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Abstract. We collect certain useful lemmas concerning the characteristic map, GLn-
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Preliminaries and introduction

Throughout the present note, we work over an algebraically closed field � of char-
acteristic zero. We write � ∗ instead of � \ {0}. We denote by � the set of all
non-negative integers.

Given integers m, k ∈ � , we define Mm×k to be the set of all (m × k)-matrices

whose entries are elements of � . (Obviously,Mm×k = {0} whenevermin{m, k} = 0.)

We writeMm instead ofMm×m. By Om×k we denote the zero matrix belonging to

Mm×k. We put Om = Om×m. We define GLm to be the full linear group of size m

over � , i.e.GLm = {U ∈ Mm; U is invertible}.

We denote by � [Mm ] (with m > 1) the polynomial ring over � in m2 variables

T11, T12, . . . , Tmm which are the entries of the “generic matrix” > := [Tjl]j,l=1,...,m.

We will consider polynomials sj
m ∈ � [Mm ], j = 1, . . . ,m. The polynomial sj

m is

defined to be the sum of all principal minors of size j of the matrix >. (In particular,

s1m = tr and sm
m = det.) Let us notice that Tm +

m∑

j=1

(−1)jsj
m(A)Tm−j ∈ � [T ] is the

characteristic polynomial of a matrix A ∈ Mm.
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For a point x = (x1, . . . , xm) ∈ � m (m > 1) we define Diag (x) = Diag (x1, . . . , xm)

∈ Mm to be the diagonal matrix whose diagonal entries are equal to the coordinates

of x.

The group GLm acts onMm by the conjugation. The orbit of a matrix A ∈ Mm

under this action (i.e. the conjugacy class of A) will be denoted by O(A). A set

E ⊆ Mm is GLm-invariant if E ⊇
⋃

A∈E

O(A). The set E is a cone if E 6= ∅ and

E ⊇ � E := {λA; λ ∈ � , A ∈ E}.

Throughout the text, we considerMm, � m and their subsets as topological spaces
equipped with the Zariski topology induced by the polynomial rings � [Mm ] and

� [T1 , . . . , Tm]. In particular, bars denote Zariski closures. We write “algebraic

set” instead of “Zariski closed set”. A subset of Mm (and, analogously, of � m )
is said to be quasi-algebraic if it is locally closed in the Zariski topology. A map

Φ = (ϕj)
k
j=1 : Q −→ � k , where k > 1 andQ is an irreducible quasi-algebraic set (con-

tained either inMm or in � m ), is regular if each coordinate function ϕj : Q −→ � is
locally the quotient of two polynomials. The map Φ is dominant if it is regular and

the range Φ(Q) is dense in � k .
We refer to [2], [4], [5], [6] for all the notions and facts needed of Matrix Theory,

Algebra, and Algebraic Geometry.

A function % : � −→ � is a rank function if it is weakly decreasing and satisfies
the convexity condition %(j) + %(j + 2) > 2%(j + 1) for all j ∈ � . The set of all rank
functions is partially ordered by the natural relation 6. Namely,

%1 6 %2 ⇔ %1(j) 6 %2(j) for all j ∈ � ,

where %1 and %2 are rank functions. The ordering 6 is the only one we will consider

on the sets of rank functions.

For a matrix A ∈ Mm and an integer j ∈ � we define rA(j) = rank (Aj). (In

particular, rA(0) = m.) It is easy to check that rA : � −→ � is a rank function. It
is remarkable though not difficult to prove that there is a greatest element in the

set {rA; A ∈ E} whenever E ⊆ Mm is such that the Zariski closure E is irreducible

(cf. [7, Corollary 5.2]).

For an arbitrary rank function % we define X% = {A ∈ M%(0); rA 6 %}. The set

X% is called a rank variety (associated with the function %). One can prove that the

rank varieties are irreducible algebraic sets (cf., for instance, [8, Theorem 1.1]). The

following formula for the dimension of X% will be useful in the sequel:

(•) dim X% = [%(0)]2 −
∞∑

j=1

[%(j) − %(j − 1)]2.

92



For further information about rank varieties and rank functions we refer to the

fundamental papers [1], [10] as well as to [7], [8]. Finally, for an irreducible algebraic

set V ⊆ Mm we define its relative codimension, r.codimV , by r.codimV = dim Xµ −

dim V , where µ = max
A∈V

rA (cf. [9]). Let us notice that Xµ is the smallest (in the sense

of inclusion) rank variety in which V is contained and that V is a rank variety if and

only if r.codimV = 0.

From now on, the letter n stands for an integer not smaller than 2.

In the note we deal with the characteristic map in the following sense. Let A ∈ Mn

and let q be an integer not smaller than 1. By the characteristic map we mean

χ
q
A : Mn 3 B 7→ (sj

n(A+B))q
j=1 ∈ � q .

We will focus our attention on χq
On

=: χq. In [3], it is shown (over the field of

complex numbers) that if L ⊆ Mn is a linear subspace such that dim L > n and tr

does not identically vanish on L, then the restriction χn
A|L is a dominant map for a

“generic” matrix A ∈ Mn. We mostly deal with restrictions χ
q |V : V −→ � q , where

V ⊆ Mn is an irreducible algebraic set (not necessarily a linear subspace) such that

q = max
B∈V

rB(n). (Let us notice that the polynomials sj
n with j > q identically vanish

on each set E ⊆ Mn such that max
B∈E

rB(n) = q.) The main goal of the note is to

characterize certain classes of sets V having the property that the restrictions χq|V
are dominant maps. We will focus our attention on linear subspaces ofMn and on

GLn-invariant irreducible algebraic cones.

We first collect a few lemmas that allow to relate the characteristic map to an

elementary theory of the GLn-invariant irreducible algebraic cones (cf. [7], [8], [9]).

We also offer a purely geometrical interpretation of the notion of relative codimension

(Lemma 1.5). We next use the lemmas to prove a complete characterization of rank

varieties by means of the characteristic map (Theorem 2.1) and to derive from that a

characterization of linear subspaces L ⊆ Mn with dominant restriction χ
q |L via their

“GLn-invariant hulls” (Corollary 2.2). We also discuss conditions to impose upon

dimL in order to get that the restriction of the characteristic map is dominant.

1. Certain useful lemmas

In what follows, we write st.rankE instead of max
A∈E

rA(n), where E ⊆ Mn is a

non-empty set.

Lemma 1.1. Let L ⊆ Mn be a linear subspace such that q := st.rankL > 1.

Define L̂ =
⋃

A∈L

O(A). Then the following are true:
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(i) L̂ is a GLn-invariant irreducible cone,

(ii) max {rA; A ∈ L̂} = max {rA; A ∈ L},

(iii) χq|L : L −→ � q is a dominant map if and only if so is χq | �
L

: L̂ −→ � q .
���������

. Assertions (i) and (ii), and the “only if” part of (iii) are obvious. In

order to prove the “if” part of (iii), observe that

χq(L) = χq(
⋃

A∈L

O(A)) ⊇ χq(L̂),

where the inclusion is a consequence of the continuity of χq : Mn −→ � q . �

For a positive integer q 6 n we define ∆q
n ∈ � [s1n , . . . , sq

n] ⊂ � [Mn ] to be the dis-

criminant of the polynomial T q +

q∑

j=1

(−1)jsj
nT

q−j ∈ � [Mn ][T ] (cf. [9]). The most

important property of ∆q
n is that a matrix A ∈ Mn with rA(n) = q has a multiple

non-zero eigenvalue if and only if ∆q
n(A) = 0. Below we formulate an obvious but

remarkable necessary condition for a restriction of the characteristic map χq to be

dominant.

Lemma 1.2. Let Q ⊆ Mn be an irreducible quasi-algebraic set such that q :=

st.rankQ > 1 and χq |Q : Q −→ � q is a dominant map. Then there is a matrix A ∈ Q

such that rA(n) = q and ∆q
n(A) 6= 0.

The following Lemmas 1.3, 1.5 and 1.6 seem to be of some independent interest.

Lemma 1.3. Let V ⊆ Mn be a GLn-invariant irreducible algebraic set such that

st.rankV =: q > 1. Then the restriction χq
A|V is a dominant map for all A ∈ Mn

whenever χq|V is a dominant map.

���������
. Let µ = max

B∈V
rB and let C ∈ Mn−q be a nilpotent matrix in the Jordan

canonical form such that rC = µ− q. Define

Y = {y = (yj)
q
j=1 ∈ ( � ∗ )q ; C⊕Diag (y) ∈ V , the elements yj are pairwise distinct}.

The set Y ⊂ � q is quasi-algebraic. Assume now that χq|V is a dominant map.

Then Y 6= ∅ thanks to the irreducibility and to the GLn-invariancy of V (cf. also

Lemma 1.2). Let

Φ: Y 3 y 7→ χq(C ⊕ Diag (y)) ∈ � q .

The range Φ(Y ) is dense in � q , because for each B ∈ V with rB = µ and ∆q
n(B) 6= 0

there is a y ∈ Y such that χq(B) = Φ(y). Consequently, the Zariski interior of
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Y ⊆ � q is non-empty and Y is an irreducible set. Pick a matrix A ∈ Mn. In virtue

of the GLn-invariancy of V , one can assume without loss of generality that A is upper

triangular. Let a = (aj)
q
j=1 ∈ � q be the point whose coordinates are equal to the q

terminal diagonal entries of A. Define

Φ̃ : Y 3 y 7→ χq(C ⊕ Diag (y + a)) ∈ � q .

Obviously, Φ̃ = (ϕ̃j |Y )q
j=1, where ϕ̃j ∈ � [T1 , . . . , Tq] and deg(ϕ̃j) = j. Focus the

attention on the “formal Jacobian” det (d(T1,...,Tq)(ϕ̃j)
q
j=1) ∈ � [T1 , . . . , Tq]. It is not

difficult to check that deg
(
det

(
d(T1,...,Tq)(ϕ̃j)

q
j=1

))
= 1

2q(q−1). Consider finally the

map

Ψ: Y 3 y 7→ χq(A+ (C ⊕ Diag (y))) ∈ � q .
Evidently, Ψ = ((ϕ̃j + ψj)|Y )q

j=1, where ψj ∈ � [T1 , . . . , Tq] and deg(ψj) < deg(ϕ̃j).

It is easy to see that the following equality holds for each element y of the Zariski

interior of Y : det (dyΨ) = det (dyΦ̃) + ψ(y), where ψ ∈ � [T1 , . . . , Tq] is such that

deg(ψ) < 1
2q(q − 1). Consequently, det(dyΨ) 6= 0 for a “generic” element y ∈ Y ,

which means that Ψ is a dominant map. It turns out that so is χq
A|V . The proof is

complete. �

Let A ∈ Mn be such that q := rA(n) > 2 and tr(A) 6= 0. For j = 2, . . . , q we

define

ξ
q
j (A) =





[tr(A)]j

sj
n(A)

if sj
n(A) 6= 0,

0 otherwise.

Furthermore, we put Ξq(A) = (ξq
j (A))q

j=2 ∈ � q−1 . The subsequent lemma is a minor

modification of [9, Lemma 1] and can be proved in the same way.

Lemma 1.4. Let A, B ∈ Mn be such that q := rA(n) = rB(n) > 2, tr(A)tr(B) 6=

0, and ∆q
n(A)∆q

n(B) 6= 0. Then the following conditions are equivalent:

(a) � ∗O(A) = � ∗O(B),

(b) rA = rB and Ξq(A) = Ξq(B).

Let us remark that the characteristic map χq : Mn −→ � q (with q > 2) is inti-

mately related to the map

Ξq : {A ∈ Mn; rA(n) = q, tr(A) 6= 0} −→ � q−1 .

Lemma 1.5. Let V ⊆ Mn be an irreducible algebraic cone with q := st.rank

V > 2. Then the following conditions are equivalent:

(a) χq|V is a dominant map,
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(b) tr does not identically vanish on V and Ξq |U : U −→ � q−1 is a dominant map

for a non-empty open subset U ⊆ {A ∈ V ; rA(n) = q, tr(A) 6= 0}.

���������
. Assume that (a) is satisfied. Then none of the polynomials s1n =

tr, . . . , sq
n identically vanishes on V . Define U = {A ∈ V ; s1n(A) 6= 0, . . . , sq

n(A) 6=

0}. The set U is open in V and non-empty (in virtue of the irreducibility of V).

Furthermore, U ⊆ {A ∈ V ; rA(n) = q, tr(A) 6= 0}. The restriction χq |U : U −→ � q
is dominant. So is the map

Θ: ( � ∗ )q 3 (x1, . . . , xq) 7→

(
x2

1

x2
, . . . ,

x
q
1

xq

)
∈ � q−1 .

Since Ξq |U = Θ ◦ (χq |U ), condition (b) follows.

Let condition (b) be satisfied. Then none of the polynomials s1n, . . . , s
q
n identi-

cally vanishes on V . Consider the set Ũ := � ∗U0, where U0 = {A ∈ U ; s1n(A) 6=

0, . . . , sq
n(A) 6= 0}. Obviously, Ũ ⊆ {A ∈ V ; rA(n) = q, tr(A) 6= 0}. (Recall that V

is a cone!) Furthermore, Ũ 6= ∅, Ũ ∪ {On} is a cone, Ũ is an open subset of V , and

Ξq | �
U

: Ũ −→ � q−1 is a dominant map. Consequently, the set

Uλ := {(λ2x−1
2 , . . . , λqx−1

q ); (x2, . . . , xq) ∈ Ξq(Ũ)}

is dense in � q−1 for all λ ∈ � ∗ . Now, pick a λ ∈ � ∗ and observe that {λ}×Uλ ⊆ χq(Ũ).

Indeed, if A ∈ Ũ , then (λ, λ2[ξq
2(A)]−1, . . . , λq [ξq

q (A)]−1) = χq(B) for B =
λ

tr(A)
A ∈

Ũ (because Ũ ∪ {On} is a cone). It turns out that

⋃

λ∈ � ∗
({λ} × Uλ) ⊆ χq(Ũ).

Since the set on the left hand side of the above inclusion is dense in � q , condition
(a) follows. �

The subsequent lemma provides a purely geometrical interpretation of the notion

of relative codimension. (The idea of the interpretation arises from a part of the

proof of [9, Theorem 3].)

Lemma 1.6. Let V ⊆ Mn be a GLn-invariant irreducible algebraic cone such that

q := st.rankV > 2 and let neither of the polynomials tr and ∆q
n vanish identically

on V . Then there is a non-empty open subset U ⊆ {A ∈ V ; rA(n) = q, tr(A) 6= 0}

such that the restriction Ξq |U is a regular map and

r.codimV = codim � q−1 Ξq(U).
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���������
. Define Z = {j ∈ {1, . . . , q}; sj

n does not identically vanish on V}. Then

{1, q} ⊆ Z. Define also µ = max
A∈V

rA. The set

U := {A ∈ V ; rA = µ, ∆q
n(A) 6= 0, sj

n(A) 6= 0 for all j ∈ Z}

is non-empty and open in V . Moreover, it is GLn-invariant and U ∪ {On} is a cone.

Consider the restriction Ξq |U : U −→ � q−1 . It is a regular map. By the formulae for

the dimension of a rank variety and for the dimension of fibres of a dominant map,

the following equalities hold:

r.codimV = n2 −
∞∑

j=1

[µ(j) − µ(j − 1)]2 − dim V

= n2 −
∞∑

j=1

[µ(j) − µ(j − 1)]2 − dim U

= n2 −
∞∑

j=1

[µ(j) − µ(j − 1)]2 − dim Ξq(U) − dim (Ξq)−1(Ξq(A0)),

where A0 is an element of U . By Lemma 1.4, (Ξ
q)−1(Ξq(A0)) = � ∗O(A0). (Recall

that U ∪ {On} is a GLn-invariant cone!) It is routine to check that

dim � ∗O(A0) = n2 − (q − 1) −
∞∑

j=1

[µ(j) − µ(j − 1)]2.

Finally,

r.codimV = n2 −
∞∑

j=1

[µ(j) − µ(j − 1)]2 − dim Ξq(U)

− n2 + (q − 1) +

∞∑

j=1

[µ(j) − µ(j − 1)]2 = codim � q−1 Ξq(U).

The proof is complete. �

It seems to be worth of noticing that the above formula for the relative codimension

is not true in case ∆q
n identically vanishes on V . Consider an example.

� � �"!$#&%('
1.7. Let B ∈ Mm be a nilpotent matrix. Define V = � O(B ⊕ I2),

where I2 ∈ M2 is the unit matrix. The set V ⊂ Mm+2 is a GLm+2-invariant

irreducible algebraic cone. It is evident that st.rankV = 2 and that ∆2
m+2 identically

vanishes on V while tr does not. By an easy computation, one can verify that

r.codimV = 3. At the same time, Ξ2|U is a regular map and Ξ2(U) = {4} for

U := {A ∈ V ; rA(n) = 2, tr(A) 6= 0} = � ∗O(B ⊕ I2).
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2. Main results

The characteristic map enables us to give a handy complete characterization of

rank varieties.

Theorem 2.1. Let V ⊆ Mn be a GLn-invariant irreducible algebraic cone with

q := st.rankV > 1. Then the following conditions are equivalent:

(a) χq
A|V is a dominant map for all A ∈ Mn,

(b) χq|V is a dominant map,

(c) χq|V is an “onto” map,

(d) V is a rank variety.

���������
. Implication (a) ⇒ (b) is obvious. Implication (d) ⇒ (c) can be readily

verified. Implication (c)⇒ (a) is a direct consequence of Lemma 1.3. Assume finally

that χq |V is a dominant map. Then neither of the polynomials tr and ∆q
n vanishes

identically on V (cf. Lemma 1.2). If q = 1, then condition (d) is satisfied thanks to

[7, Theorem 1.2]. So, assume in addition that q > 2. By Lemmas 1.6 and 1.5, the

equalities

r.codimV = codim � q−1 Ξq(U) = 0

hold, where U ⊆ V is the open subset from Lemma 1.6. It turns out that V is a rank

variety. The proof is complete. �

As an immediate consequence of the above theorem, Lemma 1.1, and formula (•)

for the dimension of a rank variety, we get a complete characterization of linear

subspaces L ⊆ Mn having the property that the restriction χ
q |L is a dominant map.

Corollary 2.2. For a linear subspace L ⊆ Mn with q := st.rankL > 1 the

following conditions are equivalent:

(a) χq|L is a dominant map,

(b) L̂ is a rank variety,

(c) dim L̂ = n2 −
∞∑

j=1

[µ(j) − µ(j − 1)]2,

where L̂ ⊆ Mn is defined as in Lemma 1.1 and µ = max
A∈L

rA.

Conditions (b) and (c) of Corollary 2.2 are clear but, unfortunately, rather not

practicable because of troubles with the “GLn-invariant hull” L̂. One would like to

get a characterization of linear subspaces with the dominant restriction of the map

χq in terms of their dimension (cf. [3]). It is evident that if a linear subspace L ⊆ Mn

such that q := st.rankL > 1 allows the dominant restriction χq |L, then

(i) dim L > q,
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(ii) tr and ∆q
n do not identically vanish on L.

Below we offer a theorem that provides a comparison between the “generic case”

of the characterization of linear subspaces with the dominant restriction of the char-

acteristic map and the case we have dealt with in Corollary 2.2. In what follows,

we denote by Gk(Mn) the Grassmann variety of the linear subspaces of dimension

k contained in Mn. We equip Gk(Mn) and its subsets with the Zariski topology

(arising from that on � kn2

via the identification � kn2

=
k⊕

j=1

Mn). For an integer s

such that 0 6 s 6 n we define G
s
k(Mn) = {L ∈ Gk(Mn); st.rankL = s}. Notice

that Gs
k(Mn) is a locally closed (in other words, quasi-algebraic) subset of Gk(Mn).

For all information needed about Grassmann varieties we refer to [5]. Furthermore,

let Tm, T 0
m ⊆ Mm be, respectively, the set of all upper triangular matrices and the

set of all nilpotent upper triangular matrices.

Theorem 2.3. (I) Let k, s ∈ � be such that 1 6 s 6 n and s 6 k 6 1
2 (n − s)×

(n− s− 1) + 1
2s(s+ 1). Then the set E := {L ∈ G

s
k(Mn) : χs|L is a dominant map}

is non-empty and open in G
s
k(Mn).

(II) Let d, q ∈ � satisfy the inequalities 2 6 q 6 n and q 6 d 6 1 + 1
2q(q − 1) +

1
2 (n− q)(n− q − 1) + q(n− q). Then there is a linear subspace Ld ⊂ Mn such that

dim Ld = d, st.rankLd = q, the polynomials tr and ∆q
n do not identically vanish on

Ld, and χ
q |Ld

is not a dominant map.

���������
. In the proof of (I) we follow the idea of the proof of [3, Theorem 2.3].

Define L′ = {On−s}⊕ Ds and L′′ = T 0
n−s ⊕ Ts, where Ds ⊆ Ms is the set of all

diagonal matrices. Then both L′ and L′′ are linear subspaces ofMn. Observe that

dim L′ = s and dim L′′ = 1
2 (n− s)(n− s− 1) + 1

2s(s+ 1). If K ⊆ Mn is any linear

subspace of dimension k such that L′ ⊆ K ⊆ L′′, then obviously K ∈ E. Remark now

that the setU := {L ∈ Gk(Mn); there is A ∈ L such that the differential dA(χs|L) :

L −→ � s is “onto”} is open in Gk(Mn). (To see that, define

Bk
n =

{
(B1, . . . , Bk) ∈

k⊕

j=1

Mn; B1, . . . , Bk are linearly independent over �
}
,

denote by Span (B1, . . . , Bk) the linear span over � of the set {B1, . . . , Bk} ⊂ Mn,

and consider the map

{(A,B1, . . . , Bk) ∈ Mn × Bk
n; A ∈ Span (B1, . . . , Bk)}

3 (A,B1, . . . , Bk) 7→ [dAχ
s](B1,...,Bk) ∈ Ms×k,
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where [dAχ
s](B1,...,Bk) stands for the matrix of the differential at A of the restriction

of χs to Span (B1, . . . , Bk) with respect to the basis (B1, . . . , Bk) and the canonical

basis in � s .) By the well-known differential characterization of dominant maps,

U = {L ∈ Gk(Mn) : χs|L is a dominant map}.

Consequently, E is an open subset of Gs
k(Mn). The assertion of (I) follows.

We turn to the proof of (II). Pick pairwise distinct elements λ1, . . . , λq ∈ � ∗ such

that

q∑

j=1

λj 6= 0. Define w = 1 + 1
2q(q − 1) + 1

2 (n− q)(n− q − 1) + q(n− q) and

Lw =

{[
B C

Oq×(n−q) B̃ + κDiag (λ1, . . . , λq)

]
: B ∈ T 0

n−q , B̃ ∈ T 0
q ,

C ∈ M(n−q)×q , κ ∈ �
}
.

It is evident that dim Lw = w, st.rankLw = q, and neither of the polynomials tr

and ∆q
n vanishes identically on Lw. Since Ξq({A ∈ Lw; tr(A) 6= 0}) is obviously a

singleton, χq |Lw
is not a dominant map (cf. Lemma 1.5). In order to get Ld satisfying

the conditions of the statement with d < w, it is enough to take an appropriate

subspace of Lw. The proof is complete. �

To conclude the note, we give a more practicable sufficient condition for a linear

subspace to allow the dominant restriction of the map χq . The result is based on a

certain theorem concerning the linear capacity.

Proposition 2.4. Let L ⊆ Mn be a linear subspace such that st.rankL = 2.

Define µ = max
A∈L

rA. Then χ
2|L is a dominant map whenever tr does not identically

vanish on L and

dim L >
1

2

(
n2 −

∞∑

j=1

[µ(j) − µ(j − 1)]2
)
.

���������
. In virtue of Corollary 2.2, it is enough to prove that L̂ = Xµ. Since

st.rank L̂ = 2, there are only two disjoint possibilities: either L̂ = Xµ or there is

B ∈ Mn such that L̂ = � O(B) (cf. [8, Theorem 2.2]). If L̂ = � O(B), then tr(B) 6= 0

(because tr does not vanish on L) and rB = µ. Thus, by [8, Theorem 3.1],

dim L 6
1

2

(
n2 −

∞∑

j=1

[µ(j) − µ(j − 1)]2
)
,

a contradiction. The proof is complete. �
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