EQUIVARIANT MAPPINGS FROM VECTOR PRODUCT INTO G-SPACE OF VECTORS AND ε-VECTORS WITH $G=O(n, 1, \mathbb{R})$

Barbara Glanc, Aleksander Misiak, Zofia Steqpień, Szczecin

(Received September 15, 2004)

Abstract

In this note all vectors and ε-vectors of a system of $m \leqslant n$ linearly independent contravariant vectors in the n-dimensional pseudo-Euclidean geometry of index one are determined. The problem is resolved by finding the general solution of the functional equation $F(\underset{1}{\underset{1}{u}}, \underset{2}{u}, \ldots, A \underset{m}{u})=(\operatorname{det} A)^{\lambda} \cdot A \cdot F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})$ with $\lambda=0$ and $\lambda=1$, for an arbitrary pseudo-orthogonal matrix A of index one and given vectors $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}$.

Keywords: G-space, equivariant map, pseudo-Euclidean geometry
MSC 2000: 53A55

1. Introduction

For $n \geqslant 2$ consider the matrix $E_{1}=\left[e_{i, j}\right] \in G L(n, \mathbb{R})$ where

$$
e_{i, j}= \begin{cases}0 & \text { for } i \neq j \\ +1 & \text { for } i=j \neq n \\ -1 & \text { for } i=j=n\end{cases}
$$

Definition 1. A pseudo-orthogonal group of index one is a subgroup of the group $G L(n, \mathbb{R})$ satisfying the condition

$$
G=0(n, 1, \mathbb{R})=\left\{A: A \in G L(n, \mathbb{R}) \wedge A^{T} \cdot E_{1} \cdot A=E_{1}\right\}
$$

Denoting $\varepsilon(A)=\operatorname{sign}(\operatorname{det} A)=\operatorname{det} A$ we have $\varepsilon(A \cdot B)=\varepsilon(A) \cdot \varepsilon(B)$.
The class of G-spaces $\left(M_{\alpha}, G, f_{\alpha}\right)$, where f_{α} is an action of G on the space M_{α}, constitutes a category if we take as morphisms equivariant maps $F_{\alpha, \beta}: M_{\alpha} \longrightarrow M_{\beta}$,
i.e. the maps which satisfy the condition

$$
\begin{equation*}
\bigwedge_{\alpha, \beta} \bigwedge_{x \in M_{\alpha}} \bigwedge_{A \in G} F_{\alpha, \beta}\left(f_{\alpha}(x, A)\right)=f_{\beta}\left(F_{\alpha, \beta}(x), A\right) . \tag{1.1}
\end{equation*}
$$

This category is called a geometry of the group G. In particular, among the objects of this category are:
the G-spaces of contravariant vectors and ε-vectors
(1.2) $\quad\left(\mathbb{R}^{n}, G, f\right)$, where $\bigwedge_{u \in \mathbb{R}^{n}} \bigwedge_{A \in G} f(u, A)= \begin{cases}A \cdot u & \text { for vectors, } \\ \varepsilon(A) \cdot A \cdot u & \text { for } \varepsilon \text {-vectors, }\end{cases}$
the G-spaces of scalars and ε-scalars

$$
(\mathbb{R}, G, f), \text { where } \bigwedge_{x \in \mathbb{R}} \bigwedge_{A \in G} f(x, A)= \begin{cases}x & \text { for scalars, } \tag{1.3}\\ \varepsilon(A) \cdot x & \text { for } \varepsilon \text {-scalars. }\end{cases}
$$

For $m=1,2, \ldots, n$ let a system of linearly independent vectors $\underset{1}{u}, \underset{2}{u}, \ldots,{ }_{m}^{u}$ be given. Every equivariant mapping F of this system into G-spaces of scalars, ε-scalars, vectors, ε-vectors satisfies the equality (1.1) which, applying the transformation rules (1.2) and (1.3), may be rewritten into the form

$$
\begin{equation*}
\bigwedge_{A \in G} F\left(\underset{1}{1}, A_{2} u, \ldots, A_{m} u\right)=F\left(\underset{1}{u}, \frac{u}{2}, \ldots,{ }_{m}^{u}\right) \quad \text { for scalars, } \tag{1.4}
\end{equation*}
$$

5) $\bigwedge_{A \in G} F(\underset{1}{1}, \underset{2}{2 u}, \ldots, A \underset{m}{u})=\varepsilon(A) \cdot F\left(\underset{1}{u},{ }_{2}, \ldots,{ }_{m}^{u}\right) \quad$ for ε-scalars,
(1.6) $\bigwedge_{A \in G} F\left(\underset{1}{1}, A_{2}, \ldots, A \underset{m}{u}\right)=A \cdot F\left(\underset{1}{u}, \frac{u}{2}, \ldots,{ }_{m}^{u}\right) \quad$ for vectors,

$$
\begin{equation*}
\bigwedge_{A \in G} F\left(\underset{1}{u}, A_{2}^{u}, \ldots, A \underset{m}{u}\right)=\varepsilon(A) \cdot A \cdot F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}) \quad \text { for } \varepsilon \text {-vectors. } \tag{1.6}
\end{equation*}
$$

For a pair u, v of contravariant vectors the mapping $p(u, v)=u^{T} E_{1} v$ satisfies (1.4), namely

$$
p(A u, A v)=(A u)^{T} E_{1}(A v)=u^{T}\left(A^{T} E_{1} A\right) v=u^{T} E_{1} v=p(u, v) .
$$

In [5] it was proved that the general solution of the equation (1.4) is of the form

$$
\begin{equation*}
F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})=\Theta(p(\underset{i}{u}, \underset{j}{u}))=\Theta\left(p_{i j}\right) \quad \text { for } i \leqslant j=1,2, \ldots, m \leqslant n \tag{1.8}
\end{equation*}
$$

where Θ is an arbitrary function of $\frac{1}{2} m(m+1)$ variables $p_{i j}$. The general solution of the equation (1.5) was found in [4]. Before presenting the explicit formula for it, let us denote by $L_{m}=L(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})$ the linear subspace generated by the vectors $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}$ and by $p \mid L_{m}$ the restriction of the form p to the subspace L_{m}.

Definition 2. The subspace L_{m} is called
(1) an Euclidean subspace if the form $p \mid L_{m}$ is positively definite,
(2) a pseudo-Euclidean subspace if the form $p \mid L_{m}$ is regular and indefinite,
(3) a singular subspace if the form $p \mid L_{m}$ is singular.

If we denote

$$
P(m)=P(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})=\left|\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{1 m} \\
p_{21} & p_{22} & \cdots & p_{2 m} \\
\ldots & \ldots & \ldots & \ldots \\
p_{m 1} & p_{m 2} & \ldots & p_{m m}
\end{array}\right|=\operatorname{det}[p(\underset{i}{u}, \underset{j}{u})]_{1}^{m}=\operatorname{det}\left[p_{i j}\right]_{1}^{m}
$$

then the above three cases are equivalent to $P(m)>0, P(m)<0$ and $P(m)=0$, respectively. Let $\stackrel{m}{P}_{i j}$ denote the cofactor of the element $p_{i j}$ of the matrix $\left[p_{i j}\right]_{1}^{m}$ and let $\stackrel{1}{P}_{11}=1, P(0)=1$ by definition.

Let us consider an isotropic cone $K_{0}=\left\{u: u \in \mathbb{R}^{n} \wedge p(u, u)=0 \wedge u \neq 0\right\}$. It is an invariant and transitive subset. Every isotropic vector $v \in K_{0}$ determines an isotropic direction which, by virtue of $v^{n} \neq 0$ and $v=v^{n}\left[\frac{v^{1}}{v^{n}}, \frac{v^{2}}{v^{n}}, \ldots, \frac{v^{n-1}}{v^{n}}, 1\right]^{T}=$ $v^{n}\left[q^{1}, q^{2}, \ldots, q^{n-1}, 1\right]^{T}$ with $\sum_{i=1}^{n-1}\left(q^{i}\right)^{2}=1=q^{n}$, is equivalent to the point q belonging to the sphere S^{n-2}.
In two cases we get particular solutions of the equation (1.5). In the case $m=n$ that equation is fulfilled by the mapping det. For $A \in G$ we have

$$
W^{\prime}=\operatorname{det}(\underset{1}{A}, \underset{2}{A}, \ldots, A \underset{n}{u})=\varepsilon(A) \cdot \operatorname{det}(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n}{u})=\varepsilon(A) \cdot W
$$

If $m=n-1$ and $P(n-1)=0$ then the singular subspace $L \underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u})$ determines exactly one isotropic direction $q \in S^{n-2}$ whose representative, if $P(n-2) \neq 0$, is of the form

$$
\begin{equation*}
v=\frac{1}{2 P(n-2)} \sum_{i=1}^{n-1} \stackrel{n-1}{P}_{n-1, i} \cdot{\underset{i}{u}}^{2}=v^{n}\left[q^{1}, q^{2}, \ldots, q^{n-1}, 1\right]^{T} \in K_{0} \cap L_{n-1} . \tag{1.9}
\end{equation*}
$$

From $p(\underset{i}{u}, v)=0$ for $i=1,2, \ldots, n-1$ it follows that each vector ${\underset{i}{i}}_{u}$ is of the form

$$
\begin{equation*}
{\underset{i}{u}}_{u}=\left[u_{i}^{1}, u_{i}^{2}, \ldots, u_{i}^{n-1}, \sum_{k=1}^{n-1} u_{i}^{k} q^{k}\right]^{T} \quad \text { where } \Delta=\operatorname{det}\left[u_{i}^{j}\right]_{1}^{n-1} \neq 0 \tag{1.10}
\end{equation*}
$$

The two 1 -forms $\operatorname{det}(\underset{1}{u}, \ldots, \underset{r-1}{u}, v, \underset{r+1}{u}, \ldots, \underset{n-1}{u}, x)$ and $p(v, x)$ vanish on the subspace $L(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u})$, and consequently there exist uniquely determined numbers $B_{r}=$
$B_{r}(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{r}{u}, \ldots, \underset{n-1}{u})$ such that

$$
\begin{equation*}
\operatorname{det}(\underset{1}{u}, \ldots, \underset{r-1}{u}, v, \underset{r+1}{u}, \ldots, \underset{n-1}{u}, x)=-B_{r}(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u}) \cdot p(v, x) . \tag{1.11}
\end{equation*}
$$

As det is an ε-scalar, p is a scalar as well, so it follows from (1.11) that each B_{r} is an ε-scalar. Taking any given $A \in G$ we have

$$
B_{r}^{\prime}=B_{r}\left(\underset{1}{u}, \ldots, A \underset{r}{u}, \ldots, A_{n-1}^{u}\right)=\varepsilon(A) \cdot B_{r}(\underset{1}{u}, \ldots, \underset{r}{u}, \ldots, \underset{n-1}{u})=\varepsilon(A) \cdot B_{r} .
$$

From (1.9), (1.10) and (1.11) we get in terms of coordinates the formula

$$
B_{r}(\underset{1}{u}, \ldots, \underset{r}{u}, \ldots, \underset{n-1}{u})=\left|\begin{array}{ccc}
u_{1}^{1} & \ldots & u^{n-1} \tag{1.12}\\
\ldots & \ldots & \ldots \\
u^{1} & \ldots & u^{n-1} \\
r-1 & & u_{-1} \\
q^{1} & \ldots & q^{n-1} \\
u^{1} & \ldots & u^{n-1} \\
\ldots & & r_{r+1} \\
\ldots & \cdots & \ldots \\
u_{n-1}^{1} & \ldots & u_{n-1}{ }^{n-1}
\end{array}\right| \quad \text { for } r=1,2, \ldots, n-1 .
$$

We have $B_{r} \cdot B_{k}=\stackrel{n-1}{P}_{r k}$ and in particular $B_{r}^{2}=P(\underset{1}{u}, \ldots, \underset{r-1}{u}, \underset{r+1}{u}, \ldots, \underset{n-1}{u})$, so at least one of the ε-scalars B_{r} is different from zero.

In [4] it was proved that the general solution of the equation (1.5) is of the form
(1.13) $\quad F \underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})= \begin{cases}0 & \text { if } m<n-1, \\ 0 & \text { if } m=n-1, P(m) \neq 0, \\ \sum_{k=1}^{n-1} \Theta^{k}\left(p_{i j}\right) \cdot B_{k} & \text { if } m=n-1, P(m)=0, \\ \Theta\left(p_{i j}\right) \cdot \operatorname{det}(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n}{u}) & \text { if } m=n\end{cases}$
where $\Theta, \Theta^{1}, \ldots, \Theta^{n-1}$ are arbitrary functions of $\frac{1}{2} m(m+1)$ variables.
In this work we find the general solution of the functional equations (1.6) and (1.7).

2. The Schmidt process of pseudo-orthonormality

Definition 3. Two vectors $u \neq 0$ and $v \neq 0$ satisfying the condition $p(u, v)=0$ are called orthogonal and write $u \perp v$.

Definition 4. We say that a vector u is
(1) a versor, if $p(u, u)=+1$,
(2) a pseudo-versor, if $p(u, u)=-1$.

Definition 5. We say that a system of vectors $\underset{1}{e}, \underset{2}{e}, \ldots, \underset{n}{e}$ constitutes a pseudoorthonormal base if $\left[p\left(e, e_{j}\right)\right]_{1}^{n}=E_{1}$.

Let a sequence of linearly independent vectors $u, u, \ldots, u_{s}, \ldots, u_{n}$ be given. This sequence generates a sequence of linear subspaces $\left.\left.L_{1}=\stackrel{s}{L} \underset{1}{u}\right),{\underset{2}{n}}_{L_{2}}=L \underset{1}{u}, \underset{2}{u}\right), \ldots$, $L_{s}=L(u, u, \ldots, u), \ldots, L_{n}$. Let us denote $\varepsilon_{s}=\operatorname{sign} P(s)$. Apparently $\varepsilon_{n}=-1$ and from the definition $\varepsilon_{0}=+1$.

Definition 6. The sequence $\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{s}, \ldots, \varepsilon_{n}\right)=\left(+1, \varepsilon_{1}, \ldots, \varepsilon_{s}, \ldots, \varepsilon_{n-1}\right.$, -1) will be called the signature of the sequence of subspaces $L_{1}, L_{2}, \ldots, L_{s}, \ldots, L_{n}$, or the signature of the sequence of vectors $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{s}{u}, \ldots,{\underset{n}{n}}_{u}$.

In [5] it was proved that the only restriction is $\varepsilon_{i} \geqslant \varepsilon_{i+1}$ and that any given system of n linearly independent vectors can be arranged in the sequence $\underset{1}{u}, \underset{2}{u}, \ldots,{\underset{s}{ }}_{u}^{,}, \ldots,{ }_{n}^{u}$ with the signature either
(1) $\varepsilon_{0}=\ldots=\varepsilon_{s-1}=+1, \varepsilon_{s}=\ldots=\varepsilon_{n}=-1$ for $s \in\{1,2, \ldots, n\}$ or
(2) $\varepsilon_{0}=\ldots=\varepsilon_{s-1}=+1, \varepsilon_{s}=0, \varepsilon_{s+1},=\ldots=\varepsilon_{n}=-1$ for $s \in\{1,2, \ldots, n-1\}$.

In both these cases we construct a pseudo-orthonormal base $\underset{1}{e}, \ldots, \underset{s-1}{e}, \underset{n}{e}, \underset{s+1}{e}, \ldots$, $\underset{n-1}{e}, \underset{s}{e}$. In the former case the vectors

$$
\begin{equation*}
\underset{k}{e}=\frac{\sum_{i=1}^{k} \stackrel{k}{P}_{k i} \cdot{ }_{i}^{u}}{\sqrt{|P(k-1) P(k)|}} \quad \text { for } k=1,2, \ldots, n \tag{2.1}
\end{equation*}
$$

form a pseudo-orthonormal base such that

$$
\underset{k}{e}=\underset{k}{e}(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{k}{u}) \quad \text { and } \quad p(\underset{k}{e}, \underset{r}{u})= \begin{cases}0 & \text { for } r<k \tag{2.2}\\ \Theta\left(p_{i j}\right) & \text { for } r \geqslant k .\end{cases}
$$

In the latter case we determine vectors $\underset{1}{e}, \ldots, \underset{s-1}{e}, \underset{s+2}{e}, \ldots, \underset{n}{e}$ constituting a pseudoorthonormal base using (2.1). Since $P(s)=0$ we have

$$
\left(\stackrel{s+1}{P}{ }_{s+1, s}\right)^{2}=-P(s-1) P(s+1) \neq 0 .
$$

There exists only one isotropic direction, determined by the vector

$$
\begin{equation*}
v=\frac{1}{2 P(s-1)} \sum_{i=1}^{s} \stackrel{s}{P} P_{s i} \cdot \underset{i}{u} \perp \underset{1}{\underset{1}{u}} \underset{2}{u}, \ldots, \underset{s-1}{u}, \underset{s}{u} \tag{2.3}
\end{equation*}
$$

in the singular space $L \underset{1}{\underset{1}{u}} \underset{2}{u}, \ldots, \underset{s}{u})$. In the pseudo-Euclidean space $L \underset{1}{u}, \ldots, \underset{s}{u}, \underset{s+1}{u})$ there exists one more isotropic direction, which is orthogonal to $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{s-1}{u}$, determined by the vector

$$
\begin{equation*}
\underset{1}{v}=\frac{1}{2 \stackrel{s+1}{P}_{s+1, s} P(s+1)} \sum_{i=1}^{s+1}\left(2 \stackrel{s+1}{P}_{s+1, s} \cdot \stackrel{s+1}{P}_{s i}-\stackrel{s+1}{P}_{s s} \cdot \stackrel{s+1}{P}_{s+1, i}\right) \cdot{ }_{i}^{u} . \tag{2.4}
\end{equation*}
$$

We have $p(\underset{1}{v}, \underset{s}{u})=1$ contrary to $p(v, \underset{s}{u})=0$. The vectors

$$
\begin{equation*}
\underset{s}{e}=\underset{1}{v}-v \quad \text { and } \quad \underset{s+1}{e}=\underset{1}{v}+v \tag{2.5}
\end{equation*}
$$

complement the pseudo-orthonormal base. This base fulfils conditions (2.2) with only two exceptions,

$$
\begin{equation*}
\underset{s}{e}=\underset{s}{e}(\underset{1}{u}, \ldots, \underset{s}{u}, \underset{s+1}{u}) \quad \text { and } \quad p\left(\underset{s+1}{e},{ }_{s}^{u}\right)=1 . \tag{2.6}
\end{equation*}
$$

To each vector $\underset{i}{e}$ of the pseudo-orthonormal base we assign the covector $\underset{i}{\stackrel{*}{e}}=\underset{i}{e} \cdot E_{1}$ and then

$$
p(\underset{i}{e}, \underset{r}{u})=\underset{i}{e^{T}} E_{1} \underset{r}{u}=\underset{i}{e} \cdot \underset{r}{u}
$$

Definition 7. We say that a pseudo-orthogonal matrix A whose successive rows consist of successive coordinates of covectors $\stackrel{*}{\stackrel{*}{1}}, \ldots, \stackrel{*}{\stackrel{*}{e}}, \stackrel{*}{e}, \stackrel{*}{e} \stackrel{\stackrel{*}{e}}{s+1}, \ldots, \stackrel{*}{e} \underset{n-1}{e}, \stackrel{*}{e}$ corresponds to the pseudo-orthonormal base $\underset{1}{e}, \ldots, \underset{s-1}{e}, \underset{n}{e}, \underset{s+1}{e}, \ldots, \underset{n-1}{e}, \underset{s}{e}$, or corresponds to the sequence of vectors $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n}{u}$.

The matrix $A=A(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})$ allows us to solve functional equations (1.6) and (1.7).

3. Solution of the equation $F(\underset{1}{A}, \ldots, A \underset{m}{u})=A \cdot F(\underset{1}{u}, \ldots, \underset{m}{u})$

We arrange a given system of $1 \leqslant m \leqslant n$ linearly independent vectors into a sequence $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}$ whose signature up to ε_{m} must be in one of the forms

1. $(+1, \ldots,+1)$ for $m \in\{1,2, \ldots, n-1\}$
2. $(+1, \ldots,+1,-1, \ldots,-1)$ for $m \in\{1,2, \ldots, n\}$
3. $(+1, \ldots,+1,0,-1, \ldots,-1)$ for $m \in\{1,2, \ldots, n\}$
4. $(+1, \ldots,+1,0)$ for $m \in\{1,2, \ldots, n-1\}$.

We solve the equation (1.6) in the first three cases. We construct the vectors $\underset{1}{e}, e, \ldots,{ }_{m}^{e}$ of a pseudo-orthonormal base using formulas (2.1) or (2.1) and (2.5). The other vectors of the base $\underset{m+1}{e}, \ldots, e_{n}$, if there is lack of them, are built in the orthogonal
 the first case. Inserting the matrix $\underset{0}{A}$, which corresponds to the base $\underset{1}{e}, e, \ldots,{ }_{n}^{e}$ and then the matrix $\underset{m+1}{A}$, which corresponds to the base $\underset{1}{e}, \ldots, \underset{m}{e}, \underset{m+1}{e},{ }_{m+2}^{e}, \ldots,{ }_{n}^{e}$ into equation (1.6) we get

$$
\begin{align*}
& =E_{1} A^{T} F_{0}\left(p_{i j}\right)=E_{1} A_{m+1}^{T} F_{0}\left(p_{i j}\right) . \tag{3.1}
\end{align*}
$$

The constant vector F_{0} is the same in both cases and from the last equation we conclude that its $(m+1)$ component is zero. Moreover, it is obvious that $F_{0}^{m+1}=$ $F_{0}^{m+2}=\ldots=F_{0}^{n}=0$. We get further from (3.1) that

$$
\begin{equation*}
F(\underset{1}{u}, \underset{2}{2}, \ldots, \underset{m}{u})=E_{1}{\underset{0}{T}}^{T} F_{0}\left(p_{i j}\right)=\sum_{k=1}^{n} F_{0}^{k} \cdot \underset{k}{e}=\sum_{k=1}^{m} F_{0}^{k} \cdot \underset{k}{e}=\sum_{k=1}^{m} \Theta^{k}\left(p_{i j}\right) \cdot{ }_{k}^{u}, \tag{3.2}
\end{equation*}
$$

where $\Theta^{1}, \Theta^{2}, \ldots, \Theta^{m}$ are arbitrary functions of $\frac{1}{2} m(m+1)$ variables. The same result we get in the cases 2 and 3 .
Let us consider the case 4. Now $P(m-1)>0$ and $P(m)=0$. In the singular subspace L_{m} there lies its only isotropic direction $q=[v]$, where the vector v is given by the formula (2.3) for $s=m$. The subspace L_{m-1}^{\perp} is a pseudo-Euclidean space of dimension $n-m+1$. If $n-m+1=2$ or equivalently $m=n-1$ then there exists in L_{m-1}^{\perp} exactly one isotropic direction $[\underset{1}{v}]=q_{1} \neq q$ such that $p(\underset{1}{v}, \underset{m}{u})=1$. If $m<n-1$ we find at least two such directions q_{1} and q_{2} represented by linearly independent vectors $\underset{1}{v}$ and $\underset{2}{v}$. Since

$$
P(\underset{1}{u}, \ldots, \underset{m-1}{u}, \underset{m}{u}, \underset{1}{v})=-P\left(\underset{1}{u}, \ldots,{\underset{m}{-1}}_{u}^{u}\right)<0
$$

we get the vectors $\underset{1}{e}, \ldots, \underset{m-1}{e}$ of a pseudo-orthonormal base using formulas (2.1), the vectors $\underset{m}{e}, \underset{m+1}{e}$ we get using formulas (2.5) and the vectors $\underset{m+2}{e}, \ldots,{ }_{n}^{e}$ we find in the orthogonal complement $\left.L^{\perp} \underset{1}{u}, \ldots, \underset{m-1}{u}, \underset{m}{u}, \underset{1}{v}\right)$. Let C_{0} denote the pseudo-orthogonal matrix which corresponds to this base. We get similarly to (3.1) and (3.2)

$$
\begin{align*}
F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}) & =E_{1}{\underset{0}{T}}^{T} F_{0}\left(p_{i j}\right)=\sum_{k=1}^{n} F_{0}^{k} \cdot \underset{k}{e} \tag{3.3}\\
& =\sum_{k=1}^{m+1} F_{0}^{k} \cdot \underset{k}{e}=\sum_{k=1}^{m} \Theta^{k}\left(p_{i j}\right) \cdot \underset{k}{u}+\Theta\left(p_{i j}\right) \cdot \underset{1}{v} .
\end{align*}
$$

Now, if $m<n-1$ we have at the same time

$$
\begin{equation*}
F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})=\sum_{k=1}^{m} \Theta^{k}\left(p_{i j}\right) \cdot \underset{k}{u}+\Theta\left(p_{i j}\right) \cdot \underset{2}{v} . \tag{3.4}
\end{equation*}
$$

In this case we have $\Theta\left(p_{i j}\right) \equiv 0$ and analogously to the previous cases we get $F=$ $\sum_{k=1}^{m} \Theta^{k} \cdot \underset{k}{u}$.

If $m=n-1$ then the direction of the vector v is determined unambiguously. As $P(n-2)>0$ we conclude that $\left.L^{\perp} \underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-2}{u}\right)$ is a two dimensional pseudoEuclidean space with exactly two isotropic directions $q=[v]$ and $q_{1}=[v]$, where $\underset{1}{v} \notin L(\underset{2}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u})$ contrary to $v \in L_{n-1}$.

Let a sequence $\underset{1}{u}, \underset{2}{u}, \ldots,{ }_{n-1}^{u}$ of linearly independent vectors with $P(n-2)>0$ and $P(n-1)=0$ be given. Let Δ^{i} for $i=1,2, \ldots, n-1$ denote the cofactors of the elements $\underset{n-1}{u}{ }^{i}$ of the determinant $\Delta(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u})$ and let by definition $\Delta^{n}=0$. Let us denote $2 D=\sum_{i=1}^{n-1}\left(\Delta^{i}\right)^{2}$ and $B=B_{n-1}$, where B_{r} is defined by formula (1.12). $B \neq 0$ because of $B^{2}=P(n-2)$. Taking these facts into account we have

Theorem 1. Let the mapping η assign $\eta=\eta(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u}) \in \mathbb{R}^{n}$ to the sequence $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-2}{u}, \underset{n-1}{u}$, such that $P(n-2) \neq 0$ and $P(n-1)=0$, by the formula

$$
\begin{equation*}
\eta^{i}=\frac{1}{\Delta \cdot B}\left(B \Delta^{i}-D q^{i}\right) \quad \text { for } i=1,2, \ldots, n \text {. } \tag{3.5}
\end{equation*}
$$

Then the equation

$$
\begin{equation*}
\eta\left(\underset{1}{u}, \underset{2}{\underset{2}{u}}, \ldots, A_{n-1}^{u}\right)=A \cdot \eta(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u}) \tag{3.6}
\end{equation*}
$$

holds for an arbitrary matrix $A \in G$.

Proof. The mapping η is the only solution of the system of n equations

$$
\left\{\begin{array}{l}
p(\eta, \underset{i}{u})=0 \quad \text { for } i=1,2, \ldots, n-2 \\
p(\eta, \underset{n-1}{u})=1 \\
p(\eta, \eta)=0
\end{array}\right.
$$

As the right hand sides are scalars so η is a vector, so it fulfils (3.6). The vector η is linearly independent of $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u}$ because

$$
\operatorname{det}(\underset{1}{u}, \ldots, \underset{n-1}{u}, \eta(\underset{1}{u}, \ldots, \underset{n-1}{u}))=-B(\underset{1}{u}, \ldots, \underset{n-1}{u}) \neq 0 .
$$

The vector $\underset{1}{v}$ from (3.3) and η must be collinear. We have proved
Theorem 2. Every solution of the functional equation

$$
F(\underset{1}{A}, \underset{2}{u}, \ldots, A \underset{m}{u})=A \cdot F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})
$$

for given vectors $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}$ and any matrix $A \in G$ is of the form

$$
\begin{align*}
& F(\underset{1}{f}, \underset{2}{u}, \ldots, \underset{m}{u}) \tag{3.7}\\
& \quad= \begin{cases}\sum_{k=1}^{m} \Theta^{k} \cdot{\underset{k}{u}}^{\Theta-\eta} \quad \text { for } m \neq n-1 \text { or } m=n-1, P(n-1) \neq 0 \\
\Theta \cdot \eta+\sum_{k=1}^{n-1} \Theta^{k} \cdot{\underset{k}{u}}_{u} & \text { for } m=n-1, P(n-1)=0, P(n-2) \neq 0\end{cases}
\end{align*}
$$

where $\Theta, \Theta^{1}, \ldots, \Theta^{n-1}$ are arbitrary functions of $\frac{1}{2} m(m+1)$ variables $p_{i j}$.
4. Solution of the equation $F(\underset{1}{u}, \ldots, \underset{m}{u})=\varepsilon(A) \cdot A \cdot F(\underset{1}{u}, \ldots, \underset{m}{u})$

If $m=n$ then according to (1.13) and (3.7) the general solution of the above equation is of the form

$$
F=\operatorname{det}(\underset{1}{u}, \ldots, \underset{n}{u})\left(\sum_{k=1}^{n} \Theta^{k} \cdot{\underset{k}{u}}_{u}^{)}\right) .
$$

If $m<n$ and $P(m) \neq 0$ then at least one of the vectors of the required pseudoorthogonal base, let us say $\underset{r}{e}$, lies in the orthogonal complement $\left.L^{\perp} \underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}\right)$. Let
the matrix $\underset{+}{A}$ corresponds to a base which includes $\underset{r}{e}$ while the matrix $\underset{-}{A}$ corresponds to the same base in which $\underset{r}{e}$ is replaced by $-\underset{r}{e}$. We have

$$
\begin{align*}
F(\underset{1}{u}, \ldots, \underset{m}{u}) & =\varepsilon \underset{+}{(A)} E_{1}{\underset{+}{T}}_{A^{T}}^{F_{0}}=\varepsilon(\underset{+}{A}) \sum_{k=1}^{n} F_{0}^{k} \cdot \underset{k}{e} \tag{4.1}\\
& =\varepsilon \underset{+}{A}\left(F_{0}^{r} \cdot \underset{r}{e}+\sum_{k \neq r} F_{0}^{k} \cdot \underset{k}{e}\right)=\varepsilon(\underset{-}{A})\left(-F_{0}^{r} \cdot \underset{r}{e}+\sum_{k \neq r} F_{0}^{k} \cdot{\underset{k}{e}}_{e}^{e}\right) .
\end{align*}
$$

In this case the required ε-vector F must have the direction of the vector $\underset{r}{e}$. It is obvious that if $\underset{r}{e}$ is not uniquely determined by the vectors $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}$, then the equation (1.7) has only the trivial solution $F \equiv 0$. It is so for $m<n-1$.

Let $m=n-1$. The equivalent of the well-known cross product in Euclidean geometry, the ε-vector $\omega(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u})$ given by the conditions

$$
\begin{cases}p(\underset{i}{u}, \omega(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u}))=0 & \text { for } i=1,2, \ldots, n-1, \tag{4.2}\\ \operatorname{det}(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u}, \omega)=-p(\omega, \omega)=P(n-1) & \end{cases}
$$

has the direction of the orthogonal complement if $P(n-1) \neq 0$. Then using (4.2) we obtain for $A \in G$

$$
\omega\left(A_{1}^{u}, \underset{2}{u}, \ldots, A_{n-1}^{u}\right)=\varepsilon(A) \cdot A \cdot \omega(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u})
$$

and in accordance with (4.1) we get $F=\Theta \cdot \omega$. In the case $P(n-1)=0$ we have a decomposition $\omega=\sum_{r=1}^{n-1} B_{r} \cdot \underset{r}{u}$ and $L^{\perp}(\underset{1}{u}, \ldots, \underset{n-1}{u})$ is not the orthogonal complement. Starting from linearly independent vectors $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u}, \eta(\underset{1}{u}, \ldots, \underset{n-1}{u})$, whose signature is $(+1, \ldots,+1,0,-1)$, we define $\underset{1}{e}, e_{2}, \ldots,{ }_{n-2}^{e}$ by formulas (2.1) and additionally by $\underset{n-1}{e}=\eta+v$ and $\underset{n}{e}=\eta-v$. The matrix D corresponding to this base has the determinant $B / \sqrt{P(n-2)}$. Inserting D into equation (1.7) we get

$$
\begin{aligned}
F(\underset{1}{u}, \ldots, \underset{n-1}{u}) & =\varepsilon(D) \cdot E_{1} \cdot D^{T} \cdot F_{0}=\varepsilon(D) \sum_{k=1}^{n} F_{0}^{k} \cdot \underset{k}{e} \\
& =\frac{B}{\sqrt{P(n-2)}}\left(\sum_{k=1}^{n-2} F_{0}^{k} \cdot \underset{k}{e}+F_{0}^{n-1}(\eta+v)+F_{0}^{n}(\eta-v)\right) \\
& =B\left(\Theta \cdot \eta+\sum_{k=1}^{n-1} \Theta^{k} \cdot{ }_{k}^{u}\right) .
\end{aligned}
$$

Theorem 3. The general solution of the functional equation

$$
F(A \underset{1}{u}, \underset{2}{\underset{2}{u}}, \ldots, A \underset{m}{u})=\varepsilon(A) \cdot A \cdot F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})
$$

for given vectors $\underset{1}{u}, \underset{2}{u}, \ldots,{ }_{m}^{u}$ and an arbitrary matrix $A \in G$ is of the form
$F(\underset{1}{u}, \ldots, \underset{m}{u})= \begin{cases}0 & \text { for } m<n-1, \\ \Theta \cdot \omega(\underset{1}{u}, \ldots, \underset{n-1}{u}) & \text { for } m=n-1, P(n-1) \neq 0, \\ B \cdot\left(\Theta \cdot \eta+\sum_{k=1}^{n-1} \Theta^{k} \cdot{\underset{k}{u}}_{u}^{u}\right) & \text { for } m=n-1, P(m)=0, P(n-2) \neq 0, \\ \operatorname{det}(\underset{1}{u}, \ldots, u) \sum_{k=1}^{n} \Theta^{k} \cdot{\underset{k}{u}}_{u} & \text { for } m=n,\end{cases}$
where $\Theta, \Theta^{1}, \Theta^{2}, \ldots, \Theta^{n}$ are arbitrary functions of $\frac{1}{2} m(m+1)$ variables $p_{i j}$.

References

[1] J. Aczél, S. Gołab: Functionalgleichungen der Theorie der geometrischen Objekte. P.W.N. Warszawa, 1960.
[2] L. Bieszk, E. Stasiak: Sur deux formes équivalentes de la notion de (r, s)-orientation de la géométrie de Klein. Publ. Math. Debrecen 35 (1988), 43-50.
[3] M. Kucharzewski: Über die Grundlagen der Kleinschen Geometrie. Period. Math. Hung. 8 (1977), 83-89.
[4] A. Misiak, E. Stasiak: Equivariant maps between certain G-spaces with $G=O(n-1, n)$. Math. Bohem. 126 (2001), 555-560.
[5] E. Stasiak: Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1. Publ. Math. Debrecen 57 (2000), 55-69.

Authors' addresses: Barbara Glanc, Aleksander Misiak, Zofia Stępień, Instytut Matematyki, Politechnika Szczecińska, Al. Piastów 17, 70-310 Szczecin, e-mail: misiak@ps.pl.

