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CANTOR-BERNSTEIN THEOREM FOR LATTICES
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Abstract. This paper is a continuation of a previous author’s article; the result is now
extended to the case when the lattice under consideration need not have the least element.
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In the paper [6] a result of Cantor-Bernstein type was proved for lattices which

(a) have the least element, (b) are σ-complete, and (c) are infinitely distributive.

In the present paper we modify the method from [6] to obtain a generalization of

the mentioned result such that the condition (a) is omitted and the conditions (b),
(c) are substantially weakened.

We remark that a theorem of Sikorski [10] (proved independently by Tarski [13],
cf. also Sikorski [11]) concerning σ-complete Boolean algebras is a corollary of the

result from [6].

1. Preliminaries

We denote by T 0σ the class of all lattices satisfying the conditions (a), (b) and (c)
above.

Let L be a lattice and x0 ∈ L. An indexed system (xi)i∈I of elements of L will

be called orthogonal over x0 if (i) xi � x0 for each i ∈ I, and (ii) xi(1) ∧ xi(2) = x0
whenever i(1) and i(2) are distinct elements of I. The orthogonality under x0 is

defined dually.
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Let α be an infinite cardinal. Consider the following conditions for L:

(b′α) If x0 ∈ L and (xi)i∈I is an indexed system of elements of L which is orthogonal
over x0 and if card I � α, then the join

∨
i∈I

xi exists in L.

(b′′α) If the assumption of (b′α) is satisfied and if, moreover, the system (xi)i∈I is
upper bounded in L, then

∨
i∈I

xi exists in L.

(c′α) If the assumption of (b
′
α) is satisfied and if, moreover, the join

∨
i∈I

xi exists

in L, then for each element y ∈ L the relation

y ∧ (
∨

i∈I

xi) =
∨

i∈I

(y ∧ xi)

is valid in L.

We denote by (b′αd), (b
′′
αd) and (c

′
αd) the conditions which are dual to (b

′
α), (b

′′
α)

or (c′α), respectively.
Let T 1α be the class of all lattices which satisfy the conditions (b′′α), (c′α), (b′′αd)

and (c′αd). Next let T 2α be the class of all lattices satisfying (b′α), (c′α), (b′αd) and
(c′αd).

We use the notion of internal direct factor with a given central element of a lattice
in the same sense as in [6].

The main results of the present paper are Theorem 2.7 and Theorem 3.8. The first
one of these theorems says that if L ∈ T 1α and x0 ∈ L, then the Boolean algebra of all

internal direct factors of L with the central element s0 is α-complete. Theorem 3.8
is a result of Cantor-Bernstein type for lattices belonging to T 2α , where α = ℵ0; this
result is stronger than Theorem 2 of [6].
We substiantially apply the methods from [6].

Some theorems of Cantor-Bernstein type for lattice ordered groups and for MV -
algebras were proved in [1]–[5], [7]–[9].

2. Internal direct product decompositions

Let L be a lattice belonging to T 1α , where α is an infinite cardinal. Further let s0

be an arbitrary but fixed element of L.
We use the terminology and the notation as in [5]; the reader is assumed to be

acquainted with the results of Section 2 of [5].
Let I be a set with card I = α. Assume that for each i ∈ I we have an internal

direct product decomposition

(1) L = (s0)Li × L′
i
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with the central element s0. We suppose that whenever i(1) and i(2) are distinct

elements of I, then

(2) Li(1) ∩ Li(2) = {s0}.

For x ∈ L and i ∈ I we denote

xi = x(Li), x′
i = x(L′

i).

Let x, y ∈ L. We put xRiy if x(L′
i) = y(L′

i). Analogously, we set xR′
iy if x(Li) =

y(Li). ThenRi andR′
i are permutable congruence relations on L with Ri∧R′

i = Rmin
and Ri ∨ R′

i = Rmax.

For each congruence relation � on L and each x ∈ L we put

x� = {y ∈ L : x�y}.

Then we have

(3) Li = s0R′
i
, L′

i = s0Ri
, {x(Li)} = s0Ri

∩ xR′
i
, {x(L′

i)} = s0R′
i
∩ xRi .

We shall systematically apply the relations (3).

2.1. Lemma. Let x0 ∈ L. Then

x0Ri(1)
∩ x0Ri(2)

= {x0}

whenever i(1) and i(2) are distinct elements of I.

�����. This is an immediate consequence of (3). �

Let a, b ∈ L, a � b. Further let i ∈ I. There exist uniquely determined elements
xi and yi in L such that

(xi)i = bi, (xi)′i = a′
i,

(yi)i = ai, (yi)′i = bi.

Then

(4) {xi} = aRi ∩ bR′
i
, {yi} = aR′

i
∩ bRi .

From the definition of xi and yi we obtain

(5) xi, yi ∈ [a, b] for each i ∈ I.
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2.2. Lemma. Let i(1) and i(2) be distinct elements of I. Then

xi(1) ∧ xi(2) = a, yi(1) ∨ yi(2) = b.

�����. Put xi(1) ∧ xi(2) = t. In view of (5), t � a. Then t ∈ [a, xi(1)] and
hence according to (4), t ∈ aRi(1) ; similarly, t ∈ aRi(2) . Thus 2.1 yields that t = a.

Therefore xi(1) ∧ xi(2) = a. Analogously we obtain yi(1) ∨ yi(2) = b. �

2.3. Corollary. Under the notation as above, the indexed system (xi)i∈I is

orthogonal over a, and the indexed system (yi)i∈I is orthogonal under b.

Since these systems are bounded, we get

2.4. Corollary. There exist elements x and y in L such that

x =
∨

i∈I

xi, y =
∧

i∈I

yi.

2.5. Lemma. x ∧ y = a and x ∨ y = b.

�����. We apply the same steps as in proving the relations (4) and (5) in [6],

Section 4 with the distinction that instead of infinite distributivity we apply 2.3 and
the relation L ∈ T 1α . �

The assertions of 4.3, 4.4 and 4.5 in [6] remain valid for our case (again, in the

proof of 4.3 we have to use Lemma 2.3 above).
Now we can use the same argument as in Section 5 of [6] (instead of Lemma 4.2

of [5] we take Lemma 2.5 above). We apply the definitions of R and R′ on L (cf. [5])
and we obtain

2.6. Lemma. L = (s0)s0R × s0R′ and the relation

s0R =
∨

i∈I

Li

is valid in the Boolean algebra F (L, s0).

By applying the well-known theorem of Smith and Tarski [12] (cf. also Sikorski [11],
Chapter II, Theorem 20.1) we conclude from 2.6 that the following theorem holds.

2.7. Theorem. Let α be an infinite cardinal and let L ∈ T 1α . Then the Boolean
algebra F (L, s0) is α-complete.
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3. On lattices belonging to T 2σ

If α = ℵ0, then instead of T 2α we write T 2σ .
Let L be a lattice belonging to T 2σ and s0 ∈ L. Suppose that for each n ∈ � we

have an internal direct product decomposition

(1) L = (s0)Ln × L′
n

such that, whenever n(1) and n(2) are distinct positive integers, then

(2) Ln(1) ∩ Ln(2) = {s0}.

We use analogous notation as in Section 2 with the distinction that we now have
� instead of I.

In particular, the relation

(3) s0R =
∨

n∈�
Ln

is valid in the Boolean algebra F (L, s0); we have

(4) L = (s0)s0R × (s0R)′

and, in view of the duality, (3) yields

(5) (s0R)
′ =

⋂

n∈�
L′

n.

If a, b, x and y are as in 2.5, then we write

x = x(a, b), y = y(a, b).

3.1. Lemma. Let x0 ∈ L. Then x0R is the set of all elements z ∈ L such that

there exist u, v ∈ L with x0, z ∈ [u, v], x(x0, v) = v and y(u, x0) = u.

�����. This is a consequence of the definition of R (cf. [5], Section 5). �

3.2. Lemma. Let m and n be distinct positive integers. Then Lm � L′
n.

�����. In view of (1) and according to 3.7 in [5] we have

Lm = (s0)(Lm ∩ Ln)× (Lm ∩ L′
n).

Thus according to (2),

Lm = (s0){s0} × (Lm ∩ L′
n) = Lm ∩ L′

n.

�
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Since the element s0 was arbitrarily chosen, we get

3.3. Corollary. Let m, n be as in 3.2 and x ∈ L. Then

xRm ⊆ xR′
n
.

3.4. Lemma. Let x0 ∈ L and suppose that (xn)n∈� is an indexed system of
elements of L such that (i) this system is orthogonal over x0, and (ii) xn ∈ x0Rn

for

each n ∈ �. Let x =
∨

n∈�
xn. Then for each n ∈ �, xR′

nxn.

�����. Let n ∈ �. Since L ∈ T 2σ , there exists t ∈ L with

t =
∨

m∈�\{n}
xm.

According to 3.3, all elements xm under consideration belong to x0R′
n
. Thus t belongs

to the set x0R′
n
as well. Clearly x = xn ∨ t. Then xR′

n (x
n ∨ x0), whence xR′

nxn. �

3.5. Lemma. Let (yn)n∈� be an indexed system of elements of L such that for
each n ∈ �, yn ∈ Ln. Then there exists p ∈ s0R such that for each n ∈ �, p(Ln) = yn.

�����. For each n ∈ � we denote

yn ∨ s0 = xn, yn ∧ s0 = zn.

Then in view of (2), the indexed system (xn)n∈� is orthogonal over s0, and (zn)n∈�
is orthogonal under s0. Hence there exist elements

x =
∨

n∈�
xn, z =

∧

n∈�
zn

in L. Thus xRs0Rz, whence

[z, x] ⊆ s0R.

Also, yn ∈ s0R for each n ∈ �.
Let n ∈ �. There exists a uniquely determined element tn in L such that

{tn} = xn
R′

n
∩ zRn .

Then from the relation z � xn we obtain that tn belongs to the interval [z, xn] and
hence tn ∈ s0R. Put pn = tn ∧ yn. We have pn ∈ [z, tn], thus

(6) pnRnz.
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Therefore 3.2 yields that the indexed system (pn)n∈� is orthogonal over z. Hence

there exists
p =

∨

n∈�
pn

in L. Clearly p ∈ [z, x] ⊆ s0R. In view of 3.4, for each n ∈ � we have

(7) pR′
npn.

Since xnR′
ntn we get

(xn ∧ yn)R′
n(t

n ∧ yn),

thus ynR′
npn. Hence in view of (7), ynR′

np. But yn ∈ Ln and hence p(Ln) = yn. �

3.6. Lemma. Let x, y ∈ s0R. Suppose that x(Ln) = y(Ln) for each n ∈ �. Then

x = y.

�����. Denote a = x ∧ y, b = x ∨ y. Then a(Ln) = b(Ln) = x(Ln) for each
n ∈ �. It suffices to show that a = b.

Let n ∈ �. Put a(Ln) = t. Then {t} = Ln ∩aR′
n
. Hence aR′

nt and similarly bR′
nt,

which implies that aR′
nb.

We have a, b ∈ s0R. Then there exists an indexed system (x
n)n∈� which is orthog-

onal over a such that aRnxn for each n ∈ � and
∨

n∈�
xn = b (cf. the definition of R

in [6]).

From the relations a � xn � b and aR′
nb we obtain aR′

nxn, whence a = xn for
each n ∈ �. Thus b = a. �

Consider the mapping
ϕ : s0R →

∏

n∈�
Ln

defined by

ϕ(x) = (x(Ln))n∈�

for each x ∈ s0R.
From the definition of ϕ we immediately obtain that ϕ is a homomorphism. In

view of 3.5, ϕ is an epimorphism. According to 3.6, ϕ is a monomorphism. Hence
ϕ is an isomorphism of s0R onto

∏
n∈�

Ln. All Ln are sublattices of s0R containing the

element s0. If x ∈ Ln for some n ∈ �, then (ϕ(x))n = x and (ϕ(x))m = s0 for

m �= n. Hence in view of (3) we have

3.7. Lemma. Let (1) and (3) be valid. Then
∨

n∈�
Ln = (s0)

∏

n∈�
Ln.
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3.8. Theorem. Let L1 and L2 be lattices belonging to T 2σ . Suppose that
(i) L1 is isomorphic to some direct factor of L2;

(ii) L2 is isomorphic to some direct factor of L1.

Then L1 is isomorphic to L2.

�����. It suffices to apply the same argument as in proving Theorem 2 of

[6] (Section 6) with the distinction that instead of Lemma 6.3 from [6] we now use
Lemma 3.7. �

Theorem 3.8 generalizes Theorem 2 of [6].

4. Examples

4.1. Let � be the set of all positive integers with the usual linear order and let
A be a two-element lattice. Put B = A × �, L = B ∪ {ω}, where b < ω for each
b ∈ B. Then L ∈ T 1α ∩ T 2α for each infinite cardinal α, but L fails to be infinitely

distributive.

4.2. Let L be as in 4.1 and let L1 be a sublattice of L such that L1 = L \ {ω}.
Then L1 ∈ T 1α ∩ T 2α , L1 is infinitely distributive and fails to be σ-complete.

Now let us return to the conditions (b′α), (b
′
αd), (b

′′
α), (b

′′
αd), (c

′
α) and (c

′
αd). We

denote the system of these condition by S. Let α be an arbitrary infinite cardinal.

It is obvious that (b′α) ⇒ (b′′α) and (b′αd) ⇒ (b′′αd).

4.3. Let F be the system of finite subsets of the set �; the system F is partially

ordered by the set-theoretic inclusion. Then F satisfies all the conditions from S

except (b′α).

4.4. Let F be as in 4.3 and let F1 be a lattice which is dual to F . Let α be an
arbitrary infinite cardinal. Then F1 satisfies all the conditions from S except the

condition (b′αd).

4.5. Let F be as in 4.3 and let � be the set of all positive integers with the
natural linear order. The lattice dual to � will be denoted by �′ . We may assume
that F ∩ �

′ = ∅. Put L = F ∪ �
′ . The partial order in L is defined as follows:

for each x ∈ F and each y ∈ �
′ we put x < y. If x, y ∈ F or x, y ∈ �

′ , then the
relation x � y has its original meaning (deduced from F or from �

′ , respectively).
The lattice L satisfies all conditions from S except (b′α) and (b

′′
α).

4.6. Let L be as in 4.5 and let L1 be a lattice dual to L. Then L1 satisfies all
conditions from S except (b′αd) and (b

′′
αd).
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4.7. Let L be as in 4.5. We denote by ω the greatest element of L. Further, let

L1 be the sublattice of L with the underlying set F ∪ {ω}. Then L1 satisfies all the
conditions of the system S except (c′α).

4.8. Let L1 be as in 4.7 and let L2 be a lattice dual to L1. Then L2 satisfies all

the conditions of S except (c′αd).
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