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Abstract. Let T be an infinite locally finite tree. We say that T has exactly one end,
if in T any two one-way infinite paths have a common rest (infinite subpath). The paper
describes the structure of such trees and tries to formalize it by algebraic means, namely
by means of acyclic monounary algebras or tree semilattices. In these algebraic structures
the homomorpisms and direct products are considered and investigated with the aim of
showing, whether they give algebras with the required properties. At the end some further
assertions on the structure of such trees are stated, without the algebraic formalization.
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In this paper we study infinite locally finite trees with one end (shortly 1E-trees)

and their formalization by algebraic structures. We consider infinite undirected trees

and directed trees obtained from them.

The concept of an end of an infinite locally finite graph was introduced by R.Halin

[1]. Let G be an infinite locally finite graph, let W(G) be the family of all one-way

infinite paths in G. As G is infinite and locally finite, W(G) 6= ∅. Let E be a binary

relation on W(G) defined so that (W1, W2) ∈ E for W1 ∈ W(G), W2 ∈ W(G) if and

only if there exists a one-way infinite path W0 ∈ W(G) such that the numbers of

elements of the intersections W0 ∩ W1, W0 ∩ W2 are both infinite. The relation E is

an equivalence relation on the family W(G); its equivalence classes are called ends

of G.
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This was the definition of an end of a graph in general. The following theorem

shows that the definition may be formulated more simply in the case when G is a

tree, i.e. a connected graph without circuits.

Theorem 1. Let T be an infinite locally finite tree, let W1 ∈ W(G), W2 ∈ W(T ).

The pathsW1, W2 belong to the same end of T if and only if the intersectionW1∩W2

is a rest of both W1 and W2.

Here we have used the word rest. The rest of a one-way infinite path is its subgraph

which is itself a one-way infinite path.
���	�����

. Suppose that W1 ∩W2 is a rest of both W1 and W2. Then we may put

W0 = W1 ∩ W2. We have W0 ∈ W(T ), W0 ∩ W1 = W0 ∩ W1 = W0 and the number

of vertices of W0 is infinite. Therefore (W1, W2) ∈ E .

Now suppose that W1, W2 belong to the same end of T . Let W0 be a one-way

infinite path in T such that W0 ∩ W1 has an infinite number of vertices. Let a be

a vertex of W0 ∩ W1, let b0 (or b1) be the vertex immediately following a in W0 (or

in W1 respectively). Let W ′

0 (or W ′

1) be the rest of W0 (or of W1 respectively) with

the initial vertex a. Suppose that b0 6= b1. As W0 ∩ W1 has an infinite number of

vertices, the same holds for the restsW ′

0,W
′

1, i.e. alsoW ′

0∩W ′

1 has an infinite number

of vertices. Let c be a vertex of W ′

0 ∩ W ′

1 having the minimum distance from a. Let

W ′′

0 (orW ′′

1 ) be the finite path connecting a and c and being a subpath ofW ′

0 (orW
′

1

respectively). Then the union W ′′

0 ∪ W ′′

1 is a circuit, which is a contradiction with

the assumption that T is a tree. Hence b0 = b1 and also c = b0 = b1. Therefore, if

the intersection W ′

0 ∩ W ′

1 contains a vertex a, then it contains its successors in both

W ′

0 and W ′

1 and hence it contains a common rest R2 of W ′

0 and W ′

1. Analogously

W0 ∩ W2 contains a common rest R2 of W
′

0 and W ′

2. The intersection R1 ∩ R2 is a

common rest of W1 and W2. �

We can formulate a corollary.

Corollary 1. Let T be an infinite locally finite tree with exactly one end E . Let

W0 be an arbitrary one-way infinite path in T . Then every one-way infinite path in

T has a common rest with W0.

An infinite locally finite tree with exactly one end will be called a one-end tree,

shortly 1E-tree. Let us describe intuitive how such a tree looks out. We may choose

one one-way infinite path W0 in T . Then we choose an arbitrary vertex a of T . Let

b be the vertex of W0 whose distance from a is minimum. Let W (a) be the one-way

infinite path which is the union of the rest of W0 with the initial vertex b of the

finite path P (a, b) in T connecting a and b. As T is a tree, it is evident that there

is a one-to-one correspondence between the vertices a of T and the one-way infinite
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paths W (a) in T . Each vertex a of T is the initial vertex of exactly one one-way

infinite path W (a) in T and each one-way infinite path in T is W (a) for exactly one

vertex a of T . From the construction it is clear that W (a) does not depend on the

choice of W0, because the rest ofW0 with the initial vertex a is determined uniquely.

The following assertion is evident.

Theorem 2. A one-end tree cannot contain a two-way infinite path.

2. Algebraic formalization

We shall try to formalize algebraically the structure of a 1E-tree. We introduce

an orientation of T which will be called canonical.

We have yet defined W0 and W (a) for each a ∈ V (T ). Orient edges of W0 in such

a way thatW0 becomes a directed one-way infinite path with the orientation towards

the infinity. Further, orient edges of P (a, b) in such a way that P (a, b) becomes a

directed finite path from a to b. The orientation thus obtained is the orientation

of W (a). In any case, each edge becomes oriented from its end vertex farther from

W0 to its end vertex nearer to W0. If we orient all one-way infinite paths in T in

this way, we obtain the orientation of the whole tree T . We will call it the canonical

orientation of T .

As with finite trees, we speak about branches of T . Let u ∈ v(T ). If the degree of

u is 1, then there exists exactly one branch of T and u, namely T itself. If the degree

of u is at least 2, then on V (T ) − {u} we may introduce a binary relation π(u) in

such a way that (a, b) ∈ π(u) if and only if the finite path in T connecting a and b

does not contain u. This relation is an equivalence relation on V (T )−{u}. A branch

of T at u is then a subtree of T induced by C ∪ {u}, where C is an equivalence class

of π(u).

Theorem 3. Let T be a 1E-tree. Then T contains at least one vertex of degree 1

(pendant vertex).
���	�����

. Let u ∈ V (T ). Then exactly one branch of T at u contains one-way

infinite paths; all others are finite. If no finite branches of T at u exist, then u has

degree 1 and the assertion holds. Otherwise let B a finite branch of T at u. We walk

along edges of B, starting at u. As T is a tree, this walk is a simple path. As B is

finite, this path must end at some vertex from which it cannot continue. And this is

a vertex of degree 1. �

Corollary 2. Let T be a 1E-tree. In the canonical orientation of T there is no

sink, but there is at least one source.
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Obviously there is exactly one course if and only if T consists of exactly one

one-way infinite path.

The following proposition is evident.

Proposition 1. Let T be a 1E-tree and consider T as directed by its canonical

orientation. Then the outdegree of each vertex of T is 1.

It follows that the canonical orientation of T induces a partial ordering on V (T ).

If u ∈ V (T ), v ∈ V (T ), then we have u 6 v if and only if there exists a (finite) path

P (u, v) in T connecting u and v and directed from u to v in the canonical orientation.

This enables two algebraic formalizations of T . The first of them is the formalization

by means of a connected monounary algebra.

A total monounary algebra is a directed pair (A, f), where A is a set and f is a

mapping of A into itself.

The set A is the support of (A, f) and f is the unary operation on (A, f). For

f and a positive integer n we may define the n-th iteration fn of f . We define it

recurrently by putting f1(x) = f(x), fn(x) = f(fn−1(x)) for n > 2.

We will consider only total monounary algebras, although there exist also partial

ones in which f need not be defined for all elements of A.

A monounary algebra (A, f) is connected, if for any two elements x, y of A there

exist positive integers p, q such that f p(x) = f q(y). It is called acyclic, if for each

x ∈ A and positive integers p, q the inequality p 6= q implies f p(x) 6= f q(x).

Now let τ be a reflexive and symmetric binary relation on A. If (x, y) ∈ τ ⇒

(f(x), f(y)) ∈ τ for any two elements x, y of A, then the relation τ is called a tolerance

on (A, f). If moreover τ is transitive, then τ is called a congruence on (A, f). Now

let A = (A, f), B = (B, g) be two monounary algebras. Their direct product A×B

is the algebra C = (C, h) such that C = A×B and h((a, b)) = (f(a), g(b)) for a ∈ A,

b ∈ B.

From this definition the following proposition is evident.

Proposition 2. Let A = (A, f), B = (B, g) be two connected acyclic monounary

algebras. Then the direct product A × B is also a connected acyclic monounary

algebra.

Now we prove another theorem.

Theorem 4. Let T be a 1E-tree. Then there exists a connected acyclic mo-

nounary algebra A(T ) = (V (T ), f) such that for each u ∈ V (T ) the element f(u) is

the terminal vertex of the arc outgoing from u in the canonical orientation on T .
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���	�����
. As the outdegree of each vertex of T in its canonical orientation is 1,

the vertex f(u) is uniquely determined for each u ∈ V (T ) and thus (V (T ), f) is a

total monounary algebra. As T is a tree, it is acyclic. As every finite directed path

goes towards some vertex b of W0, the algebra A(T ) is connected. �

Also the inverse assertion holds.

Theorem 5. Let A = (A, f) be an acyclic connected monounary algebra. Then

there exists an infinite locally finite tree Tα with exactly one end and such that

A = A(Ta).

���	�����
. Obviously Ta is obtained from A in such a way that its vertex set

V (Ta) is A and an arc (in the canonical orientation) from u to v exists if and only

if f(u) = v. For each vertex u the vertices u, f(u), f 2(u), . . . must form a one-way

infinite path because A is acyclic. And, as A is connected, any two of these paths

W (u) have a common rest. The union of all such paths W (u) is the tree Ta. �

Therefore, by constructing direct products of monounary algebras we may obtain

new trees with exactly one end from the given ones. Now we would like to know

whether this is possible also by taking homomorphic images of monounary algebras

determined by congruences on them.

Proposition 3. There exists an acyclic connected monounary algebra A = (A, f)

and a congruence τ on A such that the factor algebra A/τ is not acyclic.

���	�����
. Let τ be a binary relation on A which is the least equivalence relation

containing all paris (x, f3(x)) for x ∈ A. If a ∈ A, then the equivalence class [a]τ of %

containing a is the set consisting of a and of all elements f p(a), where p ≡ 0 (mod 3).

Similarly [f(a)]ε (or [f2(a)]τ ) consists of all elements fp(a), where p ≡ 1 (mod 3)

(or p ≡ 2 (mod 3) respectively). Now consider the factor-algebra A/τ . Its elements

are classes [x]τ for all x ∈ A and the operation is f̂ such that f̂([x]τ ) = [f(x)]τ .

Evidently f̂([a]τ ) = [f(a)]τ , f̂
2([a]τ ) = [f2(a)]τ , f̂

3([a]τ ) = [a]τ and the algebra A/τ

is not acyclic. �

We have seen that constructing factor-algebras of A(T ) need not lead to finding

new 1E-trees.

We have already mentioned that the canonical orientation of T induces a partial

ordering on V (T ). As the monounary algebra A(T ) is connected, this ordering is the

ordering of a semilattice. We have a semilattice S(T ) = (V (T ),∨); we denote it as a

join semilattice. The support of S(T ) is V (T ). For u ∈ V (T ), v ∈ V (T ) the element

u∨v is the initial vertex of the common rest ofW (u) andW (v). Moreover, S(T ) is a
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tree semilattice, i.e. a semilattice in which every interval is a chain. (We can express

this condition in the following way: a 6 c 6 b & a 6 d 6 b ⇒ c 6 d ∧ d 6 c.)

A tolerance % on a semillatice has the property that (a, b) ∈ % implies (x, a∨b) ∈ %

for each x such that a 6 x 6 a ∨ b or b 6 x 6 a ∨ b. If moreover % is a congruence,

then (x, y) ∈ % for any elements x, y lying between a and a ∨ b or between b and

a ∨ b.

Let % be a congruence on a tree semilattice (S,∨) and suppose that the factor-

semilattice S/% is not a tree semilattice. The elements of S/% are equivalence classes

of % on S. If u ∈ S, v ∈ S, then [u]% 6 [v]% if and only if x 6 y for each x ∈ [u]% and

y ∈ [v]%. Suppose that there are elements a, b, c, d of S such that [a]% 6 [c]% 6 [b]%,

[a]% 6 [d]% 6 [b]% and [c]% ‖ [d]%. In S this implies a 6 c 6 d, a 6 d 6 b, c ‖ d and

this is a contradiction with the assumption that S is a tree semilattice. We have

proved a proposition.

Proposition 4. Any factor-semilattice of a tree semilattice by a congruence on

it is again a tree semilattice.

Therefore, constructing congruences leads to new 1E-trees.

Propositin 5. A direct product of two tree semilattices need not be a tree semi-

lattice.

���	�����
. As an example we use the simplest case. Let a semilattice S1 consist of

two elements a, b such that a 6 b and let S2 consist of two elements c, d such that

c 6 d. The direct product S1 × S2 has the elements (a, c), (a, d), (b, c), (b, d). We

have (a, c) 6 (a, d) 6 (b, d), (a, c) 6 (b, c) 6 (b, d), (a, d) ‖ (b, c) and S1 × S2 is not a

tree semilattice. �

By a similar argument it is possible to prove that the usual Cartesian product of

trees as undirected graphs need not be a tree, but it may contain circuits.

Both the algebraic approaches discussed are related in a certain way to the alge-

braic approaches of L.Nebeský [2], [3] to finite trees. The tree algebra [2] is a ternary

algebra whose support is the vertex set V (T ) of a finite tree T . For any three ele-

ments x, y, z of V (T ) the ternary operation of the algebra determines the (unique)

vertex which lies simultaneously on the paths of T connecting the pair {x, y}, the

pair {y, z} and the pair {x, z}.

In our approach by means of a semilattice one of the vertices x, y, z is substituted

by the one-way infinite path. The tree groupoid [3] is a groupoid whose support

is again V (T ) for a finite tree T and in which the result of the binary operation

performed with distinct elements x, y is the vertex which is adjacent to x and lies
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on the path connecting x and y in T . If y is substituted by a one-way infinite path

w0, we have our expression of T by means of a monounary algebra.

However, we must mention also some difference between these approaches. Alge-

bras studied by L.Nebeský are determined by the assumption of the vertex set being

finite and by a finite set of axioms in the language of the first order logic.

3. Structure of the 1E-tree

Let again T be a 1E-tree. Let u ∈ V (T ) and consider branches of T at u. Exactly

one of them contains a one-way infinite path; this is the infinite branch Binf(u).

Any other branch of T and u has all degrees of vertices finite and contains no infinite

path, hence it is finite. Therefore u is an articulation of T which separates the infinite

branch Binf(u) from the finite tree T (u) which is the union of all other branches of

T at u. Choose a vertex a from the vertices of T (u) whose distance from u in T (u)

is maximum. By D denote the union of the finite path P (a, u) connecting a and u

in T (u) and the path W (u). The subtree D is the one-way infinite path W (a); we

call it a quasi-diametral path in T .

Note that D need not be determined uniquely, but in the case of a diametrical

path of a finite tree the situation is similar.

Now we denote the vertices of D. We put a = x0 and then we go along D from

x0 towards infinity, denoting the vertices by x1, x2, x3 . . .. Obviously we exhaust

all non-negative integers. For every non-negative integer i let BT (i) be the union

of all branches of T at xi which do not contain edges of D. The graph BT (i) is a

subtree of T ; we take it as a rooted tree with the root xi. If we depict this tree, it is

advantageous to depict it as the directed one in the canonical orientation; then the

root xi is the unique sink in BT (i). Then the tree T is uniquely determined by the

infinite sequence BT (0), BT (1), BT (2), BT (3), . . ..

Further, if i < j, then T (i, j) denotes the subtree of T formed by the subpath

P (xi, xj) of D connecting xi and xj and by all branches of T at vertices of P (xi, xj).

Remember that a meromorphism of a graph G is isomorphic mapping of G onto a

subgraph of G. If that subgraph is a proper subgraph of G, then the meromorphism

is also called proper.

Proposition 6. Let there exist a positive integer k such that for any non-negative

integer j there exists an isomorphic mapping gj of T (jk, (j + 1)k) onto T ((j + 1)k,

(j + 2)k) with gj(xjk) = x(j+1)k . Then there exists a proper meromorphism h of T

onto the tree obtained from T by deleting the set of vertices V (T (0, jk)) − {xjk}.
���	�����

. The mapping h is such that for u ∈ V (T (jk, (j + 1)k) we have h(u) =

gj(u) for each non-negative integer j.
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In such a case, T may be determined by its finite subtree T (0, k). The described

meromorphism h generates an infinite monogeneous semigroup.

At the end we say something about caterpillars. A finite caterpillar is usually

defined as a tree which becomes a simple path after removing all its pendant edges.

For an infinite caterpillar some authors have used a definition by means of the em-

beddings into the plane. We will use the following definition: A caterpillar with

exactly one end is an infinity locally finite tree T which contains a one-way infinite

path W with the property that each edge of T either belongs to W , or is pendant

(incident with a vertex of degree 1).

If we know that T is a caterpillar, it suffices to determine any BT (i) by the number

of pendant edges at xi; therefore such a caterpillar is given by an infinite sequence

of non-negative integers. �

References

[1] R.Halin: Über unendliche Wege in Graphen. Math. Ann. 157 (1964), 125–137.
[2] L.Nebeský: Algebraic Properties of Trees. Acta Univ. Carol., Philologica Monographia
25, Praha, 1969.

[3] L.Nebeský: A tree as a finite set with a binary operation. Math. Bohem. 125 (2000),
455–458.

Author’s address: Bohdan Zelinka, Department of Applied Mathematics, Faculty of
Education, Technical University of Liberec, Voroněžská 13, 460 01 Liberec, Czech Republic,
e-mail: bohdan.zelinka@vslib.cz.

44


