 = \bigvee_{i \in I} L_i$$

is valid in the Boolean algebra $F(L, s^0)$.

By applying the well-known theorem of Smith and Tarski [12] (cf. also Sikorski [11], Chapter II, Theorem 20.1) we conclude from 2.6 that the following theorem holds.

2.7. Theorem. Let α be an infinite cardinal and let $L \in \mathcal{T}^1_{\alpha}$. Then the Boolean algebra $F(L, s^0)$ is α -complete.

3. On lattices belonging to \mathcal{T}_{σ}^2

If $\alpha = \aleph_0$, then instead of \mathcal{T}^2_{α} we write \mathcal{T}^2_{σ} .

Let L be a lattice belonging to \mathcal{T}_{σ}^2 and $s^0 \in L$. Suppose that for each $n \in \mathbb{N}$ we have an internal direct product decomposition

(1)
$$L = (s^0)L_n \times L'_n$$

such that, whenever n(1) and n(2) are distinct positive integers, then

(2)
$$L_{n(1)} \cap L_{n(2)} = \{s^0\}$$

We use analogous notation as in Section 2 with the distinction that we now have \mathbb{N} instead of I.

In particular, the relation

(3)
$$s_R^0 = \bigvee_{n \in \mathbb{N}} L_n$$

is valid in the Boolean algebra $F(L, s^0)$; we have

(4)
$$L = (s^0)s_R^0 \times (s_R^0)'$$

and, in view of the duality, (3) yields

(5)
$$(s_R^0)' = \bigcap_{n \in \mathbb{N}} L'_n$$

If a, b, x and y are as in 2.5, then we write

$$x = x(a, b), \quad y = y(a, b).$$

3.1. Lemma. Let $x^0 \in L$. Then x_R^0 is the set of all elements $z \in L$ such that there exist $u, v \in L$ with $x^0, z \in [u, v], x(x^0, v) = v$ and $y(u, x^0) = u$.

Proof. This is a consequence of the definition of R (cf. [5], Section 5).

3.2. Lemma. Let m and n be distinct positive integers. Then $L_m \subseteq L'_n$.

Proof. In view of (1) and according to 3.7 in [5] we have

$$L_m = (s^0)(L_m \cap L_n) \times (L_m \cap L'_n).$$

Thus according to (2),

$$L_m = (s^0)\{s^0\} \times (L_m \cap L'_n) = L_m \cap L'_n.$$

Since the element s^0 was arbitrarily chosen, we get

3.3. Corollary. Let m, n be as in 3.2 and $x \in L$. Then

$$x_{R_m} \subseteq x_{R'_n}.$$

3.4. Lemma. Let $x^0 \in L$ and suppose that $(x^n)_{n \in \mathbb{N}}$ is an indexed system of elements of L such that (i) this system is orthogonal over x^0 , and (ii) $x^n \in x^0_{R_n}$ for each $n \in \mathbb{N}$. Let $x = \bigvee_{n \in \mathbb{N}} x^n$. Then for each $n \in \mathbb{N}$, $xR'_n x^n$.

Proof. Let $n \in \mathbb{N}$. Since $L \in \mathcal{T}_{\sigma}^2$, there exists $t \in L$ with

$$t = \bigvee_{m \in \mathbb{N} \setminus \{n\}} x^m.$$

According to 3.3, all elements x^m under consideration belong to $x^0_{R'_n}$. Thus t belongs to the set $x^0_{R'_n}$ as well. Clearly $x = x^n \vee t$. Then xR'_n $(x^n \vee x^0)$, whence xR'_nx^n .

3.5. Lemma. Let $(y^n)_{n \in \mathbb{N}}$ be an indexed system of elements of L such that for each $n \in \mathbb{N}$, $y^n \in L_n$. Then there exists $p \in s_R^0$ such that for each $n \in \mathbb{N}$, $p(L_n) = y^n$.

Proof. For each $n \in \mathbb{N}$ we denote

$$y^n \vee s^0 = x^n, \quad y^n \wedge s^0 = z^n.$$

Then in view of (2), the indexed system $(x^n)_{n \in \mathbb{N}}$ is orthogonal over s^0 , and $(z^n)_{n \in \mathbb{N}}$ is orthogonal under s^0 . Hence there exist elements

$$x = \bigvee_{n \in \mathbb{N}} x^n, \quad z = \bigwedge_{n \in \mathbb{N}} z^n$$

in L. Thus xRs^0Rz , whence

$$[z,x] \subseteq s_R^0.$$

Also, $y^n \in s_R^0$ for each $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$. There exists a uniquely determined element t^n in L such that

$$\{t^n\} = x_{R'_n}^n \cap z_{R_n}.$$

Then from the relation $z \leq x^n$ we obtain that t^n belongs to the interval $[z, x^n]$ and hence $t^n \in s_R^0$. Put $p^n = t^n \wedge y^n$. We have $p^n \in [z, t^n]$, thus

(6)
$$p^n R_n z$$
.

Therefore 3.2 yields that the indexed system $(p^n)_{n \in \mathbb{N}}$ is orthogonal over z. Hence there exists

$$p = \bigvee_{n \in \mathbb{N}} p^n$$

in L. Clearly $p \in [z, x] \subseteq s_R^0$. In view of 3.4, for each $n \in \mathbb{N}$ we have

(7)
$$pR'_n p^n$$

Since $x^n R'_n t^n$ we get

$$(x^n \wedge y^n) R'_n(t^n \wedge y^n),$$

thus $y^n R'_n p^n$. Hence in view of (7), $y^n R'_n p$. But $y^n \in L_n$ and hence $p(L_n) = y^n$. \Box

3.6. Lemma. Let $x, y \in s_R^0$. Suppose that $x(L_n) = y(L_n)$ for each $n \in \mathbb{N}$. Then x = y.

Proof. Denote $a = x \land y$, $b = x \lor y$. Then $a(L_n) = b(L_n) = x(L_n)$ for each $n \in \mathbb{N}$. It suffices to show that a = b.

Let $n \in \mathbb{N}$. Put $a(L_n) = t$. Then $\{t\} = L_n \cap a_{R'_n}$. Hence $aR'_n t$ and similarly $bR'_n t$, which implies that $aR'_n b$.

We have $a, b \in s_R^0$. Then there exists an indexed system $(x^n)_{n \in \mathbb{N}}$ which is orthogonal over a such that aR_nx^n for each $n \in \mathbb{N}$ and $\bigvee_{n \in \mathbb{N}} x^n = b$ (cf. the definition of R in [c])

in [6]).

From the relations $a \leq x^n \leq b$ and $aR'_n b$ we obtain $aR'_n x^n$, whence $a = x^n$ for each $n \in \mathbb{N}$. Thus b = a.

Consider the mapping

$$\varphi\colon s_R^0 \to \prod_{n \in \mathbb{N}} L_n$$

defined by

$$\varphi(x) = (x(L_n))_{n \in \mathbb{N}}$$

for each $x \in s_R^0$.

From the definition of φ we immediately obtain that φ is a homomorphism. In view of 3.5, φ is an epimorphism. According to 3.6, φ is a monomorphism. Hence φ is an isomorphism of s_R^0 onto $\prod_{n \in \mathbb{N}} L_n$. All L_n are sublattices of s_R^0 containing the element s^0 . If $x \in L_n$ for some $n \in \mathbb{N}$, then $(\varphi(x))_n = x$ and $(\varphi(x))_m = s^0$ for $m \neq n$. Hence in view of (3) we have

3.7. Lemma. Let (1) and (3) be valid. Then

$$\bigvee_{n\in\mathbb{N}}L_n=(s^0)\prod_{n\in\mathbb{N}}L_n$$

1	c	n
4	o	9

3.8. Theorem. Let L_1 and L_2 be lattices belonging to \mathcal{T}^2_{σ} . Suppose that

- (i) L_1 is isomorphic to some direct factor of L_2 ;
- (ii) L_2 is isomorphic to some direct factor of L_1 .

Then L_1 is isomorphic to L_2 .

Proof. It suffices to apply the same argument as in proving Theorem 2 of [6] (Section 6) with the distinction that instead of Lemma 6.3 from [6] we now use Lemma 3.7. \Box

Theorem 3.8 generalizes Theorem 2 of [6].

4. Examples

4.1. Let \mathbb{N} be the set of all positive integers with the usual linear order and let A be a two-element lattice. Put $B = A \times \mathbb{N}$, $L = B \cup \{\omega\}$, where $b < \omega$ for each $b \in B$. Then $L \in \mathcal{T}^1_{\alpha} \cap \mathcal{T}^2_{\alpha}$ for each infinite cardinal α , but L fails to be infinitely distributive.

4.2. Let *L* be as in 4.1 and let L_1 be a sublattice of *L* such that $L_1 = L \setminus \{\omega\}$. Then $L_1 \in \mathcal{T}^1_{\alpha} \cap \mathcal{T}^2_{\alpha}$, L_1 is infinitely distributive and fails to be σ -complete.

Now let us return to the conditions (b'_{α}) , $(b'_{\alpha d})$, $(b''_{\alpha d})$, $(b''_{\alpha d})$, (c'_{α}) and $(c'_{\alpha d})$. We denote the system of these condition by S. Let α be an arbitrary infinite cardinal.

It is obvious that $(\mathbf{b}'_{\alpha}) \Rightarrow (\mathbf{b}''_{\alpha})$ and $(\mathbf{b}'_{\alpha d}) \Rightarrow (\mathbf{b}''_{\alpha d})$.

4.3. Let F be the system of finite subsets of the set \mathbb{N} ; the system F is partially ordered by the set-theoretic inclusion. Then F satisfies all the conditions from S except (\mathbf{b}'_{α}) .

4.4. Let F be as in 4.3 and let F_1 be a lattice which is dual to F. Let α be an arbitrary infinite cardinal. Then F_1 satisfies all the conditions from S except the condition $(\mathbf{b}'_{\alpha d})$.

4.5. Let F be as in 4.3 and let \mathbb{N} be the set of all positive integers with the natural linear order. The lattice dual to \mathbb{N} will be denoted by \mathbb{N}' . We may assume that $F \cap \mathbb{N}' = \emptyset$. Put $L = F \cup \mathbb{N}'$. The partial order in L is defined as follows: for each $x \in F$ and each $y \in \mathbb{N}'$ we put x < y. If $x, y \in F$ or $x, y \in \mathbb{N}'$, then the relation $x \ge y$ has its original meaning (deduced from F or from \mathbb{N}' , respectively). The lattice L satisfies all conditions from S except (\mathbf{b}'_{α}) and (\mathbf{b}''_{α}) .

4.6. Let *L* be as in 4.5 and let L_1 be a lattice dual to *L*. Then L_1 satisfies all conditions from *S* except $(\mathbf{b}'_{\alpha d})$ and $(\mathbf{b}''_{\alpha d})$.

4.7. Let *L* be as in 4.5. We denote by ω the greatest element of *L*. Further, let L_1 be the sublattice of *L* with the underlying set $F \cup \{\omega\}$. Then L_1 satisfies all the conditions of the system *S* except (c'_{α}) .

4.8. Let L_1 be as in 4.7 and let L_2 be a lattice dual to L_1 . Then L_2 satisfies all the conditions of S except $(c'_{\alpha d})$.

References

- [1] A. De Simone, D. Mundici, M. Navara: A Cantor-Bernstein theorem for σ -complete MV-algebras. To appear in Czechoslovak Math. J.
- J. Jakubik: Cantor-Bernstein theorem for lattice ordered groups. Czechoslovak Math. J. 22 (1972), 159–175.
- [3] J. Jakubik: On complete lattice ordered groups with strong units. Czechoslovak Math. J. 46 (1996), 221–230.
- [4] J. Jakubik: Convex isomorphisms of archimedean lattice ordered groups. Mathware and Soft Computing 5 (1998), 49–56.
- [5] J. Jakubik: Cantor-Bernstein theorem for MV-algebras. Czechoslovak Math. J. 49 (1999), 517–526.
- [6] J. Jakubik: Direct product decompositions of infinitely distributive lattices. Math. Bohem. 125 (2000), 341–354.
- [7] J. Jakubik: On orthogonally σ -complete lattice ordered groups. To appear in Czechoslovak Math. J.
- [8] J. Jakubik: Convex mappings of archimedean MV-algebras. To appear in Math. Slovaca.
- [9] J. Jakubik: A theorem of Cantor-Bernstein type for orthogonally σ -complete pseudo MV-algebras. (Submitted).
- [10] R. Sikorski: A generalization of theorem of Banach and Cantor-Bernstein. Coll. Math. 1 (1948), 140–144.
- [11] R. Sikorski: Boolean Algebras. Second Edition, Springer, Berlin, 1964.
- [12] E. C. Smith, jr., A. Tarski: Higher degrees of distributivity and completeness in Boolean algebras. Trans. Amer. Math. Soc. 84 (1957), 230–257.
- [13] A. Tarski: Cardinal Algebras. New York, 1949.

Author's address: Ján Jakubík, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail: musavke@saske.sk.